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The reader may recall that there are generally three types of data that
are available for empirical analysis: (1) cross section, (2) time series, and
(3) combination of cross section and time series, also known as pooled data.
In developing the classical linear regression model (CLRM) in Part I we
made several assumptions, which were discussed in Section 7.1. However,
we noted that not all these assumptions would hold in every type of data.
As a matter of fact, we saw in the previous chapter that the assumption of
homoscedasticity, or equal error variance, may not be always tenable in
cross-sectional data. In other words, cross-sectional data are often plagued
by the problem of heteroscedasticity.
However, in cross-section studies, data are often collected on the basis of

a random sample of cross-sectional units, such as households (in a con-
sumption function analysis) or firms (in an investment study analysis) so
that there is no prior reason to believe that the error term pertaining to one
household or a firm is correlated with the error term of another household
or firm. If by chance such a correlation is observed in cross-sectional units,
it is called spatial autocorrelation, that is, correlation in space rather than
over time. However, it is important to remember that, in cross-sectional
analysis, the ordering of the data must have some logic, or economic inter-
est, to make sense of any determination of whether (spatial) autocorrelation
is present or not.
The situation, however, is likely to be very different if we are dealing with

time series data, for the observations in such data follow a natural ordering
over time so that successive observations are likely to exhibit intercorrela-
tions, especially if the time interval between successive observations is
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short, such as a day, a week, or a month rather than a year. If you observe
stock price indexes, such as the Dow Jones or S&P 500 over successive days,
it is not unusual to find that these indexes move up or down for several days
in succession. Obviously, in situations like this, the assumption of no auto,
or serial, correlation in the error terms that underlies the CLRM will be
violated.
In this chapter we take a critical look at this assumption with a view to

answering the following questions:

1. What is the nature of autocorrelation?
2. What are the theoretical and practical consequences of autocorrela-

tion?
3. Since the assumption of no autocorrelation relates to the unobserv-

able disturbances ut , how does one know that there is autocorrelation in any
given situation? Notice that we now use the subscript t to emphasize that we
are dealing with time series data.

4. How does one remedy the problem of autocorrelation?

The reader will find this chapter in many ways similar to the preceding
chapter on heteroscedasticity in that under both heteroscedasticity and
autocorrelation the usual OLS estimators, although linear, unbiased,
and asymptotically (i.e., in large samples) normally distributed,1 are
no longer minimum variance among all linear unbiased estimators. In
short, they are not efficient relative to other linear and unbiased
estimators. Put differently, they may not be BLUE. As a result, the
usual, t, F, and χ2 may not be valid.

12.1 THE NATURE OF THE PROBLEM

The term autocorrelation may be defined as “correlation between mem-
bers of series of observations ordered in time [as in time series data] or
space [as in cross-sectional data].’’2 In the regression context, the classical
linear regression model assumes that such autocorrelation does not exist in
the disturbances ui . Symbolically,

E(uiuj ) = 0 i != j (3.2.5)

Put simply, the classical model assumes that the disturbance term relating
to any observation is not influenced by the disturbance term relating to any
other observation. For example, if we are dealing with quarterly time series
data involving the regression of output on labor and capital inputs and if,

1On this, see William H. Greene, Econometric Analysis, 4th ed., Prentice Hall, N.J., 2000,
Chap. 11, and Paul A. Rudd, An Introduction to Classical Econometric Theory,Oxford University
Press, 2000, Chap. 19.

2Maurice G. Kendall and William R. Buckland, A Dictionary of Statistical Terms, Hafner
Publishing Company, New York, 1971, p. 8.
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3Gerhard Tintner, Econometrics, John Wiley & Sons, New York, 1965.

say, there is a labor strike affecting output in one quarter, there is no reason
to believe that this disruption will be carried over to the next quarter. That
is, if output is lower this quarter, there is no reason to expect it to be lower
next quarter. Similarly, if we are dealing with cross-sectional data involving
the regression of family consumption expenditure on family income, the
effect of an increase of one family’s income on its consumption expenditure
is not expected to affect the consumption expenditure of another family.
However, if there is such a dependence, we have autocorrelation.

Symbolically,

E(uiuj ) != 0 i != j (12.1.1)

In this situation, the disruption caused by a strike this quarter may very well
affect output next quarter, or the increases in the consumption expenditure
of one family may very well prompt another family to increase its con-
sumption expenditure if it wants to keep up with the Joneses.
Before we find out why autocorrelation exists, it is essential to clear up

some terminological questions. Although it is now a common practice to
treat the terms autocorrelation and serial correlation synonymously,
some authors prefer to distinguish the two terms. For example, Tintner
defines autocorrelation as “lag correlation of a given series with itself,
lagged by a number of time units,’’ whereas he reserves the term serial cor-
relation to “lag correlation between two different series.’’3 Thus, correla-
tion between two time series such as u1, u2, . . . , u10 and u2, u3, . . . , u11, where
the former is the latter series lagged by one time period, is autocorrela-
tion, whereas correlation between time series such as u1, u2, . . . , u10 and
v2, v3, . . . , v11, where u and v are two different time series, is called serial
correlation. Although the distinction between the two terms may be useful,
in this book we shall treat them synonymously.
Let us visualize some of the plausible patterns of auto- and nonautocor-

relation, which are given in Figure 12.1. Figure 12.1a to d shows that there
is a discernible pattern among the u’s. Figure 12.1a shows a cyclical pattern;
Figure 12.1b and c suggests an upward or downward linear trend in the dis-
turbances; whereas Figure 12.1d indicates that both linear and quadratic
trend terms are present in the disturbances. Only Figure 12.1e indicates no
systematic pattern, supporting the nonautocorrelation assumption of the
classical linear regression model.
The natural question is: Why does serial correlation occur? There are

several reasons, some of which are as follows:

