
Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

11. Heteroscedasticity: 

What Happens if the Error 

Variance is Nonconstant?

© The McGraw−Hill 

Companies, 2004

387

An important assumption of the classical linear regression model (Assump-
tion 4) is that the disturbances ui appearing in the population regression
function are homoscedastic; that is, they all have the same variance. In this
chapter we examine the validity of this assumption and find out what hap-
pens if this assumption is not fulfilled. As in Chapter 10, we seek answers to
the following questions:

1. What is the nature of heteroscedasticity?
2. What are its consequences?
3. How does one detect it?
4. What are the remedial measures?

11.1 THE NATURE OF HETEROSCEDASTICITY

As noted in Chapter 3, one of the important assumptions of the classical
linear regression model is that the variance of each disturbance term ui ,
conditional on the chosen values of the explanatory variables, is some con-
stant number equal to σ 2. This is the assumption of homoscedasticity, or
equal (homo) spread (scedasticity), that is, equal variance. Symbolically,

E
(
u2

i

)
= σ 2 i = 1, 2, . . . , n (11.1.1)

Diagrammatically, in the two-variable regression model homoscedastic-
ity can be shown as in Figure 3.4, which, for convenience, is reproduced as
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FIGURE 11.1 Homoscedastic disturbances.
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FIGURE 11.2 Heteroscedastic disturbances.

Figure 11.1. As Figure 11.1 shows, the conditional variance of Y i (which is
equal to that of ui), conditional upon the given Xi , remains the same regard-
less of the values taken by the variable X.

In contrast, consider Figure 11.2, which shows that the conditional vari-
ance of Yi increases as X increases. Here, the variances of Yi are not the
same. Hence, there is heteroscedasticity. Symbolically,

E
(
u2

i

)
= σ 2

i (11.1.2)

Notice the subscript of σ 2, which reminds us that the conditional variances
of ui ( = conditional variances of Yi) are no longer constant.

To make the difference between homoscedasticity and heteroscedasticity
clear, assume that in the two-variable model Yi = β1 + β2 Xi + ui , Y repre-
sents savings and X represents income. Figures 11.1 and 11.2 show that as
income increases, savings on the average also increase. But in Figure 11.1
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FIGURE 11.3 Illustration of heteroscedasticity.

1See Stefan Valavanis, Econometrics, McGraw-Hill, New York, 1959, p. 48.
2As Valavanis puts it, “Income grows, and people now barely discern dollars whereas previ-

ously they discerned dimes,’’ ibid., p. 48.

the variance of savings remains the same at all levels of income, whereas in
Figure 11.2 it increases with income. It seems that in Figure 11.2 the higher-
income families on the average save more than the lower-income families,
but there is also more variability in their savings.

There are several reasons why the variances of ui may be variable, some
of which are as follows.1

1. Following the error-learning models, as people learn, their errors of be-
havior become smaller over time. In this case, σ 2

i is expected to decrease. As
an example, consider Figure 11.3, which relates the number of typing errors
made in a given time period on a test to the hours put in typing practice. As
Figure 11.3 shows, as the number of hours of typing practice increases, the
average number of typing errors as well as their variances decreases.

2. As incomes grow, people have more discretionary income2 and hence
more scope for choice about the disposition of their income. Hence, σ 2

i is
likely to increase with income. Thus in the regression of savings on income
one is likely to find σ 2

i increasing with income (as in Figure 11.2) because
people have more choices about their savings behavior. Similarly, compa-
nies with larger profits are generally expected to show greater variability
in their dividend policies than companies with lower profits. Also, growth-
oriented companies are likely to show more variability in their dividend
payout ratio than established companies.

3. As data collecting techniques improve, σ 2
i is likely to decrease. Thus,

banks that have sophisticated data processing equipment are likely to
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FIGURE 11.4 The relationship between stock prices and consumer prices.

3I am indebted to Michael McAleer for pointing this out to me.

commit fewer errors in the monthly or quarterly statements of their cus-
tomers than banks without such facilities.

4. Heteroscedasticity can also arise as a result of the presence of out-
liers. An outlying observation, or outlier, is an observation that is much dif-
ferent (either very small or very large) in relation to the observations in the
sample. More precisely, an outlier is an observation from a different popu-
lation to that generating the remaining sample observations.3 The inclusion
or exclusion of such an observation, especially if the sample size is small,
can substantially alter the results of regression analysis.

As an example, consider the scattergram given in Figure 11.4. Based on the
data given in exercise 11.22, this figure plots percent rate of change of stock
prices (Y) and consumer prices (X) for the post–World War II period through
1969 for 20 countries. In this figure the observation on Y and X for Chile can
be regarded as an outlier because the given Y and X values are much larger
than for the rest of the countries. In situations such as this, it would be hard
to maintain the assumption of homoscedasticity. In exercise 11.22, you are
asked to find out what happens to the regression results if the observations
for Chile are dropped from the analysis.
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FIGURE 11.5 Residuals from the regression of (a) impressions of advertising expenditure and (b) impression on
Adexp and Adexp2.

4David F. Hendry, Dynamic Econometrics, Oxford University Press, 1995, p. 45.

5. Another source of heteroscedasticity arises from violating Assump-
tion 9 of CLRM, namely, that the regression model is correctly specified.
Although we will discuss the topic of specification errors more fully in
Chapter 13, very often what looks like heteroscedasticity may be due to the
fact that some important variables are omitted from the model. Thus, in the
demand function for a commodity, if we do not include the prices of com-
modities complementary to or competing with the commodity in question
(the omitted variable bias), the residuals obtained from the regression may
give the distinct impression that the error variance may not be constant. But
if the omitted variables are included in the model, that impression may
disappear.

As a concrete example, recall our study of advertising impressions re-
tained (Y) in relation to advertising expenditure (X). (See exercise 8.32.) If
you regress Y on X only and observe the residuals from this regression, you
will see one pattern, but if you regress Y on X and X2, you will see another
pattern, which can be seen clearly from Figure 11.5. We have already seen
that X2 belongs in the model. (See exercise 8.32.)

6. Another source of heteroscedasticity is skewness in the distribution
of one or more regressors included in the model. Examples are economic
variables such as income, wealth, and education. It is well known that the
distribution of income and wealth in most societies is uneven, with the bulk
of the income and wealth being owned by a few at the top.

7. Other sources of heteroscedasticity: As David Hendry notes, het-
eroscedasticity can also arise because of (1) incorrect data transformation
(e.g., ratio or first difference transformations) and (2) incorrect functional
form (e.g., linear versus log–linear models).4

Note that the problem of heteroscedasticity is likely to be more common
in cross-sectional than in time series data. In cross-sectional data, one
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TABLE 11.1

COMPENSATION PER EMPLOYEE ($) IN NONDURABLE MANUFACTURING INDUSTRIES ACCORDING TO

EMPLOYMENT SIZE OF ESTABLISHMENT, 1958

Employment size (average number of employees)

Industry 1–4 5–9 10–19 20–49 50–99 100–249 250–499 500–999 1000–2499

Food and kindred

products 2994 3295 3565 3907 4189 4486 4676 4968 5342

Tobacco products 1721 2057 3336 3320 2980 2848 3072 2969 3822

Textile mill products 3600 3657 3674 3437 3340 3334 3225 3163 3168

Apparel and related

products 3494 3787 3533 3215 3030 2834 2750 2967 3453

Paper and allied

products 3498 3847 3913 4135 4445 4885 5132 5342 5326

Printing and

publishing 3611 4206 4695 5083 5301 5269 5182 5395 5552

Chemicals and allied

products 3875 4660 4930 5005 5114 5248 5630 5870 5876

Petroleum and coal

products 4616 5181 5317 5337 5421 5710 6316 6455 6347

Rubber and plastic

products 3538 3984 4014 4287 4221 4539 4721 4905 5481

Leather and leather

products 3016 3196 3149 3317 3414 3254 3177 3346 4067

Average compensation 3396 3787 4013 4104 4146 4241 4388 4538 4843

Standard deviation 742.2 851.4 727.8 805.06 929.9 1080.6 1241.2 1307.7 1110.5

Average productivity 9355 8584 7962 8275 8389 9418 9795 10,281 11,750

Source: The Census of Manufacturers, U.S. Department of Commerce, 1958 (computed by author).

usually deals with members of a population at a given point in time, such as
individual consumers or their families, firms, industries, or geographical
subdivisions such as state, country, city, etc. Moreover, these members may
be of different sizes, such as small, medium, or large firms or low, medium,
or high income. In time series data, on the other hand, the variables tend to
be of similar orders of magnitude because one generally collects the data for
the same entity over a period of time. Examples are GNP, consumption
expenditure, savings, or employment in the United States, say, for the period
1950 to 2000.

As an illustration of heteroscedasticity likely to be encountered in cross-
sectional analysis, consider Table 11.1. This table gives data on compensa-
tion per employee in 10 nondurable goods manufacturing industries, classi-
fied by the employment size of the firm or the establishment for the year
1958. Also given in the table are average productivity figures for nine
employment classes.

Although the industries differ in their output composition, Table 11.1
shows clearly that on the average large firms pay more than the small firms.

392 PART TWO: RELAXING THE ASSUMPTIONS OF THE CLASSICAL MODEL
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As an example, firms employing one to four employees paid on the average
about $3396, whereas those employing 1000 to 2499 employees on the aver-
age paid about $4843. But notice that there is considerable variability in
earning among various employment classes as indicated by the estimated
standard deviations of earnings. This can be seen also from Figure 11.6,
which plots the standard deviation of compensation and average compen-
sation in each employment class. As can be seen clearly, on average, the
standard deviation of compensation increases with the average value of
compensation.

11.2 OLS ESTIMATION IN THE PRESENCE OF

HETEROSCEDASTICITY

What happens to OLS estimators and their variances if we introduce het-
eroscedasticity by letting E(u2

i ) = σ 2
i but retain all other assumptions of the

classical model? To answer this question, let us revert to the two-variable
model:

Yi = β1 + β2 Xi + ui

Applying the usual formula, the OLS estimator of β2 is

β̂2 =
∑

xi yi∑
x2

i

= n
∑

XiYi −
∑

Xi

∑
Yi

n
∑

X2
i − (

∑
Xi)2

(11.2.1)
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FIGURE 11.6 Standard deviation of compensation and mean compensation.
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but its variance is now given by the following expression (see Appendix 11A,
Section 11A.1):

(11.2.2)

which is obviously different from the usual variance formula obtained
under the assumption of homoscedasticity, namely,

(11.2.3)

Of course, if σ 2
i = σ 2 for each i, the two formulas will be identical. (Why?)

Recall that β̂2 is best linear unbiased estimator (BLUE) if the assumptions
of the classical model, including homoscedasticity, hold. Is it still BLUE
when we drop only the homoscedasticity assumption and replace it with the
assumption of heteroscedasticity? It is easy to prove that β̂2 is still linear and
unbiased. As a matter of fact, as shown in Appendix 3A, Section 3A.2, to
establish the unbiasedness of β̂2 it is not necessary that the disturbances
(ui) be homoscedastic. In fact, the variance of ui , homoscedastic or het-
eroscedastic, plays no part in the determination of the unbiasedness prop-
erty. Recall that in Appendix 3A, Section 3A.7, we showed that β̂2 is a consis-
tent estimator under the assumptions of the classical linear regression
model. Although we will not prove it, it can be shown that β̂2 is a consistent
estimator despite heteroscedasticity; that is, as the sample size increases in-
definitely, the estimated β2 converges to its true value. Furthermore, it can
also be shown that under certain conditions (called regularity conditions), β̂2

is asymptotically normally distributed. Of course, what we have said about β̂2

also holds true of other parameters of a multiple regression model.
Granted that β̂2 is still linear unbiased and consistent, is it “efficient” or

“best”; that is, does it have minimum variance in the class of unbiased esti-
mators? And is that minimum variance given by Eq. (11.2.2)? The answer is
no to both the questions: β̂2 is no longer best and the minimum variance is
not given by (11.2.2). Then what is BLUE  in the presence of heteroscedas-
ticity? The answer is given in the following section.

11.3 THE METHOD OF GENERALIZED LEAST SQUARES (GLS)

Why is the usual OLS estimator of β2 given in (11.2.1) not best, although it is
still unbiased? Intuitively, we can see the reason from Table 11.1. As the table
shows, there is considerable variability in the earnings between employment
classes. If we were to regress per-employee compensation on the size of
employment, we would like to make use of the knowledge that there is
considerable interclass variability in earnings. Ideally, we would like to devise

var (β̂2) = σ 2

∑
x2

i

var (β̂2) =
∑

x2
i σ

2
i(∑

x2
i

)2
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the estimating scheme in such a manner that observations coming from pop-
ulations with greater variability are given less weight than those coming from
populations with smaller variability. Examining Table 11.1, we would like to
weight observations coming from employment classes 10–19 and 20–49
more heavily than those coming from employment classes like 5–9 and
250–499, for the former are more closely clustered around their mean values
than the latter, thereby enabling us to estimate the PRF more accurately.

Unfortunately, the usual OLS method does not follow this strategy and
therefore does not make use of the “information” contained in the unequal
variability of the dependent variable Y, say, employee compensation of
Table 11.1: It assigns equal weight or importance to each observation. But a
method of estimation, known as generalized least squares (GLS), takes
such information into account explicitly and is therefore capable of produc-
ing estimators that are BLUE. To see how this is accomplished, let us con-
tinue with the now-familiar two-variable model:

Yi = β1 + β2 Xi + ui (11.3.1)

which for ease of algebraic manipulation we write as

Yi = β1 X0i + β2 Xi + ui (11.3.2)

where X0i = 1 for each i. The reader can see that these two formulations are
identical.

Now assume that the heteroscedastic variances σ 2
i are known. Divide

(11.3.2) through by σi to obtain

Yi

σi
= β1

(
X0i

σi

)
+ β2

(
Xi

σi

)
+

(
ui

σi

)
(11.3.3)

which for ease of exposition we write as

Y*
i = β*

1 X*
0i + β*

2 X*
i + u*

i (11.3.4)

where the starred, or transformed, variables are the original variables divided
by (the known) σi. We use the notation β∗

1 and β∗
2 , the parameters of the trans-

formed model, to distinguish them from the usual OLS parameters β1 and β2.
What is the purpose of transforming the original model? To see this,

notice the following feature of the transformed error term u∗
i :

var (u*
i ) = E(u*

i )2 = E

(
ui

σi

)2

= 1

σ 2
i

E
(
u2

i

)
since σ 2

i is known

= 1

σ 2
i

(
σ 2

i

)
since E

(
u2

i

)
= σ 2

i

= 1

(11.3.5)
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which is a constant. That is, the variance of the transformed disturbance
term u*

i is now homoscedastic. Since we are still retaining the other as-
sumptions of the classical model, the finding that it is u* that is ho-
moscedastic suggests that if we apply OLS to the transformed model
(11.3.3) it will produce estimators that are BLUE. In short, the estimated β∗

1

and β*
2 are now BLUE and not the OLS estimators β̂1 and β̂2.

This procedure of transforming the original variables in such a way that
the transformed variables satisfy the assumptions of the classical model and
then applying OLS to them is known as the method of generalized least
squares (GLS). In short, GLS is OLS on the transformed variables that satisfy
the standard least-squares assumptions. The estimators thus obtained are
known as GLS estimators, and it is these estimators that are BLUE.

The actual mechanics of estimating β*
1 and β*

2 are as follows. First, we
write down the SRF of (11.3.3)

Yi

σi
= β̂*

1

(
X0i

σi

)
+ β̂*

2

(
Xi

σi

)
+

(
ûi

σi

)

or

Y*
i = β̂*

1 X*
0i + β̂*

2 X*
i + û*

i (11.3.6)

Now, to obtain the GLS estimators, we minimize

∑
û2*

i =
∑

(Y*
i − β̂*

1 X*
0i − β̂*

2 X*
i )2

that is,

(11.3.7)

The actual mechanics of minimizing (11.3.7) follow the standard calculus
techniques and are given in Appendix 11A, Section 11A.2. As shown there,
the GLS estimator of β*

2 is

(11.3.8)

and its variance is given by

(11.3.9)

where wi = 1/σ 2
i .

var (β̂*
2) =

∑
wi(∑

wi

)(∑
wi X

2
i

)
−

(∑
wi Xi

)2

β̂*
2 =

(∑
wi

)(∑
wi XiYi

)
−

(∑
wi Xi

)(∑
wiYi

)
(∑

wi

)(∑
wi X

2
i

)
−

(∑
wi Xi

)2

∑(
ûi

σi

)2

=
∑[(

Yi

σi

)
− β̂*

1

(
X0i

σi

)
− β̂*

2

(
Xi

σi

)]2
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Difference between OLS and GLS

Recall from Chapter 3 that in OLS we minimize
∑

û2
i =

∑
(Yi − β̂1 − β̂2 Xi)

2 (11.3.10)

but in GLS we minimize the expression (11.3.7), which can also be written as

(11.3.11)

where wi = 1/σ 2
i [verify that (11.3.11) and (11.3.7) are identical].

Thus, in GLS we minimize a weighted sum of residual squares with
wi = 1/σ 2

i acting as the weights, but in OLS we minimize an unweighted or
(what amounts to the same thing) equally weighted RSS. As (11.3.7) shows,
in GLS the weight assigned to each observation is inversely proportional to
its σi , that is, observations coming from a population with larger σi will get
relatively smaller weight and those from a population with smaller σi will
get proportionately larger weight in minimizing the RSS (11.3.11). To see
the difference between OLS and GLS clearly, consider the hypothetical scat-
tergram given in Figure 11.7.

In the (unweighted) OLS, each û2
i associated with points A, B, and C will

receive the same weight in minimizing the RSS. Obviously, in this case
the û2

i associated with point C will dominate the RSS. But in GLS the ex-
treme observation C will get relatively smaller weight than the other two
observations. As noted earlier, this is the right strategy, for in estimating the

∑
wiû

2
i =

∑
wi(Yi − β̂*

1 X0i − β̂*
2 Xi)

2

X

Y

A
B

Y
i
= β β

1
+

2
X

i

u

u

C

0

u{

FIGURE 11.7 Hypothetical scattergram.
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population regression function (PRF) more reliably we would like to give
more weight to observations that are closely clustered around their (popu-
lation) mean than to those that are widely scattered about.

Since (11.3.11) minimizes a weighted RSS, it is appropriately known as
weighted least squares (WLS), and the estimators thus obtained and given
in (11.3.8) and (11.3.9) are known as WLS estimators. But WLS is just a
special case of the more general estimating technique, GLS. In the context
of heteroscedasticity, one can treat the two terms WLS and GLS inter-
changeably. In later chapters we will come across other special cases of GLS.

In passing, note that if wi = w, a constant for all i, β̂*
2 is identical with β̂2

and var (β̂*
2) is identical with the usual (i.e., homoscedastic) var (β̂2) given in

(11.2.3), which should not be surprising. (Why?) (See exercise 11.8.)

11.4 CONSEQUENCES OF USING OLS IN THE PRESENCE OF

HETEROSCEDASTICITY

As we have seen, both β̂*
2 and β̂2 are (linear) unbiased estimators: In re-

peated sampling, on the average, β̂*
2 and β̂2 will equal the true β2; that is,

they are both unbiased estimators. But we know that it is β̂*
2 that is efficient,

that is, has the smallest variance. What happens to our confidence interval,
hypotheses testing, and other procedures if we continue to use the OLS
estimator β̂2? We distinguish two cases.

OLS Estimation Allowing for Heteroscedasticity

Suppose we use β̂2 and use the variance formula given in (11.2.2), which
takes into account heteroscedasticity explicitly. Using this variance, and
assuming σ 2

i are known, can we establish confidence intervals and test
hypotheses with the usual t and F tests? The answer generally is no because
it can be shown that var (β̂*

2) ≤ var (β̂2),5 which means that confidence
intervals based on the latter will be unnecessarily larger. As a result, the t and
F tests are likely to give us inaccurate results in that var (β̂2) is overly large
and what appears to be a statistically insignificant coefficient (because the t
value is smaller than what is appropriate) may in fact be significant if the cor-
rect confidence intervals were established on the basis of the GLS procedure.

OLS Estimation Disregarding Heteroscedasticity

The situation can become serious if we not only use β̂2 but also continue
to use the usual (homoscedastic) variance formula given in (11.2.3) even if
heteroscedasticity is present or suspected: Note that this is the more likely

5A formal proof can be found in Phoebus J. Dhrymes, Introductory Econometrics, Springer-
Verlag, New York, 1978, pp. 110–111. In passing, note that the loss of efficiency of β̂2 [i.e., by
how much var (β̂2) exceeds var (β̂*

2)] depends on the sample values of the X variables and the
value of σ 2

i .
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case of the two we discuss here, because running a standard OLS regression
package and ignoring (or being ignorant of) heteroscedasticity will yield
variance of β̂2 as given in (11.2.3). First of all, var (β̂2) given in (11.2.3) is a
biased estimator of var (β̂2) given in (11.2.2), that is, on the average it over-
estimates or underestimates the latter, and in general we cannot tell whether
the bias is positive (overestimation) or negative (underestimation) because
it depends on the nature of the relationship between σ 2

i and the values taken
by the explanatory variable X, as can be seen clearly from (11.2.2) (see exer-
cise 11.9). The bias arises from the fact that σ̂ 2, the conventional estimator
of σ 2, namely, 

∑
û2

i /(n − 2) is no longer an unbiased estimator of the latter
when heteroscedasticity is present (see Appendix 11A.3). As a result, we can
no longer rely on the conventionally computed confidence intervals and the
conventionally employed t and F tests.6 In short, if we persist in using the
usual testing procedures despite heteroscedasticity, whatever conclu-
sions we draw or inferences we make may be very misleading.