Inertia. A salient feature of most economic time series is inertia, or
sluggishness. As is well known, time series such as GNP, price indexes,
production, employment, and unemployment exhibit (business) cycles.
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FIGURE 12.1 Patterns of autocorrelation and nonautocorrelation.
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4As a matter of convention, we shall use the subscript t to denote time series data and the
usual subscript i for cross-sectional data.

5If it is found that the real problem is one of specification bias, not autocorrelation, then as
will be shown in Chap. 13, the OLS estimators of the parameters (12.1.3) may be biased as well
as inconsistent.

Starting at the bottom of the recession, when economic recovery starts, most
of these series start moving upward. In this upswing, the value of a series at
one point in time is greater than its previous value. Thus there is a “momen-
tum’’ built into them, and it continues until something happens (e.g., in-
crease in interest rate or taxes or both) to slow them down. Therefore, in re-
gressions involving time series data, successive observations are likely to be
interdependent.

Specification Bias: Excluded Variables Case. In empirical analysis
the researcher often starts with a plausible regressionmodel that may not be
the most “perfect’’ one. After the regression analysis, the researcher does the
postmortem to find out whether the results accord with a priori expecta-
tions. If not, surgery is begun. For example, the researcher may plot the
residuals ûi obtained from the fitted regression and may observe patterns
such as those shown in Figure 12.1a to d. These residuals (which are proxies
for ui) may suggest that some variables that were originally candidates but
were not included in the model for a variety of reasons should be included.
This is the case of excluded variable specification bias. Often the inclusion
of such variables removes the correlation pattern observed among the resid-
uals. For example, suppose we have the following demand model:

Yt = β1 + β2X2t + β3X3t + β4X4t + ut (12.1.2)

where Y = quantity of beef demanded, X2 = price of beef, X3 = consumer
income, X4 = price of pork, and t = time.4However, for some reason we run
the following regression:

Yt = β1 + β2X2t + β3X3t + vt (12.1.3)

Now if (12.1.2) is the “correct’’ model or the “truth’’ or true relation, run-
ning (12.1.3) is tantamount to letting vt = β4X4t + ut . And to the extent the
price of pork affects the consumption of beef, the error or disturbance term
v will reflect a systematic pattern, thus creating (false) autocorrelation. A
simple test of this would be to run both (12.1.2) and (12.1.3) and see
whether autocorrelation, if any, observed in model (12.1.3) disappears when
(12.1.2) is run.5 The actual mechanics of detecting autocorrelation will be
discussed in Section 12.6 where we will show that a plot of the residuals
from regressions (12.1.2) and (12.1.3) will often shed considerable light on
serial correlation.
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Specification Bias: Incorrect Functional Form. Suppose the “true’’
or correct model in a cost-output study is as follows:

Marginal costi = β1 + β2 outputi + β3 output
2
i + ui (12.1.4)

but we fit the following model:

Marginal costi = α1 + α2 outputi + vi (12.1.5)

The marginal cost curve corresponding to the “true’’ model is shown in
Figure 12.2 along with the “incorrect’’ linear cost curve.
As Figure 12.2 shows, between points A and B the linear marginal cost

curve will consistently overestimate the true marginal cost, whereas beyond
these points it will consistently underestimate the true marginal cost. This
result is to be expected, because the disturbance term vi is, in fact, equal to
output2 + ui , and hence will catch the systematic effect of the output

2 term
on marginal cost. In this case, vi will reflect autocorrelation because of the
use of an incorrect functional form. In Chapter 13 we will consider several
methods of detecting specification bias.

Cobweb Phenomenon. The supply of many agricultural commodities
reflects the so-called cobweb phenomenon, where supply reacts to price
with a lag of one time period because supply decisions take time to imple-
ment (the gestation period). Thus, at the beginning of this year’s planting of
crops, farmers are influenced by the price prevailing last year, so that their
supply function is

Supplyt = β1 + β2Pt−1 + ut (12.1.6)

Suppose at the end of period t, price Pt turns out to be lower than Pt−1.
Therefore, in period t + 1 farmers may very well decide to produce less than
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FIGURE 12.2 Specification bias: incorrect functional form.
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6On this, see William H. Greene, op. cit., p. 526.

they did in period t. Obviously, in this situation the disturbances ut are not
expected to be random because if the farmers overproduce in year t, they
are likely to reduce their production in t + 1, and so on, leading to a Cobweb
pattern.

Lags. In a time series regression of consumption expenditure on income,
it is not uncommon to find that the consumption expenditure in the current
period depends, among other things, on the consumption expenditure of the
previous period. That is,

Consumptiont = β1 + β2 incomet + β3 consumptiont−1 + ut (12.1.7)

A regression such as (12.1.7) is known as autoregression because one of
the explanatory variables is the lagged value of the dependent variable. (We
shall study such models in Chapter 17.) The rationale for a model such as
(12.1.7) is simple. Consumers do not change their consumption habits
readily for psychological, technological, or institutional reasons. Now if we
neglect the lagged term in (12.1.7), the resulting error term will reflect a
systematic pattern due to the influence of lagged consumption on current
consumption.

“Manipulation’’ of Data. In empirical analysis, the raw data are often
“manipulated.’’ For example, in time series regressions involving quarterly
data, such data are usually derived from the monthly data by simply adding
three monthly observations and dividing the sum by 3. This averaging
introduces smoothness into the data by dampening the fluctuations in the
monthly data. Therefore, the graph plotting the quarterly data looks much
smoother than the monthly data, and this smoothness may itself lend to a
systematic pattern in the disturbances, thereby introducing autocorrela-
tion. Another source of manipulation is interpolation or extrapolation of
data. For example, the Census of Population is conducted every 10 years in
this country, the last being in 2000 and the one before that in 1990. Now if
there is a need to obtain data for some year within the intercensus period
1990–2000, the common practice is to interpolate on the basis of some ad
hoc assumptions. All such data “massaging’’ techniques might impose upon
the data a systematic pattern that might not exist in the original data.6

Data Transformation. As an example of this, consider the following
model:

Yt = β1 + β2Xt + ut (12.1.8)

where, say, Y = consumption expenditure and X = income. Since (12.1.8)
holds true at every time period, it holds true also in the previous time
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period, (t − 1). So, we can write (12.1.8) as

Yt−1 = β1 + β2Xt−1 + ut−1 (12.1.9)

Yt−1, Xt−1, and ut−1 are known as the lagged values of Y, X, and u, respec-
tively, here lagged by one period. We will see the importance of the lagged
values later in the chapter as well in several places in the text.
Now if we subtract (12.1.9) from (12.1.8), we obtain

$Yt = β2$Xt +$ut (12.1.10)

where $, known as the first difference operator, tells us to take successive
differences of the variables in question. Thus, $Yt = (Yt − Yt−1), $Xt =
(Xt − Xt−1), and $ut = (ut − ut−1). For empirical purposes, we write
(12.1.10) as

$Yt = β2$Xt + vt (12.1.11)

where vt = $ut = (ut − ut−1).
Equation (12.1.9) is known as the level form and Eq. (12.1.10) is known

as the (first) difference form. Both forms are often used in empirical
analysis. For example, if in (12.1.9) Y and X represent the logarithms of
consumption expenditure and income, then in (12.1.10) $Y and $X will
represent changes in the logs of consumption expenditure and income. But
as we know, a change in the log of a variable is a relative change, or a per-
centage change, if the former is multiplied by 100. So, instead of studying
relationships between variables in the level form, we may be interested in
their relationships in the growth form.
Now if the error term in (12.1.8) satisfies the standard OLS assumptions,

particularly the assumption of no autocorrelation, it can be shown that
the error term vt in (12.1.11) is autocorrelated. (The proof is given in Appen-
dix 12A, Section 12A.1.) It may be noted here that models like (12.1.11) are
known as dynamic regression models, that is, models involving lagged
regressands. We will study such models in depth in Chapter 17.
The point of the preceding example is that sometimes autocorrelation

may be induced as a result of transforming the original model.

Nonstationarity. We mentioned in Chapter 1 that, while dealing with
time series data, we may have to find out if a given time series is stationary.
Although we will discuss the topic of nonstationary time series more thor-
oughly in the chapters on time series econometrics in Part V of the text,
loosely speaking, a time series is stationary if its characteristics (e.g., mean,
variance, and covariance) are time invariant; that is, they do not change over
time. If that is not the case, we have a nonstationary time series.
As we will discuss in Part V, in a regression model such as (12.1.8), it

is quite possible that both Y andX are nonstationary and therefore the error u
is also nonstationary.7 In that case, the error termwill exhibit autocorrelation.

7As we will also see in Part V, even though Y and X are nonstationary, it is possible to find u
to be stationary. We will explore the implication of that later on.



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

12. Autocorrelation: What 

Happens if the Error Terms 

are Correlated?

© The McGraw−Hill 

Companies, 2004

CHAPTER TWELVE: AUTOCORRELATION 449

ut–10  Time

ut ut

ut ut

(a)

(b)

 Time ut–10

FIGURE 12.3 (a) Positive and (b) negative autocorrelation.

In summary, then, there are a variety of reasons why the error term in a
regression model may be autocorrelated. In the rest of the chapter we in-
vestigate in some detail the problems posed by autocorrelation and what
can be done about it.
It should be noted also that autocorrelation can be positive (Figure 12.3a)

as well as negative, althoughmost economic time series generally exhibit pos-
itive autocorrelation because most of them ether move upward or downward
over extended time periods and do not exhibit a constant up-and-downmove-
ment such as that shown in Figure 12.3b.