To throw more light on this topic, we refer to a Monte Carlo study con-
ducted by Davidson and MacKinnon.7 They consider the following simple
model, which in our notation is

Yi = β1 + β2 Xi + ui (11.4.1)

They assume that β1 = 1, β2 = 1, and ui ∼ N(0, Xα
i ). As the last expression

shows, they assume that the error variance is heteroscedastic and is related
to the value of the regressor X with power α. If, for example, α = 1, the error
variance is proportional to the value of X; if α = 2, the error variance is pro-
portional to the square of the value of X, and so on. In Section 11.6 we will
consider the logic behind such a procedure. Based on 20,000 replications
and allowing for various values for α, they obtain the standard errors of the
two regression coefficients using OLS [see Eq. (11.2.3)], OLS allowing for
heteroscedasticity [see Eq. (11.2.2)], and GLS [see Eq. (11.3.9)]. We quote
their results for selected values of α:

Standard error of β̂1 Standard error of β̂2

Value of α OLS OLShet GLS OLS OLShet GLS

0.5 0.164 0.134 0.110 0.285 0.277 0.243

1.0 0.142 0.101 0.048 0.246 0.247 0.173

2.0 0.116 0.074 0.0073 0.200 0.220 0.109

3.0 0.100 0.064 0.0013 0.173 0.206 0.056

4.0 0.089 0.059 0.0003 0.154 0.195 0.017

Note: OLShet means OLS allowing for heteroscedasticity.

6From (5.3.6) we know that the 100(1 − α)% confidence interval for β2 is [β̂2 ± tα/2 se (β̂2)].
But if se (β̂2) cannot be estimated unbiasedly, what trust can we put in the conventionally com-
puted confidence interval?

7Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics,
Oxford University Press, New York, 1993, pp. 549–550.
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The most striking feature of these results is that OLS, with or without correc-
tion for heteroscedasticity, consistently overestimates the true standard error
obtained by the (correct) GLS procedure, especially for large values of α, thus
establishing the superiority of GLS. These results also show that if we do not
use GLS and rely on OLS—allowing for or not allowing for heteroscedastic-
ity—the picture is mixed. The usual OLS standard errors are either too large
(for the intercept) or too small (for the slope coefficient) in relation
to those obtained by OLS allowing for heteroscedasticity. The message is
clear: In the presence of heteroscedasticity, use GLS. However, for reasons
explained later in the chapter, in practice it is not always easy to apply GLS.
Also, as we discuss later, unless heteroscedasticity is very severe, one may not
abandon OLS in favor of GLS or WLS.

From the preceding discussion it is clear that heteroscedasticity is poten-
tially a serious problem and the researcher needs to know whether it is
present in a given situation. If its presence is detected, then one can take
corrective action, such as using the weighted least-squares regression or
some other technique. Before we turn to examining the various corrective
procedures, however, we must first find out whether heteroscedasticity is
present or likely to be present in a given case. This topic is discussed in the
following section.

A Technical Note

Although we have stated that, in cases of heteroscedasticity, it is the GLS,
not the OLS, that is BLUE, there are examples where OLS can be BLUE,
despite heteroscedasticity.8 But such examples are infrequent in practice.

11.5 DETECTION OF HETEROSCEDASTICITY

As with multicollinearity, the important practical question is: How does one
know that heteroscedasticity is present in a specific situation? Again, as in
the case of multicollinearity, there are no hard-and-fast rules for detecting
heteroscedasticity, only a few rules of thumb. But this situation is inevitable
because σ 2

i can be known only if we have the entire Y population corre-
sponding to the chosen X ’s, such as the population shown in Table 2.1 or
Table 11.1. But such data are an exception rather than the rule in most

generally

8The reason for this is that the Gauss–Markov theorem provides the sufficient (but not neces-
sary) condition for OLS to be efficient. The necessary and sufficient condition for OLS to be BLUE
is given by Kruskal’s Theorem. But this topic is beyond the scope of this book. I am indebted to
Michael McAleer for bringing this to my attention. For further details, see Denzil G. Fiebig,
Michael McAleer, and Robert Bartels, “Properties of Ordinary Least Squares Estimators in Re-
gression Models with Nonspherical Disturbances,” Journal of Econometrics, vol. 54, No. 1–3,
Oct.–Dec., 1992, pp. 321–334. For the mathematically inclined student, I discuss this topic further
in App. C, using matrix algebra.
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economic investigations. In this respect the econometrician differs from
scientists in fields such as agriculture and biology, where researchers have a
good deal of control over their subjects. More often than not, in economic
studies there is only one sample Y value corresponding to a particular value
of X. And there is no way one can know σ 2

i from just one Y observation.
Therefore, in most cases involving econometric investigations, heteroscedas-
ticity may be a matter of intuition, educated guesswork, prior empirical ex-
perience, or sheer speculation.

With the preceding caveat in mind, let us examine some of the informal
and formal methods of detecting heteroscedasticity. As the following dis-
cussion will reveal, most of these methods are based on the examination of
the OLS residuals ûi since they are the ones we observe, and not the distur-
bances ui . One hopes that they are good estimates of ui , a hope that may be
fulfilled if the sample size is fairly large.

Informal Methods

Nature of the Problem Very often the nature of the problem under
consideration suggests whether heteroscedasticity is likely to be encoun-
tered. For example, following the pioneering work of Prais and Houthakker
on family budget studies, where they found that the residual variance
around the regression of consumption on income increased with income,
one now generally assumes that in similar surveys one can expect unequal
variances among the disturbances.9 As a matter of fact, in cross-sectional
data involving heterogeneous units, heteroscedasticity may be the rule
rather than the exception. Thus, in a cross-sectional analysis involving the
investment expenditure in relation to sales, rate of interest, etc., het-
eroscedasticity is generally expected if small-, medium-, and large-size firms
are sampled together.

As a matter of fact, we have already come across examples of this. In
Chapter 2 we discussed the relationship between mean, or average, hourly
wages in relation to years of schooling in the United States. In that chapter
we also discussed the relationship between expenditure on food and total
expenditure for 55 families in India (see exercise 11.16).

Graphical Method If there is no a priori or empirical information
about the nature of heteroscedasticity, in practice one can do the regression
analysis on the assumption that there is no heteroscedasticity and then do a
postmortem examination of the residual squared û2

i to see if they exhibit any
systematic pattern. Although û2

i are not the same thing as u2
i , they can be

9S. J. Prais and H. S. Houthakker, The Analysis of Family Budgets, Cambridge University
Press, New York, 1955.
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(a) (b) (c)

u2 u2 u2

u2

(e)
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Y Y Y
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u2

(d)

Y

FIGURE 11.8 Hypothetical patterns of estimated squared residuals.

used as proxies especially if the sample size is sufficiently large.10 An exam-
ination of the û2

i may reveal patterns such as those shown in Figure 11.8.
In Figure 11.8, û2

i are plotted against Ŷi, the estimated Yi from the regres-
sion line, the idea being to find out whether the estimated mean value of Y is
systematically related to the squared residual. In Figure 11.8a we see that
there is no systematic pattern between the two variables, suggesting that per-
haps no heteroscedasticity is present in the data. Figure 11.8b to e, however,
exhibits definite patterns. For instance, Figure 11.8c suggests a linear rela-
tionship, whereas Figure 11.8d and e indicates a quadratic relationship be-
tween û2

i and Ŷi. Using such knowledge, albeit informal, one may transform
the data in such a manner that the transformed data do not exhibit hetero-
scedasticity. In Section 11.6 we shall examine several such transformations.

Instead of plotting û2
i against Ŷi , one may plot them against one of the

explanatory variables, especially if plotting û2
i against Ŷi results in the

pattern shown in Figure 11.8a. Such a plot, which is shown in Figure 11.9,
may reveal patterns similar to those given in Figure 11.8. (In the case of the
two-variable model, plotting û2

i against Ŷi is equivalent to plotting it against

10For the relationship between ûi and ui , see E. Malinvaud, Statistical Methods of Econo-
metrics, North Holland Publishing Company, Amsterdam, 1970, pp. 88–89.
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(a) (b) (c)

u2 u2 u2

u2

(e)

X

X X X
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u2
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X

FIGURE 11.9 Scattergram of estimated squared residuals against X.

Xi , and therefore Figure 11.9 is similar to Figure 11.8. But this is not the sit-
uation when we consider a model involving two or more X variables; in this
instance, û2

i may be plotted against any X variable included in the model.)
A pattern such as that shown in Figure 11.9c, for instance, suggests that

the variance of the disturbance term is linearly related to the X variable.
Thus, if in the regression of savings on income one finds a pattern such as
that shown in Figure 11.9c, it suggests that the heteroscedastic variance
may be proportional to the value of the income variable. This knowledge
may help us in transforming our data in such a manner that in the regres-
sion on the transformed data the variance of the disturbance is ho-
moscedastic. We shall return to this topic in the next section.

Formal Methods

Park Test11 Park formalizes the graphical method by suggesting that σ 2
i

is some function of the explanatory variable Xi . The functional form he

11R. E. Park, “Estimation with Heteroscedastic Error Terms,’’ Econometrica, vol. 34, no. 4,
October 1966, p. 888. The Park test is a special case of the general test proposed by A. C. Harvey
in “Estimating Regression Models with Multiplicative Heteroscedasticity,’’ Econometrica,
vol. 44, no. 3, 1976, pp. 461–465.
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suggested was

σ2
i = σ 2 X

β

i evi

or

ln σ2
i = ln σ 2 + β ln Xi + vi (11.5.1)

where vi is the stochastic disturbance term.
Since σ2

i is generally not known, Park suggests using û2
i as a proxy and

running the following regression:

ln û2
i = ln σ 2 + β ln Xi + vi

= α + β ln Xi + vi

(11.5.2)

If β turns out to be statistically significant, it would suggest that het-
eroscedasticity is present in the data. If it turns out to be insignificant, we
may accept the assumption of homoscedasticity. The Park test is thus a two-
stage procedure. In the first stage we run the OLS regression disregarding
the heteroscedasticity question. We obtain ûi from this regression, and then
in the second stage we run the regression (11.5.2).

Although empirically appealing, the Park test has some problems. Goldfeld
and Quandt have argued that the error term vi entering into (11.5.2) may not
satisfy the OLS assumptions and may itself be heteroscedastic.12 Nonethe-
less, as a strictly exploratory method, one may use the Park test.