12.2 OLS ESTIMATION IN THE PRESENCE OF 

AUTOCORRELATION

What happens to the OLS estimators and their variances if we introduce
autocorrelation in the disturbances by assuming that E(utut+s) != 0 (s != 0)
but retain all the other assumptions of the classical model?8 Note again that

8If s = 0, we obtain E(u2t ). Since E(ut) = 0 by assumption, E(u2t ) will represent the variance
of the error term, which obviously is nonzero (why?).
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we are now using the subscript t on the disturbances to emphasize that we
are dealing with time series data.
We revert once again to the two-variable regression model to explain the

basic ideas involved, namely, Yt = β1 + β2Xt + ut . To make any headway, we
must assume the mechanism that generates ut , for E(utut+s) != 0 (s != 0) is
too general an assumption to be of any practical use. As a starting point, or
first approximation, one can assume that the disturbance, or error, terms
are generated by the following mechanism.

ut = ρut−1 + εt −1 < ρ < 1 (12.2.1)

where ρ ( = rho) is known as the coefficient of autocovariance and where
εt is the stochastic disturbance term such that it satisfied the standard OLS
assumptions, namely,

E(εt) = 0

var (εt) = σ 2ε (12.2.2)

cov (εt, εt+s) = 0 s != 0

In the engineering literature, an error term with the preceding properties
is often called a white noise error term.What (12.2.1) postulates is that the
value of the disturbance term in period t is equal to rho times its value in the
previous period plus a purely random error term.
The scheme (12.2.1) is known as Markov first-order autoregressive

scheme, or simply a first-order autoregressive scheme, usually denoted
as AR(1). The name autoregressive is appropriate because (12.2.1) can be
interpreted as the regression of ut on itself lagged one period. It is first order
because ut and its immediate past value are involved; that is, the maximum
lag is 1. If the model were ut = ρ1ut−1 + ρ2ut−2 + εt , it would be an AR(2), or
second-order, autoregressive scheme, and so on. We will examine such
higher-order schemes in the chapters on time series econometrics in Part V.
In passing, note that rho, the coefficient of autocovariance in (12.2.1), can

also be interpreted as the first-order coefficient of autocorrelation, or
more accurately, the coefficient of autocorrelation at lag 1.9

9This name can be easily justified. By definition, the (population) coefficient of correlation
between ut and ut−1 is

ρ = E{[ut − E(ut)][ut−1 − E(ut−1)]}√
var (ut)

√
var (ut−1)

= E(utut−1)

var (ut−1)

since E(ut) = 0 for each t and var (ut) = var (ut−1) because we are retaining the assumption of
homoscedasticity. The reader can see that ρ is also the slope coefficient in the regression of ut
on ut−1.
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Given the AR(1) scheme, it can be shown that (see Appendix 12A, Sec-
tion 12A.2)

var (ut) = E
(
u2t

)
= σ 2ε

1− ρ2
(12.2.3)

cov (ut, ut+s) = E(utut−s) = ρs
σ 2ε

1− ρ2
(12.2.4)

cor (ut, ut+s) = ρs (12.2.5)

where cov (ut, ut+s) means covariance between error terms s periods apart
and where cor (ut, ut+s) means correlation between error terms s periods
apart. Note that because of the symmetry property of covariances and cor-
relations, cov (ut, ut+s) = cov (ut, ut−s) and cor (ut, ut+s) = cor (ut, ut−s) .
Since ρ is a constant between −1 and +1, (12.2.3) shows that under the

AR(1) scheme, the variance of ut is still homoscedastic, but ut is correlated
not only with its immediate past value but its values several periods in the
past. It is critical to note that |ρ| < 1, that is, the absolute value of rho is less
than one. If, for example, rho is one, the variances and covariances listed
above are not defined. If |ρ| < 1, we say that the AR(1) process given in
(12.2.1) is stationary; that is, the mean, variance, and covariance of ut do not
change over time. If |ρ| is less than one, then it is clear from (12.2.4) that the
value of the covariance will decline as we go into the distant past. We will
see the utility of the preceding results shortly.
One reason we use the AR(1) process is not only because of its simplicity

compared to higher-order AR schemes, but also because in many applica-
tions it has proved to be quite useful. Additionally, a considerable amount of
theoretical and empirical work has been done on the AR(1) scheme.
Now return to our two-variable regression model: Yt = β1 + β2Xt + ut . We

know from Chapter 3 that the OLS estimator of the slope coefficient is

β̂2 =
∑

xtyt∑
x2t

(12.2.6)

and its variance is given by

var (β̂2) = σ 2∑
x2i

(12.2.7)

where the small letters as usual denote deviation from the mean values.
Now under the AR(1) scheme, it can be shown that the variance of this

estimator is:

var (β̂2)AR1 = σ 2∑
x2t

[
1+ 2ρ

∑
xtxt−1∑
x2t

+ 2ρ2
∑

xtxt−2∑
x2t

+ · · · + 2ρn−1
x1xn∑
x2t

]

(12.2.8)

where var (β̂2)AR1 means the variance of β̂2 under first-order autoregressive
scheme.
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10Note that the term r =
∑

xtxt+1/
∑

x2t is the correlation between Xt and Xt+1 (or Xt−1,
since the correlation coefficient is symmetric); r2 =

∑
xtxt+2/

∑
x2t is the correlation between

the X ’s lagged two periods, and so on.

A comparison of (12.2.8) with (12.2.7) shows the former is equal to the
latter times a term that depends on ρ as well as the sample autocorrelations
between the values taken by the regressor X at various lags.10 And in general
we cannot foretell whether var (β̂2) is less than or greater than var (β̂2)AR1
[but see Eq. (12.4.1) below]. Of course, if rho is zero, the two formulas will
coincide, as they should (why?). Also, if the correlations among the succes-
sive values of the regressor are very small, the usual OLS variance of the
slope estimator will not be seriously biased. But, as a general principle, the
two variances will not be the same.
To give some idea about the difference between the variances given in

(12.2.7) and (12.2.8), assume that the regressor X also follows the first-order
autoregressive scheme with a coefficient of autocorrelation of r. Then it can
be shown that (12.2.8) reduces to:

var (β̂2)AR(1) = σ 2∑
x2t

(
1+ rρ

1− rρ

)
= var (β̂2)OLS

(
1+ rρ

1− rρ

)
(12.2.9)

If, for example, r = 0.6 and ρ = 0.8, using (12.2.9) we can check that
var (β̂2)AR1 = 2.8461 var (β̂2)OLS . To put it another way, var (β̂2)OLS =

1
2.8461

var (β̂2)AR1 = 0.3513 var (β̂2)AR1 . That is, the usual OLS formula [i.e., 

(12.2.7)] will underestimate the variance of (β̂2)AR1 by about 65 percent. As
you will realize, this answer is specific for the given values of r and ρ. But the
point of this exercise is to warn you that a blind application of the usual
OLS formulas to compute the variances and standard errors of the OLS
estimators could give seriously misleading results.
Suppose we continue to use the OLS estimator β̂2 and adjust the usual

variance formula by taking into account the AR(1) scheme. That is, we use
β̂2 given by (12.2.6) but use the variance formula given by (12.2.8). What
now are the properties of β̂2? It is easy to prove that β̂2 is still linear and
unbiased. As a matter of fact, as shown in Appendix 3A, Section 3A.2, the
assumption of no serial correlation, like the assumption of no heterosceda-
sticity, is not required to prove that β̂2 is unbiased. Is β̂2 still BLUE? Unfor-
tunately, it is not; in the class of linear unbiased estimators, it does not have
minimum variance. In short, β̂2, although linear-unbiased, is not efficient
(relatively speaking, of course). The reader will notice that this finding is
quite similar to the finding that β̂2 is less efficient in the presence of het-
eroscedasticity. There we saw that it was the weighted least-square esti-
mator β̂*2 given in (11.3.8), a special case of the generalized least-squares
(GLS) estimator, that was efficient. In the case of autocorrelation can we
find an estimator that is BLUE? The answer is yes, as can be seen from the
discussion in the following section.
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11For proofs, see Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971,
pp. 274–275. The correction factor C pertains to the first observation, (Y1, X1). On this point see
exercise 12.18.

12The formal proof that β̂GLS2 is BLUE can be found in Kmenta, ibid. But the tedious alge-
braic proof can be simplified considerably using matrix notation. See J. Johnston, Econometric
Methods, 3d ed., McGraw-Hill, New York, 1984, pp. 291–293.

12.3 THE BLUE ESTIMATOR IN THE PRESENCE OF

AUTOCORRELATION

Continuing with the two-variable model and assuming the AR(1) process,
we can show that the BLUE estimator of β2 is given by the following
expression11:

where C is a correction factor that may be disregarded in practice. Note that
the subscript t now runs from t = 2 to t = n. And its variance is given by

where D too is a correction factor that may also be disregarded in practice.
(See exercise 12.18.)
The estimator β̂GLS2 , as the superscript suggests, is obtained by the

method of GLS. As noted in Chapter 11, in GLS we incorporate any addi-
tional information we have (e.g., the nature of the heteroscedasticity or of
the autocorrelation) directly into the estimating procedure by transforming
the variables, whereas in OLS such side information is not directly taken
into consideration. As the reader can see, the GLS estimator of β2 given in
(12.3.1) incorporates the autocorrelation parameter ρ in the estimating
formula, whereas the OLS formula given in (12.2.6) simply neglects it.
Intuitively, this is the reason why the GLS estimator is BLUE and not the
OLS estimator—the GLS estimator makes the most use of the available
information.12 It hardly needs to be added that if ρ = 0, there is no
additional information to be considered and hence both the GLS and OLS
estimators are identical.
In short, under autocorrelation, it is the GLS estimator given in (12.3.1)

that is BLUE, and the minimum variance is now given by (12.3.2) and not
by (12.2.8) and obviously not by (12.2.7).