12Stephen M. Goldfeld and Richard E. Quandt, Nonlinear Methods in Econometrics, North
Holland Publishing Company, Amsterdam, 1972, pp. 93–94.

13The particular functional form chosen by Park is only suggestive. A different functional
form may reveal significant relationships. For example, one may use û2

i instead of ln û2
i as the

dependent variable.

EXAMPLE 11.1

RELATIONSHIP BETWEEN COMPENSATION AND
PRODUCTIVITY

To illustrate the Park approach, we use the data given in

Table 11.1 to run the following regression:

Yi = β1 + β2 Xi + ui

where Y = average compensation in thousands of

dollars, X = average productivity in thousands of dollars,

and i = i th employment size of the establishment. The

results of the regression were as follows:

Ŷi = 1992.3452 + 0.2329Xi

se = (936.4791) (0.0998) (11.5.3)

t = (2.1275) (2.333) R2 = 0.4375

The results reveal that the estimated slope coefficient is

significant at the 5 percent level on the basis of a one-tail

t test. The equation shows that as labor productivity

increases by, say, a dollar, labor compensation on the

average increases by about 23 cents.

The residuals obtained from regression (11.5.3) were

regressed on Xi as suggested in Eq. (11.5.2), giving the

following results:

l̂n ûi
2 = 35.817 − 2.8099 ln Xi

se = (38.319) (4.216) (11.5.4)

t = (0.934)   (−0.667) R2 = 0.0595

Obviously, there is no statistically significant relationship

between the two variables. Following the Park test, one

may conclude that there is no heteroscedasticity in the

error variance.13



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

11. Heteroscedasticity: 

What Happens if the Error 

Variance is Nonconstant?

© The McGraw−Hill 

Companies, 2004

CHAPTER ELEVEN: HETEROSCEDASTICITY 405

14H. Glejser, “A New Test for Heteroscedasticity,’’ Journal of the American Statistical Associ-
ation, vol. 64, 1969, pp. 316–323.

15For details, see Goldfeld and Quandt, op. cit., Chap. 3.

Glejser Test14 The Glejser test is similar in spirit to the Park test. After
obtaining the residuals ûi from the OLS regression, Glejser suggests re-
gressing the absolute values of ûi on the X variable that is thought to be
closely associated with σ 2

i . In his experiments, Glejser used the following
functional forms:

|ûi | = β1 + β2 Xi + vi

|ûi | = β1 + β2

√
Xi + vi

|ûi | = β1 + β2
1

Xi
+ vi

|ûi | = β1 + β2
1√
Xi

+ vi

|ûi | = 
√
β1 + β2 Xi + vi

|ûi | = 
√
β1 + β2 X2

i + vi

where vi is the error term.
Again as an empirical or practical matter, one may use the Glejser ap-

proach. But Goldfeld and Quandt point out that the error term vi has some
problems in that its expected value is nonzero, it is serially correlated (see
Chapter 12), and ironically it is heteroscedastic.15 An additional difficulty
with the Glejser method is that models such as 

|ûi | =
√
β1 + β2 Xi + vi

and

|ûi | =
√
β1 + β2 X2

i + vi

are nonlinear in the parameters and therefore cannot be estimated with the
usual OLS procedure.

Glejser has found that for large samples the first four of the preceding
models give generally satisfactory results in detecting heteroscedasticity. As
a practical matter, therefore, the Glejser technique may be used for large
samples and may be used in the small samples strictly as a qualitative device
to learn something about heteroscedasticity. 
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16See G. Udny Yule and M. G. Kendall, An Introduction to the Theory of Statistics, Charles
Griffin & Company, London, 1953, p. 455.

EXAMPLE 11.2

RELATIONSHIP BETWEEN COMPENSATION AND PRODUCTIVITY:
THE GLEJSER TEST

Continuing with Example 11.1, the absolute value of the residuals obtained from regression

(11.5.3) were regressed on average productivity (X ), giving the following results:

|̂ûi | = 407.2783 − 0.0203Xi

se = (633.1621)   (0.0675) r 2 = 0.0127 (11.5.5)

t = (0.6432)   (−0.3012)

As you can see from this regression, there is no relationship between the absolute value of

the residuals and the regressor, average productivity. This reinforces the conclusion based

on the Park test.

Spearman’s Rank Correlation Test. In exercise 3.8 we defined the
Spearman’s rank correlation coefficient as

(11.5.6)

where di = difference in the ranks assigned to two different characteristics
of the ith individual or phenomenon and n = number of individuals or phe-
nomena ranked. The preceding rank correlation coefficient can be used to
detect heteroscedasticity as follows: Assume Yi = β0 + β1 Xi + ui .

Step 1. Fit the regression to the data on Y and X and obtain the residuals
ûi .

Step 2. Ignoring the sign of ûi , that is, taking their absolute value |ûi |,
rank both |ûi | and Xi (or Ŷi) according to an ascending or descending order
and compute the Spearman’s rank correlation coefficient given previously.

Step 3. Assuming that the population rank correlation coefficient ρs is
zero and n > 8, the significance of the sample rs can be tested by the t test as
follows16:

(11.5.7)

with df = n − 2.

t = rs

√
n − 2√

1 − r2
s

rs = 1 − 6

[ ∑
d2

i

n(n2 − 1)

]
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If the computed t value exceeds the critical t value, we may accept the hy-
pothesis of heteroscedasticity; otherwise we may reject it. If the regression
model involves more than one X variable, rs can be computed between |ûi |
and each of the X variables separately and can be tested for statistical signi-
ficance by the t test given in Eq. (11.5.7).

EXAMPLE 11.3

ILLUSTRATION OF THE RANK 
CORRELATION TEST

To illustrate the rank correlation test, consider the data

given in Table 11.2. The data pertain to the average an-

nual return (E, %) and the standard deviation of annual

return (σi , %) of 10 mutual funds.

The capital market line (CML) of portfolio theory pos-

tulates a linear relationship between expected return

(Ei ) and risk (as measured by the standard deviation, σ )

of a portfolio as follows:

Ei = βi + β2σi

Using the data in Table 11.2, the preceding model was

estimated and the residuals from this model were com-

puted. Since the data relate to 10 mutual funds of differ-

ing sizes and investment goals, a priori one might expect

heteroscedasticity. To test this hypothesis, we apply the

rank correlation test. The necessary calculations are

given in Table 11.2.

Applying formula (11.5.6), we obtain

rs = 1 − 6
110

10(100 − 1)

= 0.3333

(11.5.8)

Applying the t test given in (11.5.7), we obtain

t = (0.3333)(
√

8)√
1 − 0.1110

= 0.9998

(11.5.9)

For 8 df this t value is not significant even at the 10%

level of significance; the p value is 0.17. Thus, there is

no evidence of a systematic relationship between the

explanatory variable and the absolute values of the

residuals, which might suggest that there is no

heteroscedasticity.

TABLE 11.2

RANK CORRELATION TEST OF HETEROSCEDASTICITY

Ei, σi, d,
average standard difference
annual deviation |ûi |† between

Name of return, of annual residuals, Rank Rank two
mutual fund % return, % Êi* |(Ei − Êi )| of |ûi | of σi rankings d 2

Boston Fund 12.4 12.1 11.37 1.03 9 4 5 25

Delaware Fund 14.4 21.4 15.64 1.24 10 9 1 1

Equity Fund 14.6 18.7 14.40 0.20 4 7 −3 9

Fundamental Investors 16.0 21.7 15.78 0.22 5 10 −5 25

Investors Mutual 11.3 12.5 11.56 0.26 6 5 1 1

Loomis-Sales Mutual Fund 10.0 10.4 10.59 0.59 7 2 5 25

Massachusetts Investors Trust 16.2 20.8 15.37 0.83 8 8 0 0

New England Fund 10.4 10.2 10.50 0.10 3 1 2 4

Putnam Fund of Boston 13.1 16.0 13.16 0.06 2 6 −4 16

Wellington Fund 11.3 12.0 11.33 0.03 1 3 −2 4

Total 0 110

*Obtained from the regression: Êi = 5.8194 + 0.4590σi .
†Absolute value of the residuals.
Note: The ranking is in ascending order of values.



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

11. Heteroscedasticity: 

What Happens if the Error 

Variance is Nonconstant?

© The McGraw−Hill 

Companies, 2004

408 PART TWO: RELAXING THE ASSUMPTIONS OF THE CLASSICAL MODEL

Goldfeld-Quandt Test.17 This popular method is applicable if one as-
sumes that the heteroscedastic variance, σ 2

i , is positively related to one of
the explanatory variables in the regression model. For simplicity, consider
the usual two-variable model:

Yi = β1 + β2 Xi + ui

Suppose σ 2
i is positively related to Xi as

σ 2
i = σ 2 X2

i (11.5.10)

where σ 2 is a constant.18

Assumption (11.5.10) postulates that σ 2
i is proportional to the square of

the X variable. Such an assumption has been found quite useful by Prais
and Houthakker in their study of family budgets. (See Section 11.6.)

If (11.5.10) is appropriate, it would mean σ 2
i would be larger, the larger

the values of Xi. If that turns out to be the case, heteroscedasticity is most
likely to be present in the model. To test this explicitly, Goldfeld and Quandt
suggest the following steps:

Step 1. Order or rank the observations according to the values of Xi, be-
ginning with the lowest X value.

Step 2. Omit c central observations, where c is specified a priori, and
divide the remaining (n − c) observations into two groups each of (n − c)+ 2
observations.

Step 3. Fit separate OLS regressions to the first (n − c)+ 2 observations
and the last (n − c)+ 2 observations, and obtain the respective residual sums
of squares RSS1 and RSS2, RSS1 representing the RSS from the regression
corresponding to the smaller Xi values (the small variance group) and RSS2

that from the larger Xi values (the large variance group). These RSS each
have

(n − c)

2
− k or

(
n − c − 2k

2

)
df

where k is the number of parameters to be estimated, including the inter-
cept. (Why?) For the two-variable case k is of course 2.

Step 4. Compute the ratio

λ = RSS2/df

RSS1/df
(11.5.11)

If ui are assumed to be normally distributed (which we usually do), and if
the assumption of homoscedasticity is valid, then it can be shown that λ of
(11.5.10) follows the F distribution with numerator and denominator df
each of (n − c − 2k)/2.

17Goldfeld and Quandt, op. cit., Chap. 3.
18This is only one plausible assumption. Actually, what is required is that σ 2

i be monotoni-
cally related to Xi.
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If in an application the computed λ ( = F) is greater than the critical F at
the chosen level of significance, we can reject the hypothesis of ho-
moscedasticity, that is, we can say that heteroscedasticity is very likely.