A Technical Note. As we noted in the previous chapter, the Gauss–
Markov theorem provides only the sufficient condition for OLS to be BLUE.
The necessary and sufficient conditions for OLS to be BLUE are given by

(12.3.2)var β̂GLS2 = σ 2∑n
t=2(xt − ρxt−1)2

+ D

(12.3.1)β̂GLS2 =
∑n

t=2(xt − ρxt−1)(yt − ρyt−1)∑n
t=2(xt − ρxt−1)2

+ C
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13But matrix algebra becomes almost a necessity to avoid tedious algebraic manipulations.
14See Kmenta, op. cit., pp. 277–278.

Krushkal’s theorem, mentioned in the previous chapter. Therefore, in
some cases it can happen that OLS is BLUE despite autocorrelation. But
such cases are infrequent in practice.
What happens if we blithely continue to work with the usual OLS

procedure despite autocorrelation? The answer is provided in the following
section.

12.4 CONSEQUENCES OF USING OLS 

IN THE PRESENCE OF AUTOCORRELATION

As in the case of heteroscedasticity, in the presence of autocorrelation the
OLS estimators are still linear unbiased as well as consistent and asymptot-
ically normally distributed, but they are no longer efficient (i.e., minimum
variance). What then happens to our usual hypothesis testing procedures if
we continue to use the OLS estimators? Again, as in the case of het-
eroscedasticity, we distinguish two cases. For pedagogical purposes we still
continue to work with the two-variable model, although the following dis-
cussion can be extended to multiple regressions without much trouble.13

OLS Estimation Allowing for Autocorrelation

As noted, β̂2 is not BLUE, and even if we use var (β̂2)AR1, the confidence
intervals derived from there are likely to be wider than those based on the
GLS procedure. As Kmenta shows, this result is likely to be the case even if
the sample size increases indefinitely.14 That is, β̂2 is not asymptotically
efficient. The implication of this finding for hypothesis testing is clear: We
are likely to declare a coefficient statistically insignificant (i.e., not different
from zero) even though in fact (i.e., based on the correct GLS procedure) it
may be. This difference can be seen clearly from Figure 12.4. In this figure
we show the 95% OLS [AR(1)] and GLS confidence intervals assuming that
true β2 = 0. Consider a particular estimate of β2, say, b2. Since b2 lies in the

GLS 95% interval 

OLS 95% interval

0

H0: 2 = 0β

β2

b2

FIGURE 12.4 GLS and OLS 95% confidence
intervals.



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

12. Autocorrelation: What 

Happens if the Error Terms 

are Correlated?

© The McGraw−Hill 

Companies, 2004

CHAPTER TWELVE: AUTOCORRELATION 455

OLS confidence interval, we could accept the hypothesis that true β2 is zero
with 95% confidence. But if we were to use the (correct) GLS confidence
interval, we could reject the null hypothesis that true β2 is zero, for b2 lies in
the region of rejection.
The message is: To establish confidence intervals and to test hypo-

theses, one should use GLS and not OLS even though the estimators
derived from the latter are unbiased and consistent. (However, see Sec-
tion 12.11 later.)

OLS Estimation Disregarding Autocorrelation

The situation is potentially very serious if we not only use β̂2 but also con-
tinue to use var (β̂2) = σ 2/

∑
x2t , which completely disregards the problem

of autocorrelation, that is, we mistakenly believe that the usual assumptions
of the classical model hold true. Errors will arise for the following reasons:

1. The residual variance σ̂ 2 =
∑
û2t /(n− 2) is likely to underestimate the

true σ 2.
2. As a result, we are likely to overestimate R2.
3. Even if σ 2 is not underestimated, var (β̂2) may underestimate

var (β̂2)AR1 [Eq. (12.2.8)], its variance under (first-order) autocorrelation,
even though the latter is inefficient compared to var (β̂2)

GLS.
4. Therefore, the usual t and F tests of significance are no longer valid,

and if applied, are likely to give seriously misleading conclusions about the
statistical significance of the estimated regression coefficients.

To establish some of these propositions, let us revert to the two-variable
model. We know from Chapter 3 that under the classical assumption 

σ̂ 2 =
∑
û2i

(n− 2)

provides an unbiased estimator of σ 2, that is, E(σ̂ 2) = σ 2. But if there is
autocorrelation, given by AR(1), it can be shown that

E(σ̂ 2) = σ 2{n− [2/(1− ρ)]− 2ρr}
n− 2

(12.4.1)

where r =
∑n−1

t=1 xtxt−1/
∑n

t=1 x
2
t , which can be interpreted as the (sample)

correlation coefficient between successive values of the X ’s.15 If ρ and r are
both positive (not an unlikely assumption for most economic time series), it
is apparent from (12.4.1) that E(σ̂ 2) < σ 2; that is, the usual residual variance

15See S. M. Goldfeld and R. E. Quandt, Nonlinear Methods in Econometrics, North Holland
Publishing Company, Amsterdam, 1972, p. 183. In passing, note that if the errors are positively
autocorrelated, the R2 value tends to have an upward bias, that is, it tends to be larger than the
R2 in the absence of such correlation.
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16For a formal proof, see Kmenta, op. cit., p. 281.

formula, on average, will underestimate the true σ 2. In other words, σ̂ 2 will
be biased downward. Needless to say, this bias in σ̂ 2 will be transmitted to
var (β̂2) because in practice we estimate the latter by the formula σ̂