Before illustrating the test, a word about omitting the c central observa-
tions is in order. These observations are omitted to sharpen or accentuate
the difference between the small variance group (i.e., RSS1) and the large
variance group (i.e., RSS2). But the ability of the Goldfeld–Quandt test to do
this successfully depends on how c is chosen.19 For the two-variable model
the Monte Carlo experiments done by Goldfeld and Quandt suggest that c is
about 8 if the sample size is about 30, and it is about 16 if the sample size is
about 60. But Judge et al. note that c = 4 if n = 30 and c = 10 if n is about
60 have been found satisfactory in practice.20

Before moving on, it may be noted that in case there is more than one
X variable in the model, the ranking of observations, the first step in the test,
can be done according to any one of them. Thus in the model: Yi = β1 + β2X2i +
β3X3i + β4X4i + ui, we can rank-order the data according to any one of these
X’s. If a priori we are not sure which X variable is appropriate, we can conduct
the test on each of the X variables, or via a Park test, in turn, on each X.

19Technically, the power of the test depends on how c is chosen. In statistics, the power of a
test is measured by the probability of rejecting the null hypothesis when it is false [i.e., by 1 −
Prob (type II error)]. Here the null hypothesis is that the variances of the two groups are the
same, i.e., homoscedasticity. For further discussion, see M. M. Ali and C. Giaccotto, “A Study
of Several New and Existing Tests for Heteroscedasticity in the General Linear Model,’’ Journal
of Econometrics, vol. 26, 1984, pp. 355–373.

20George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-Chao
Lee, Introduction to the Theory and Practice of Econometrics, John Wiley & Sons, New York,
1982, p. 422.

EXAMPLE 11.4

THE GOLDFELD–QUANDT TEST

To illustrate the Goldfeld–Quandt test, we present in Table 11.3 data on consumption expen-

diture in relation to income for a cross section of 30 families. Suppose we postulate that con-

sumption expenditure is linearly related to income but that heteroscedasticity is present in the

data. We further postulate that the nature of heteroscedasticity is as given in (11.5.10). The

necessary reordering of the data for the application of the test is also presented in Table 11.3.

Dropping the middle 4 observations, the OLS regressions based on the first 13 and the

last 13 observations and their associated residual sums of squares are as shown next (stan-

dard errors in the parentheses).

Regression based on the first 13 observations:

Ŷi = 3.4094 + 0.6968Xi

(8.7049)    (0.0744) r 2 = 0.8887 RSS1 = 377.17 df = 11

Regression based on the last 13 observations:

Ŷi = − 28.0272 + 0.7941Xi

(30.6421) (0.1319)  r 2 = 0.7681 RSS2 = 1536.8 df = 11

(Continued)
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Middle 4

observations�

From these results we obtain

λ = RSS2/df

RSS1/df
= 1536.8/11

377.17/11

λ = 4.07

The critical F value for 11 numerator and 11 denominator df at the 5 percent level is 2.82.

Since the estimated F ( = λ) value exceeds the critical value, we may conclude that there is

heteroscedasticity in the error variance. However, if the level of significance is fixed at 1 per-

cent, we may not reject the assumption of homoscedasticity. (Why?) Note that the p value of

the observed λ is 0.014.

EXAMPLE 11.4 (Continued)

TABLE 11.3

HYPOTHETICAL DATA ON CONSUMPTION EXPENDITURE Y($) AND

INCOME X($) TO ILLUSTRATE THE GOLDFELD–QUANDT TEST

Data ranked by
X values

Y X Y X

55 80 55 80

65 100 70 85

70 85 75 90

80 110 65 100

79 120 74 105

84 115 80 110

98 130 84 115

95 140 79 120

90 125 90 125

75 90 98 130

74 105 95 140

110 160 108 145

113 150 113 150

125 165 110 160

108 145 125 165

115 180 115 180

140 225 130 185

120 200 135 190

145 240 120 200

130 185 140 205

152 220 144 210

144 210 152 220

175 245 140 225

180 260 137 230

135 190 145 240

140 205 175 245

178 265 189 250

191 270 180 260

137 230 178 265

189 250 191 270
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21T. Breusch and A. Pagan, “A Simple Test for Heteroscedasticity and Random Coefficient
Variation,’’ Econometrica, vol. 47, 1979, pp. 1287–1294. See also L. Godfrey, “Testing for Multi-
plicative Heteroscedasticity,’’ Journal of Econometrics, vol. 8, 1978, pp. 227–236. Because of
similarity, these tests are known as Breusch–Pagan–Godfrey tests of heteroscedasticity.

Breusch–Pagan–Godfrey Test.21 The success of the Goldfeld–Quandt
test depends not only on the value of c (the number of central observations
to be omitted) but also on identifying the correct X variable with which to
order the observations. This limitation of this test can be avoided if we
consider the Breusch–Pagan–Godfrey (BPG) test.

To illustrate this test, consider the k-variable linear regression model

Yi = β1 + β2 X2i + · · · + βkXki + ui (11.5.12)

Assume that the error variance σ 2
i is described as

σ 2
i = f (α1 + α2 Z2i + · · · + αmZmi) (11.5.13)

that is, σ 2
i is some function of the nonstochastic variables Z’s; some or all of

the X’s can serve as Z’s. Specifically, assume that

σ 2
i = α1 + α2 Z2i + · · · + αmZmi (11.5.14)

that is, σ 2
i is a linear function of the Z’s. If α2 = α3 = · · · = αm = 0, σ 2

i = α1,
which is a constant. Therefore, to test whether σ 2

i is homoscedastic, one can
test the hypothesis that α2 = α3 = · · · = αm = 0. This is the basic idea behind
the Breusch–Pagan test. The actual test procedure is as follows.

Step 1. Estimate (11.5.12) by OLS and obtain the residuals û1, û2, . . . , ûn.

Step 2. Obtain σ̃ 2 =
∑

û2
i /n. Recall from Chapter 4 that this is the

maximum likelihood (ML) estimator of σ 2. [Note: The OLS estimator is∑
û2

i /(n − k).]
Step 3. Construct variables pi defined as

pi = û2
i

/
σ̃ 2

which is simply each residual squared divided by σ̃ 2.

Step 4. Regress pi thus constructed on the Z’s as

pi = α1 + α2 Z2i + · · · + αmZmi + vi (11.5.15)

where vi is the residual term of this regression.
Step 5. Obtain the ESS (explained sum of squares) from (11.5.15) and

define

( = 1

2
(ESS) (11.5.16)

Assuming ui are normally distributed, one can show that if there is ho-
moscedasticity and if the sample size n increases indefinitely, then

( ∼
asy

χ2
m−1 (11.5.17)
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22See Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar, Cheltenham, U.K.,
1994, pp. 178–179.

23On this, see R. Koenker, “A Note on Studentizing a Test for Heteroscedasticity,” Journal of
Econometrics, vol. 17, 1981, pp. 1180–1200.

that is, ( follows the chi-square distribution with (m − 1) degrees of free-
dom. (Note: asy means asymptotically.)

Therefore, if in an application the computed ( ( = χ2) exceeds the critical
χ2 value at the chosen level of significance, one can reject the hypothesis of
homoscedasticity; otherwise one does not reject it.

The reader may wonder why BPG chose 1
2
ESS as the test statistic. The

reasoning is slightly involved and is left for the references.22

EXAMPLE 11.5

THE BREUSCH–PAGAN–GODFREY (BPG) TEST

As an example, let us revisit the data (Table 11.3) that were used to illustrate the Goldfeld–

Quandt heteroscedasticity test. Regressing Y on X, we obtain the following:

Step 1.

Ŷi = 9.2903 + 0.6378Xi

se = (5.2314) (0.0286) RSS = 2361.153 R2 =  0.9466 (11.5.18)

Step 2.

σ̃ 2 =
∑

û2
i /30 = 2361.153/30 = 78.7051

Step 3. Divide the squared residuals ûi obtained from regression (11.5.18) by 78.7051 to

construct the variable pi.

Step 4. Assuming that pi are linearly related to Xi ( = Zi ) as per (11.5.14), we obtain the

regression

p̂i = −0.7426 + 0.0101Xi

se = (0.7529) (0.0041) ESS = 10.4280 R2 = 0.18 (11.5.19)

Step 5.

( = 1

2
(ESS) = 5.2140 (11.5.20)

Under the assumptions of the BPG test ( in (11.5.20) asymptotically follows the chi-

square distribution with 1 df. [Note: There is only one regressor in (11.5.19).] Now from the

chi-square table we find that for 1 df the 5 percent critical chi-square value is 3.8414 and the

1 percent critical χ2 value is 6.6349. Thus, the observed chi-square value of 5.2140 is signif-

icant at the 5 percent but not the 1 percent level of significance. Therefore, we reach the

same conclusion as the Goldfeld–Quandt test. But keep in mind that, strictly speaking, the

BPG test is an asymptotic, or large-sample, test and in the present example 30 observations

may not constitute a large sample. It should also be pointed out that in small samples the test

is sensitive to the assumption that the disturbances ui are normally distributed. Of course, we

can test the normality assumption by the tests discussed in Chapter 5.23
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24H. White, “A Heteroscedasticity Consistent Covariance Matrix Estimator and a Direct Test
of Heteroscedasticity,’’ Econometrica, vol. 48, 1980, pp. 817–818.

25Implied in this procedure is the assumption that the error variance of ui ,σ
2
i , is function-

ally related to the regressors, their squares, and their cross products. If all the partial slope
coefficients in this regression are simultaneously equal to zero, then the error variance is the
homoscedastic constant equal to α1.

White’s General Heteroscedasticity Test. Unlike the Goldfeld–
Quandt test, which requires reordering the observations with respect to the
X variable that supposedly caused heteroscedasticity, or the BPG test, which
is sensitive to the normality assumption, the general test of heteroscedastic-
ity proposed by White does not rely on the normality assumption and is easy
to implement.24 As an illustration of the basic idea, consider the following
three-variable regression model (the generalization to the k-variable model
is straightforward):

Yi = β1 + β2 X2i + β3 X3i + ui (11.5.21)

The White test proceeds as follows:

Step 1. Given the data, we estimate (11.5.21) and obtain the residu-
als, ûi .

Step 2. We then run the following (auxiliary) regression:

û2
i = α1 + α2 X2i + α3 X3i + α4 X2

2i + α5 X2
3i + α6 X2i X3i + vi

(11.5.22)25

That is, the squared residuals from the original regression are regressed
on the original X variables or regressors, their squared values, and the cross
product(s) of the regressors. Higher powers of regressors can also be intro-
duced. Note that there is a constant term in this equation even though the
original regression may or may not contain it. Obtain the R2 from this (aux-
iliary) regression.

Step 3. Under the null hypothesis that there is no heteroscedasticity, it
can be shown that sample size (n) times the R2 obtained from the auxiliary
regression asymptotically follows the chi-square distribution with df equal
to the number of regressors (excluding the constant term) in the auxiliary
regression. That is,

n · R2 ∼
asy

χ2
df (11.5.23)

where df is as defined previously. In our example, there are 5 df since there
are 5 regressors in the auxiliary regression.

Step 4. If the chi-square value obtained in (11.5.23) exceeds the critical
chi-square value at the chosen level of significance, the conclusion is that
there is heteroscedasticity. If it does not exceed the critical chi-square value,
there is no heteroscedasticity, which is to say that in the auxiliary regression
(11.5.21), α2 = α3 = α4 = α5 = α6 = 0 (see footnote 25).
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26Stephen R. Lewis, “Government Revenue from Foreign Trade,’’ Manchester School of Eco-
nomics and Social Studies, vol. 31, 1963, pp. 39–47.

27These results, with change in notation, are reproduced from William F. Lott and Subhash
C. Ray, Applied Econometrics: Problems with Data Sets, Instructor’s Manual, Chap. 22,
pp. 137–140.

28Sometimes the test can be modified to conserve degrees of freedom. See exercise 11.18.
29See Richard Harris, Using Cointegration Analysis in Econometrics Modelling, Prentice Hall

& Harvester Wheatsheaf, U.K., 1995, p. 68.

EXAMPLE 11.6

WHITE’S HETEROSCEDASTICITY TEST

From cross-sectional data on 41 countries, Stephen Lewis estimated the following regres-

sion model26:

ln Yi = β1 + β2 ln X2i + β3 ln X3i + ui (11.5.24)

where Y = ratio of trade taxes (import and export taxes) to total government revenue,

X2 = ratio of the sum of exports plus imports to GNP, and X3 = GNP per capita; and ln stands

for natural log. His hypotheses were that Y and X2 would be positively related (the higher the

trade volume, the higher the trade tax revenue) and that Y and X3 would be negatively related

(as income increases, government finds it is easier to collect direct taxes—e.g., income tax—

than rely on trade taxes).

The empirical results supported the hypotheses. For our purpose, the important point is

whether there is heteroscedasticity in the data. Since the data are cross-sectional involving

a heterogeneity of countries, a priori one would expect heteroscedasticity in the error vari-

ance. By applying White’s heteroscedasticity test to the residuals obtained from regres-

sion (11.5.24), the following results were obtained27:

̂̂
u2

i = −5.8417 + 2.5629 ln Tradei + 0.6918 ln GNPi

−0.4081(ln Tradei)
2 − 0.0491(ln GNPi)

2 (11.5.25)

+0.0015(ln Tradei)(ln GNPi) R 2 = 0.1148

Note: The standard errors are not given, as they are not pertinent for our purpose here.

Now n · R2 = 41(0.1148) = 4.7068, which has, asymptotically, a chi-square distribution

with 5 df (why?). The 5 percent critical chi-square  value for 5 df is 11.0705, the 10 percent

critical value is 9.2363, and the 25 percent critical value is 6.62568. For all practical pur-

poses, one can conclude, on the basis of the White test, that there is no heteroscedasticity.

A comment is in order regarding the White test. If a model has several
regressors, then introducing all the regressors, their squared (or higher-
powered) terms, and their cross products can quickly consume degrees of
freedom. Therefore, one must use caution in using the test.28

In cases where the White test statistic given in (11.5.25) is statistically sig-
nificant, heteroscedasticity may not necessarily be the cause, but specifica-
tion errors, about which more will be said in Chapter 13 (recall point 5 of
Section 11.1). In other words, the White test can be a test of (pure) het-
eroscedasticity or specification error or both. It has been argued that if
no cross-product terms are present in the White test procedure, then it is a
test of pure heteroscedasticity. If cross-product terms are present, then it is
a test of both heteroscedasticity and specification bias.29
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30See M. J. Harrison and B. P. McCabe, “A Test for Heteroscedasticity Based on Ordinary
Least Squares Residuals,” Journal of the American Statistical Association, vol. 74, 1979,
pp. 494–499; J. Szroeter, “A Class of Parametric Tests for Heteroscedasticity in Linear Econo-
metric Models,’’ Econometrica, vol. 46, 1978, pp. 1311–1327; M. A. Evans and M. L. King,
“A Further Class of Tests for Heteroscedasticity,’’ Journal of Econometrics, vol. 37, 1988,
pp. 265–276; R. Koenker and G. Bassett, “Robust Tests for Heteroscedasticity Based on
Regression Quantiles,” Econometrica, vol. 50, 1982, pp. 43–61.

Other Tests of Heteroscedasticity. There are several other tests of het-
eroscedasticity, each based on certain assumptions. The interested reader
may want to consult the references.30 We mention but one of these tests be-
cause of its simplicity. This is the Koenker–Bassett (KB) test. Like the Park,
Breusch–Pagan–Godfrey, and White’s tests of heteroscedasticity, the KB test
is based on the squared residuals, û2

i , but instead of being regressed on one
or more regressors, the squared residuals are regressed on the squared esti-
mated values of the regressand. Specifically, if the original model is:

Yi = β1 + β2 X2i + β3 X3i + · · · + βkXki + ui (11.5.26)

you estimate this model, obtain ûi from this model, and then estimate

û2
i = α1 + α2(Ŷi)

2 + vi (11.5.27)

where Ŷi are the estimated values from the model (11.5.26). The null hy-
pothesis is that α2 = 0. If this is not rejected, then one could conclude that
there is no heteroscedasticity. The null hypothesis can be tested by the usual
t test or the F test. (Note that F1,k = tk

2.) If the model (11.5.26) is double log,
then the squared residuals are regressed on (log Ŷi)

2. One other advantage of
the KB test is that it is applicable even if the error term in the original model
(11.5.26) is not normally distributed. If you apply the KB test to Exam-
ple 11.1, you will find that the slope coefficient in the regression of the
squared residuals obtained from (11.5.3) on the estimated Ŷ2

i from (11.5.3)
is statistically not different from zero, thus reinforcing the Park test. This re-
sult should not be surprising since in the present instance we only have a sin-
gle regressor. But the KB test is applicable if there is one regressor or many.

11.6 REMEDIAL MEASURES

As we have seen, heteroscedasticity does not destroy the unbiasedness and
consistency properties of the OLS estimators, but they are no longer effi-
cient, not even asymptotically (i.e., large sample size). This lack of efficiency
makes the usual hypothesis-testing procedure of dubious value. Therefore,
remedial measures may be called for. There are two approaches to remedi-
ation: when σ 2

i is known and when σ 2
i is not known.

When σ
2
i

Is Known: The Method of Weighted Least Squares

As we have seen in Section 11.3, if σ 2
i is known, the most straightforward

method of correcting heteroscedasticity is by means of weighted least
squares, for the estimators thus obtained are BLUE.
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31As noted in footnote 3 of Chap. 6, the R2 of the regression through the origin is not directly
comparable with the R2 of the intercept-present model. The reported R2 of 0.9993 takes this dif-
ference into account. (See the SAS package for further details about how the R2 is corrected to
take into account the absence of the intercept term. See also App. 6A, Sec. 6A1.)

EXAMPLE 11.7

ILLUSTRATION OF THE METHOD OF WEIGHTED
LEAST SQUARES

To illustrate the method, suppose we want to study the

relationship between compensation and employment

size for the data presented in Table 11.1. For simplicity,

we measure employment size by 1 (1–4 employees),

2 (5–9 employees), . . . , 9 (1000–2499 employees),

although we could also measure it by the midpoint of the

various employment classes given in the table.

Now letting Y represent average compensation per

employee ($) and X the employment size, we run the fol-

lowing regression [see Eq. (11.3.6)]:

Yi /σi = β̂∗
1 (1/σi ) + β̂∗

2 (Xi /σi ) + (ûi /σi ) (11.6.1)

where σi are the standard deviations of wages as re-

ported in Table 11.1. The necessary raw data to run this

regression are given in Table 11.4.

Before going on to the regression results, note that

(11.6.1) has no intercept term. (Why?) Therefore, one

will have to use the regression-through-the-origin model

to estimate β∗
1 and β∗

2 , a topic discussed in Chapter 6.

But most computer packages these days have an option

to suppress the intercept term (see Minitab or Eviews,

for example). Also note another interesting feature of

(11.6.1): It has two explanatory variables, (1/σi ) and

(Xi /σi ), whereas if we were to use OLS, regressing com-

pensation on employment size, that regression would

have a single explanatory variable, Xi . (Why?)

The regression results of WLS are as follows:

(̂Yi /σi ) = 3406.639(1/σi ) + 154.153(Xi /σi )

(80.983) (16.959) (11.6.2)

t = (42.066) (9.090)

R2 = 0.999331

For comparison, we give the usual or unweighted

OLS regression results:

Ŷi = 3417.833 + 148.767 Xi

(81.136) (14.418) (11.6.3)

t = (42.125) (10.318) R2 = 0.9383

In exercise 11.7 you are asked to compare these two

regressions.

TABLE 11.4

ILLUSTRATION OF WEIGHTED LEAST-SQUARES REGRESSION

Compensation, Employment size,
Y X σi Yi /σi Xi /σi

3396 1 743.7 4.5664 0.0013

3787 2 851.4 4.4480 0.0023

4013 3 727.8 5.5139 0.0041

4104 4 805.06 5.0978 0.0050

4146 5 929.9 4.4585 0.0054

4241 6 1080.6 3.9247 0.0055

4387 7 1243.2 3.5288 0.0056

4538 8 1307.7 3.4702 0.0061

4843 9 1112.5 4.3532 0.0081

Note: In regression (11.6.2), the dependent variable is (Yi /σi ) and the independent variables are
(1/σi ) and (Xi /σi ).

Source: Data on Y and σi (standard deviation of compensation) are from Table 11.1. Employment
size: 1 = 1–4 employees, 2 = 5–9 employees, etc. The latter data are also from Table 11.1.
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32See H. White, op. cit.
33More technically, they are known as heteroscedasticity-consistent covariance matrix

estimators.
34William H. Greene, Econometric Analysis, 2d ed., Macmillan, New York, 1993, p. 385.

When σi
2 Is Not Known

As noted earlier, if true σ 2
i are known, we can use the WLS method to obtain

BLUE estimators. Since the true σ 2
i are rarely known, is there a way of

obtaining consistent (in the statistical sense) estimates of the variances
and covariances of OLS estimators even if there is heteroscedasticity? The
answer is yes.

White’s Heteroscedasticity-Consistent Variances and Standard
Errors. White has shown that this estimate can be performed so that
asymptotically valid (i.e., large-sample) statistical inferences can be made
about the true parameter values.32 We will not present the mathematical
details, for they are beyond the scope of this book. However, Appendix 11A.4
outlines White’s procedure. Nowadays, several computer packages present
White’s heteroscedasticity-corrected variances and standard errors along
with the usual OLS variances and standard errors.33 Incidentally, White’s
heteroscedasticity-corrected standard errors are also known as robust
standard errors.