2/
∑

x2t .
But even if σ 2 is not underestimated, var (β̂2) is a biased estimator of

var (β̂2)AR1, which can be readily seen by comparing (12.2.7) with (12.2.8),
16

for the two formulas are not the same. As a matter of fact, if ρ is positive
(which is true of most economic time series) and the X ’s are positively
correlated (also true of most economic time series), then it is clear that

var (β̂2) < var (β̂2)AR1 (12.4.2)

that is, the usual OLS variance of β̂2 underestimates its variance under
AR(1) [see Eq. (12.2.9)]. Therefore, if we use var (β̂2), we shall inflate the
precision or accuracy (i.e., underestimate the standard error) of the estima-
tor β̂2. As a result, in computing the t ratio as t = β̂2/se (β̂2) (under the
hypothesis that β2 = 0), we shall be overestimating the t value and hence the
statistical significance of the estimated β2. The situation is likely to get
worse if additionally σ 2 is underestimated, as noted previously.
To see how OLS is likely to underestimate σ 2 and the variance of β̂2, let us

conduct the following Monte Carlo experiment. Suppose in the two-
variable model we “know’’ that the true β1 = 1 and β2 = 0.8. Therefore, the
stochastic PRF is

Yt = 1.0+ 0.8Xt + ut (12.4.3)

Hence,

E(Yt | Xt) = 1.0+ 0.8Xt (12.4.4)

which gives the true population regression line. Let us assume that ut are
generated by the first-order autoregressive scheme as follows:

ut = 0.7ut−1 + εt (12.4.5)

where εt satisfy all the OLS assumptions. We assume further for conve-
nience that the εt are normally distributed with zero mean and unit ( = 1)
variance. Equation (12.4.5) postulates that the successive disturbances are
positively correlated, with a coefficient of autocorrelation of +0.7, a rather
high degree of dependence.
Now, using a table of random normal numbers with zero mean and unit

variance, we generated 10 random numbers shown in Table 12.1 and then
by the scheme (12.4.5) we generated ut . To start off the scheme, we need to
specify the initial value of u, say, u0 = 5.
Plotting the ut generated in Table 12.1, we obtain Figure 12.5, which

shows that initially each successive ut is higher than its previous value and
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TABLE 12.1 A HYPOTHETICAL EXAMPLE OF POSITIVELY AUTOCORRELATED

ERROR TERMS

ε*t ut = 0.7ut−1 + εt

0 0 u0 = 5 (assumed)

1 0.464 u1 = 0.7(5) + 0.464 = 3.964

2 2.026 u2 = 0.7(3.964) + 2.0262 = 4.8008

3 2.455 u3 = 0.7(4.8010) + 2.455 = 5.8157

4 −0.323 u4 = 0.7(5.8157) − 0.323 = 3.7480

5 −0.068 u5 = 0.7(3.7480) − 0.068 = 2.5556

6 0.296 u6 = 0.7(2.5556) + 0.296 = 2.0849

7 −0.288 u7 = 0.7(2.0849) − 0.288 = 1.1714

8 1.298 u8 = 0.7(1.1714) + 1.298 = 2.1180

9 0.241 u9 = 0.7(2.1180) + 0.241 = 1.7236

10 −0.957 u10 = 0.7(1.7236) − 0.957 = 0.2495

*Obtained from A Million Random Digits and One Hundred Thousand
Deviates, Rand Corporation, Santa Monica, Calif., 1950.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

0 Time

ut

FIGURE 12.5 Correlation generated by the scheme ut = 0.7ut−1 + εt (Table 12.1).
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subsequently it is generally smaller than its previous value showing, in gen-
eral, a positive autocorrelation.
Now suppose the values of X are fixed at 1, 2, 3, . . . , 10. Then, given

these X ’s, we can generate a sample of 10 Y values from (12.4.3) and the val-
ues of ut given in Table 12.1. The details are given in Table 12.2. Using the
data of Table 12.2, if we regress Y on X, we obtain the following (sample)
regression:

Ŷt = 6.5452 + 0.3051Xt

(0.6153) (0.0992)

t = (10.6366) (3.0763)
(12.4.6)

r2 = 0.5419 σ̂ 2 = 0.8114

whereas the true regression line is as given by (12.4.4). Both the regression
lines are given in Figure 12.6, which shows clearly how much the fitted re-
gression line distorts the true regression line; it seriously underestimates the
true slope coefficient but overestimates the true intercept. (But note that the
OLS estimators are still unbiased.)
Figure 12.6 also shows why the true variance of ui is likely to be underes-

timated by the estimator σ̂ 2, which is computed from the ûi . The ûi are
generally close to the fitted line (which is due to the OLS procedure) but
deviate substantially from the true PRF. Hence, they do not give a correct
picture of ui . To gain some insight into the extent of underestimation of
true σ 2, suppose we conduct another sampling experiment. Keeping the
Xt and εt given in Tables 12.1 and 12.2, let us assume ρ = 0, that is, no
autocorrelation. The new sample of Y values thus generated is given in
Table 12.3.