EXAMPLE 11.8

ILLUSTRATION OF WHITE’S PROCEDURE

As an example, we quote the following results due to Greene34:

Ŷi = 832.91 − 1834.2 (Income) + 1587.04 (Income)2

OLS se = (327.3) (829.0) (519.1)

t = (2.54) (2.21) (3.06) (11.6.4)

White se = (460.9) (1243.0) (830.0)

t = (1.81) (−1.48) (1.91)

where Y = per capita expenditure on public schools by state in 1979 and Income = per

capita income by state in 1979. The sample consisted of 50 states plus Washington, D.C.

As the preceding results show, (White’s) heteroscedasticity-corrected
standard errors are considerably larger than the OLS standard errors and
therefore the estimated t values are much smaller than those obtained by
OLS. On the basis of the latter, both the regressors are statistically significant
at the 5 percent level, whereas on the basis of White estimators they are not.
However, it should be pointed out that White’s heteroscedasticity-corrected
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standard errors can be larger or smaller than the uncorrected standard
errors.

Since White’s heteroscedasticity-consistent estimators of the variances
are now available in established regression packages, it is recommended
that the reader report them. As Wallace and Silver note:

Generally speaking, it is probably a good idea to use the WHITE option [available
in regression programs] routinely, perhaps comparing the output with regular
OLS output as a check to see whether heteroscedasticity is a serious problem in a
particular set of data.35

Plausible Assumptions about Heteroscedasticity Pattern. Apart
from being a large-sample procedure, one drawback of the White procedure
is that the estimators thus obtained may not be so efficient as those obtained
by methods that transform data to reflect specific types of heteroscedastic-
ity. To illustrate this, let us revert to the two-variable regression model:

Yi = β1 + β2 Xi + ui

We now consider several assumptions about the pattern of heteroscedasticity.

Assumption 1: The error variance is proportional to X 2
i :

E
(
u2

i

)
= σ 2 X 2

i (11.6.5)36

If, as a matter of “speculation,” graphical methods, or Park and Glejser
approaches, it is believed that the variance of ui is proportional to the
square of the explanatory variable X (see Figure 11.10), one may transform
the original model as follows. Divide the original model through by Xi :

Yi

Xi
= β1

Xi
+ β2 + ui

Xi

= β1
1

Xi
+ β2 + vi

(11.6.6)

where vi is the transformed disturbance term, equal to ui/Xi . Now it is easy
to verify that

E
(
v2

i

)
= E

(
ui

Xi

)2

= 1

X2
i

E
(
u2

i

)

= σ 2 using (11.6.5)

35T. Dudley Wallace and J. Lew Silver, Econometrics: An Introduction, Addison-Wesley,
Reading, Mass., 1988, p. 265.

36Recall that we have already encountered this assumption in our discussion of the
Goldfeld–Quandt test.
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X

σ  i 
2σ 

FIGURE 11.10 Error variance proportional to X 2.

Hence the variance of vi is now homoscedastic, and one may proceed to
apply OLS to the transformed equation (11.6.6), regressing Yi/Xi on 1/Xi .

Notice that in the transformed regression the intercept term β2 is the
slope coefficient in the original equation and the slope coefficient β1 is the
intercept term in the original model. Therefore, to get back to the original
model we shall have to multiply the estimated (11.6.6) by Xi . An application
of this transformation is given in exercise 11.20.

Assumption 2: The error variance is proportional to Xi. The square root transformation:

E
(
u 2

i

)
= σ 2 Xi (11.6.7)

If it is believed that the variance of ui , instead of being proportional to the
squared Xi , is proportional to Xi itself, then the original model can be trans-
formed as follows (see Figure 11.11):

Yi√
Xi

= β1√
Xi

+ β2

√
Xi + ui√

Xi

= β1
1√
Xi

+ β2

√
Xi + vi

(11.6.8)

where vi = ui/
√

Xi and where Xi > 0.
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X

σ 
i 
2σ 

FIGURE 11.11 Error variance proportional to X.

Given assumption 2, one can readily verify that E(v2
i ) = σ 2, a ho-

moscedastic situation. Therefore, one may proceed to apply OLS to (11.6.8),
regressing Yi/

√
Xi on 1/

√
Xi and

√
Xi .

Note an important feature of the transformed model: It has no intercept
term. Therefore, one will have to use the regression-through-the-origin
model to estimate β1 and β2. Having run (11.6.8), one can get back to the
original model simply by multiplying (11.6.8) by 

√
Xi .

Assumption 3: The error variance is proportional to the square of the mean value of Y.

E
(
u2

i

)
= σ 2[E(Yi )]

2 (11.6.9)

Equation (11.6.9) postulates that the variance of ui is proportional to the
square of the expected value of Y (see Figure 11.8e). Now

E(Yi) = β1 + β2 Xi

Therefore, if we transform the original equation as follows,

Yi

E(Yi)
= β1

E(Yi)
+ β2

Xi

E(Yi)
+ ui

E(Yi)

= β1

(
1

E(Yi)

)
+ β2

Xi

E(Yi)
+ vi

(11.6.10)
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where vi = ui/E(Yi), it can be seen that E(v2
i ) = σ 2; that is, the disturbances

vi are homoscedastic. Hence, it is regression (11.6.10) that will satisfy the
homoscedasticity assumption of the classical linear regression model.

The transformation (11.6.10) is, however, inoperational because E(Yi) de-
pends on β1 and β2, which are unknown. Of course, we know Ŷi = β̂1 + β̂2 Xi ,
which is an estimator of E(Yi). Therefore, we may proceed in two steps:
First, we run the usual OLS regression, disregarding the heteroscedasticity
problem, and obtain Ŷi . Then, using the estimated Ŷi , we transform our
model as follows:

Yi

Ŷi

= β1

(
1

Ŷi

)
+ β2

(
Xi

Ŷi

)
+ vi (11.6.11)

where vi = (ui/Ŷi). In Step 2, we run the regression (11.6.11). Although Ŷi

are not exactly E(Yi), they are consistent estimators; that is, as the sample
size increases indefinitely, they converge to true E(Yi). Hence, the transfor-
mation (11.6.11) will perform satisfactorily in practice if the sample size is
reasonably large.

Assumption 4: A log transformation such as

ln Yi = β1 + β2 ln Xi + ui (11.6.12)

very often reduces heteroscedasticity when compared with the regression Yi = β1 +
β2 Xi + ui .

This result arises because log transformation compresses the scales
in which the variables are measured, thereby reducing a tenfold differ-
ence between two values to a twofold difference. Thus, the number 80 is
10 times the number 8, but ln 80 ( = 4.3280) is about twice as large as
ln 8 ( = 2.0794).

An additional advantage of the log transformation is that the slope coef-
ficient β2 measures the elasticity of Y with respect to X, that is, the percent-
age change in Y for a percentage change in X. For example, if Y is con-
sumption and X is income, β2 in (11.6.12) will measure income elasticity,
whereas in the original model β2 measures only the rate of change of mean
consumption for a unit change in income. It is one reason why the log mod-
els are quite popular in empirical econometrics. (For some of the problems
associated with log transformation, see exercise 11.4.)

To conclude our discussion of the remedial measures, we reempha-
size that all the transformations discussed previously are ad hoc; we are
essentially speculating about the nature of σ 2

i . Which of the transforma-
tions discussed previously will work will depend on the nature of the
problem and the severity of heteroscedasticity. There are some additional
problems with the transformations we have considered that should be borne
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in mind:

1. When we go beyond the two-variable model, we may not know a pri-
ori which of the X variables should be chosen for transforming the data.37

2. Log transformation as discussed in Assumption 4 is not applicable if
some of the Y and X values are zero or negative.38

3. Then there is the problem of spurious correlation. This term, due to
Karl Pearson, refers to the situation where correlation is found to be present
between the ratios of variables even though the original variables are un-
correlated or random.39 Thus, in the model Yi = β1+ β2 Xi + ui , Y and X may
not be correlated but in the transformed model Yi/Xi = β1(1/Xi) + β2 , Yi/Xi

and 1/Xi are often found to be correlated.
4. When σ 2

i are not directly known and are estimated from one or more
of the transformations that we have discussed earlier, all our testing proce-
dures using the t tests, F tests, etc., are strictly speaking valid only in large
samples. Therefore, one has to be careful in interpreting the results based on
the various transformations in small or finite samples.40

11.7 CONCLUDING EXAMPLES

In concluding our discussion of heteroscedasticity we present two examples
illustrating the main points made in this chapter.

37However, as a practical matter, one may plot û2
i against each variable and decide which X

variable may be used for transforming the data. (See Fig. 11.9.)
38Sometimes we can use ln (Yi + k) or ln (Xi + k), where k is a positive number chosen in

such a way that all the values of Y and X become positive.
39For example, if X1, X2, and X3 are mutually uncorrelated r12 = r13 = r23 = 0 and we find that

the (values of the) ratios X1/X3 and X2/X3 are correlated, then there is spurious correlation.
“More generally, correlation may be described as spurious if it is induced by the method of han-
dling the data and is not present in the original material.” M. G. Kendall and W. R. Buckland,
A Dictionary of Statistical Terms, Hafner Publishing, New York, 1972, p. 143.

40For further details, see George G. Judge et al., op. cit., Sec. 14.4, pp. 415–420.

(Continued)

EXAMPLE 11.9

CHILD MORTALITY REVISITED

Let us return to the child mortality example we have

considered on several occasions. From data for 64

countries, we obtained the regression results shown in

Eq. (8.2.1). Since the data are cross sectional, involving

diverse countries with different child mortality experi-

ences, it is likely that we might encounter heteroscedas-

ticity. To find this out, let us first consider the residuals

obtained from Eq. (8.2.1). These residuals are plotted

in Figure 11.12. From this figure it seems that the resid-

uals do not show any distinct pattern that might sug-

gest heteroscedasticity. Nonetheless, appearances can

be deceptive. So, let us apply the Park, Glejser, and White

tests to see if there is any evidence of heteroscedasticity.

Park Test

Since there are two regressors, GNP and FLR, we can

regress the squared residuals from regression (8.2.1) on

either of these variables. Or, we can regress them on the

estimated CM values ( = ĈM) from regression (8.2.1).

Using the latter, we obtained the following results.

̂̂
u2

i = 854.4006 + 5.7016 ĈMt
(11.7.1)

t = (1.2010) (1.2428) r 2 = 0.024

Note: ûi are the residuals obtained from regression

(8.2.1) and ĈM are the estimated values of CM from re-

gression (8.2.1).

As this regression shows, there is no systematic rela-

tion between the squared residuals and the estimated

CM values (why?), suggesting that the assumption of
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EXAMPLE 11.9 (Continued)

5
–100

10 15 20 25 30 35 40 45 50 55 60 65

–50

0

50

100

FIGURE 11.12 Residuals from regression (8.2.1).

homoscedasticity may be valid. Incidentally, regressing

the log of the squared residual values on the log of ĈM

did not change the conclusion.

Glejser Test

The absolute values of the residual obtained from

(8.2.1), when regressed on the estimated CM value from

the same regression, gave the following results:

|̂ûi | = 22.3127 + 0.0646 ĈMi
(11.7.2)

t = (2.8086) (1.2622) r 2 = 0.0250

Again, there is not much systematic relationship be-

tween the absolute values of the residuals and the

estimated CM values, as the t value of the slope coeffi-

cient is not statistically significant.

White Test

Applying White’s heteroscedasticity test with and

without cross-product terms, we did not find any evidence

of heteroscedasticity. We also reestimated (8.2.1) to ob-

tain White’s heteroscedasticity-consistent standard er-

rors and t values, but the results were quite similar to

those given in Eq. (8.2.1), which should not be surprising

in view of the various heteroscedasticity tests we con-

ducted earlier.

In sum, it seems that our child mortality regression

(8.2.1) does not suffer from heteroscedasticity.

EXAMPLE 11.10

R&D EXPENDITURE, SALES, AND PROFITS IN 18 INDUSTRY
GROUPINGS IN THE UNITED STATES, 1988

Table 11.5 gives data on research and development (R&D) expenditure, sales, and profits for

18 industry groupings in the United States, all figures in millions of dollars. Since the cross-

sectional data presented in this table are quite heterogeneous, in a regression of R&D on

sales (or profits), heteroscedasticity is likely. The regression results were as follows:

R̂&Di = 192.9931 + 0.0319 Salesi

se = (533.9317)  (0.0083) (11.7.3)

t = (0.3614) (3.8433) r 2 = 0.4783

Unsurprisingly, there is a significant positive relationship between R&D and sale.

To see if the regression (11.7.3) suffers from heteroscedasticity, we obtained the residu-

als, ûi , and the squared residuals, û2
i , from the preceding regression and plotted them

against sales, as shown in Figure 11.13. It seems from this figure that there is a systematic

(Continued)



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

11. Heteroscedasticity: 

What Happens if the Error 

Variance is Nonconstant?

© The McGraw−Hill 

Companies, 2004

424 PART TWO: RELAXING THE ASSUMPTIONS OF THE CLASSICAL MODEL

EXAMPLE 11.10 (Continued)

(Continued)

TABLE 11.5

INNOVATION IN AMERICA: RESEARCH AND DEVELOPMENT (R&D) EXPENDITURE

IN THE UNITED STATES, 1988 (All Figures in Millions of Dollars)

Industry grouping Sales R&D expenses Profits

1. Containers and packaging 6,375.3 62.5 185.1

2. Nonbank financial 11,626.4 92.9 1,569.5

3. Service industries 14,655.1 178.3 276.8

4. Metals and mining 21,869.2 258.4 2,828.1

5. Housing and construction 26,408.3 494.7 225.9

6. General manufacturing 32,405.6 1,083.0 3,751.9

7. Leisure time industries 35,107.7 1,620.6 2,884.1

8. Paper and forest products 40,295.4 421.7 4,645.7

9. Food 70,761.6 509.2 5,036.4

10. Health care 80,552.8 6,620.1 13,869.9

11. Aerospace 95,294.0 3,918.6 4,487.8

12. Consumer products 101,314.1 1,595.3 10,278.9

13. Electrical and electronics 116,141.3 6,107.5 8,787.3

14. Chemicals 122,315.7 4,454.1 16,438.8

15. Conglomerates 141,649.9 3,163.8 9,761.4

16. Office equipment and computers 175,025.8 13,210.7 19,774.5

17. Fuel 230,614.5 1,703.8 22,626.6

18. Automotive 293,543.0 9,528.2 18,415.4

Source: Business Week, Special 1989 Bonus Issue, R&D Scorecard, pp. 180–224.
Note: The industries are listed in increasing order of sales volume.

pattern between the residuals and squared residuals and sales, perhaps suggesting that

there is heteroscedasticity. To test this formally, we used the Park, Glejser, and White tests,

which gave the following results:

Park Test

|̂û2
i | = −974,469.1 + 86.2321 Salesi

se = (4,802,343) (40.3625) r 2 = 0.2219 (11.7.4)

t = (−0.2029) (2.1364)

The Park test suggests that there is a statistically significant positive relationship between

squared residuals and sales.

Glejser Test

|̂ûi | = 578.5710 + 0.0119 Salesi

se = (678.6950)   (0.0057) r 2 = 0.214 (11.7.5)

t = (0.8524) (2.0877)

The Glejser test also suggests that there is a systematic relationship between the absolute

values of the residuals and sales, raising the possibility that the regression (11.7.3) suffers

from heteroscedasticity.



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

11. Heteroscedasticity: 

What Happens if the Error 

Variance is Nonconstant?

© The McGraw−Hill 

Companies, 2004

CHAPTER ELEVEN: HETEROSCEDASTICITY 425

White Test

̂̂
u2

i = −6,219,665 + 229.3508 Salesi − 0.000537 Sales2
i

se = (6,459,809) (126.2197) (0.0004)
(11.7.6)

t = (0.9628) (1.8170) (−1.3425)

R2 = 0.2895

Using the R 2 value and n = 18, we obtain n R2 = 5.2124, which, under the null hypothesis of

no heteroscedasticity, has a chi-square distribution with 2 df [because there are two regres-

sors in (11.7.6)]. The p value of obtaining a chi-square value of as much as 5.2124 or greater

EXAMPLE 11.10 (Continued)
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Residuals from regression of R&D on sales
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FIGURE 11.13
Residuals R1 and squared residuals (R2

1) on sales.

(Continued)
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is about 0.074. If this p value is deemed sufficiently low, the White test also suggests that

there is heteroscedasticity.

In sum, then, on the basis of the residual graphs and the Park, Glejser, and White tests,

it seems that our R&D regression (11.7.3) suffers from heteroscedasticity. Since the true

error variance is unknown, we cannot use the method of weighted least squares to obtain

heteroscedasticity-corrected standard errors and t values. Therefore, we will have to make

some educated guesses about the nature of the error variance.

Looking at the residual graphs given in Figure 11.13, it seems that the error variance is

proportional to sales as in Eq. (11.6.7), that is, the square root transformation. Effecting this

transformation, we obtain the following results.

R̂&D√
Sales

= −246.6769
1√

Salesi

+ 0.0367
√

Salesi

se = (381.1285) (0.0071) R2 = 0.3648 (11.7.7)

t = (−0.6472) (5.1690)

If you want, you can multiply the preceding equation by 
√

Salesi to get back to the original

model. Comparing (11.7.7) with (11.7.3), you can see that the slope coefficients in the two

equations are about the same, but their standard errors are different. In (11.7.3) it was

0.0083, whereas in (11.7.7) it is only 0.0071, a decrease of about 14 percent.

To conclude our example, we present below White’s heteroscedasticity-consistent stan-

dard errors, as discussed in Section 11.6.

R̂&Di = 192.9931 + 0.0319 Salesi

se = (533.9931) (0.0101) r 2 = 0.4783 (11.7.8)

t = (0.3614) (3.1584)

Comparing with the original (i.e., without correction for heteroscedasticity) regression

(11.7.3), we see that although the parameter estimates have not changed (as we would ex-

pect), the standard error of the intercept coefficient has decreased and that of the slope co-

efficient has slightly increased. But remember that the White procedure is strictly a large-

sample procedure, whereas we only have 18 observations.

11.8 A CAUTION ABOUT OVERREACTING

TO HETEROSCEDASTICITY

Reverting to the R&D example discussed in the previous section, we saw
that when we used the square root transformation to correct for het-
eroscedasticity in the original model (11.7.3), the standard error of the slope
coefficient decreased and its t value increased. Is this change so significant
that one should worry about it in practice? To put the matter differently,
when should we really worry about the heteroscedasticity problem? As one
author contends, “heteroscedasticity has never been a reason to throw out
an otherwise good model.”41

EXAMPLE 11.10 (Continued)

41N. Gregory Mankiw, “A Quick Refresher Course in Macroeconomics,” Journal of Eco-
nomic Literature, vol. XXVIII, December 1990, p. 1648.
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42John Fox, Applied Regression Analysis, Linear Models, and Related Methods, Sage Publica-
tions, California, 1997, p. 306.

43Ibid., p. 307.
44Note that we have squared the standard errors to obtain the variances.

Here it may be useful to bear in mind the caution sounded by John Fox:

. . . unequal error variance is worth correcting only when the problem is severe.
The impact of nonconstant error variance on the efficiency of ordinary least-

squares estimator and on the validity of least-squares inference depends on
several factors, including the sample size, the degree of variation in the σ 2

i , the
configuration of the X [i.e., regressor] values, and the relationship between the
error variance and the X’s. It is therefore not possible to develop wholly general
conclusions concerning the harm produced by heteroscedasticity.42

Returning to the model (11.3.1), we saw earlier that variance of the slope
estimator, var (β̂2), is given by the usual formula shown in (11.2.3). Under
GLS the variance of the slope estimator, var (β̂*

2), is given by (11.3.9). We
know that the latter is more efficient than the former. But how large does
the former (i.e., OLS) variance have to be in relation to the GLS variance be-
fore one should really worry about it? As a rule of thumb, Fox suggests that
we worry about this problem “. . . when the largest error variance is more
than about 10 times the smallest.”43 Thus, returning to the Monte Carlo
simulations results of Davidson and MacKinnon presented earlier, consider
the value of α = 2. The variance of the estimated β2 is 0.04 under OLS and
0.012 under GLS, the ratio of the former to the latter thus being about
3.33.44 According to the Fox rule, the severity of heteroscedasticity in this
case may not be large enough to worry about it.

Also remember that, despite heteroscedasticity, OLS estimators are linear
unbiased and are (under general conditions) asymptotically (i.e., in large
samples) normally distributed.

As we will see when we discuss other violations of the assumptions of
the classical linear regression model, the caution sounded in this section is
appropriate as a general rule. Otherwise, one can go overboard.

11.9 SUMMARY AND CONCLUSIONS

1. A critical assumption of the classical linear regression model is that
the disturbances ui have all the same variance, σ 2. If this assumption is not
satisfied, there is heteroscedasticity.

2. Heteroscedasticity does not destroy the unbiasedness and consis-
tency properties of OLS estimators.

3. But these estimators are no longer minimum variance or efficient.
That is, they are not BLUE.

4. The BLUE estimators are provided by the method of weighted least
squares, provided the heteroscedastic error variances, σ 2

i , are known.
5. In the presence of heteroscedasticity, the variances of OLS estimators

are not provided by the usual OLS formulas. But if we persist in using the