TABLE 12.2 GENERATION OF Y SAMPLE VALUES

Xt u *
t Yt = 1.0 + 0.8Xt + ut

1 3.9640 Y1 = 1.0 + 0.8(1) + 3.9640 = 5.7640

2 4.8010 Y2 = 1.0 + 0.8(2) + 4.8008 = 7.4008

3 5.8157 Y3 = 1.0 + 0.8(3) + 5.8157 = 9.2157

4 3.7480 Y4 = 1.0 + 0.8(4) + 3.7480 = 7.9480

5 2.5556 Y5 = 1.0 + 0.8(5) + 2.5556 = 7.5556

6 2.0849 Y6 = 1.0 + 0.8(6) + 2.0849 = 7.8849

7 1.1714 Y7 = 1.0 + 0.8(7) + 1.1714 = 7.7714

8 2.1180 Y8 = 1.0 + 0.8(8) + 2.1180 = 9.5180

9 1.7236 Y9 = 1.0 + 0.8(9) + 1.7236 = 9.9236

10 0.2495 Y10 = 1.0 + 0.8(10) + 0.2495 = 9.2495

*Obtained from Table 12.1.
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Yt = 6.5452 + 0.3051Xt

Yt = 1 + 0.8Xt

True PRF

Actual Y

X
0

FIGURE 12.6 True PRF and the estimated regression line for the data of Table 12.2.

TABLE 12.3 SAMPLE OF Y VALUES WITH ZERO SERIAL CORRELATION

Xt εt = u *
t Yt = 1.0 + 0.8Xt + εt

1 0.464 2.264

2 2.026 4.626

3 2.455 5.855

4 −0.323 3.877

5 −0.068 4.932

6 0.296 6.096

7 −0.288 6.312

8 1.298 8.698

9 0.241 8.441

10 −0.957 8.043

*Since there is no autocorrelation, the ut and εt are identical. The εt
are from Table 12.1.

The regression based on Table 12.3 is as follows:

Ŷt = 2.5345 + 0.6145Xt

(0.6796) (0.1087)

t = (3.7910) (5.6541)
(12.4.7)

r2 = 0.7997 σ̂ 2 = 0.9752
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This regression is much closer to the “truth’’ because the Y ’s are now
essentially random. Notice that σ̂ 2 has increased from 0.8114 (ρ = 0.7) to
0.9752 (ρ = 0). Also notice that the standard errors of β̂1 and β̂2 have
increased. This result is in accord with the theoretical results considered
previously.

12.5 RELATIONSHIP BETWEEN WAGES AND PRODUCTIVITY

IN THE BUSINESS SECTOR OF THE UNITED STATES, 1959–1998

Now that we have discussed the consequences of autocorrelation, the obvi-
ous question is, How do we detect it and how do we correct for it? Before we
turn to these topics, it is useful to consider a concrete example. Table 12.4
gives data on indexes of real compensation per hour (Y) and output per hour
(X) in the business sector of the U.S. economy for the period 1959–1998, the
base of the indexes being 1992 = 100.
First plotting the data on Y and X, we obtain Figure 12.7. Since the rela-

tionship between real compensation and labor productivity is expected to
be positive, it is not surprising that the two variables are positively related.
What is surprising is that the relationship between the two is almost linear,

TABLE 12.4 INDEXES OF REAL COMPENSATION AND PRODUCTIVITY, UNITED STATES, 1959–1998

Observation Y X Observation Y X

1959 58.5 47.2 1979 90.0 79.7

1960 59.9 48.0 1980 89.7 79.8

1961 61.7 49.8 1981 89.8 81.4

1962 63.9 52.1 1982 91.1 81.2

1963 65.3 54.1 1983 91.2 84.0

1964 67.8 54.6 1984 91.5 86.4

1965 69.3 58.6 1985 92.8 88.1

1966 71.8 61.0 1986 95.9 90.7

1967 73.7 62.3 1987 96.3 91.3

1968 76.5 64.5 1988 97.3 92.4

1969 77.6 64.8 1989 95.8 93.3

1970 79.0 66.2 1990 96.4 94.5

1971 80.5 68.8 1991 97.4 95.9

1972 82.9 71.0 1992 100.0 100.0

1973 84.7 73.1 1993 99.9 100.1

1974 83.7 72.2 1994 99.7 101.4

1975 84.5 74.8 1995 99.1 102.2

1976 87.0 77.2 1996 99.6 105.2

1977 88.1 78.4 1997 101.1 107.5

1978 89.7 79.5 1998 105.1 110.5

Notes: X = index of output per hour, business sector (1992 = 100)
Y = index of real compensation per hour, business sector (1992 = 100)

Source: Economic Report of the President, 2000, Table B–47, p. 362.



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

12. Autocorrelation: What 

Happens if the Error Terms 

are Correlated?

© The McGraw−Hill 

Companies, 2004

CHAPTER TWELVE: AUTOCORRELATION 461

although there is some hint that at higher values of productivity the rela-
tionship between the two may be slightly nonlinear. Therefore, we decided
to estimate a linear as well as a log–linear model, with the following results:

Ŷt = 29.5192 + 0.7136Xt

se = (1.9423) (0.0241)

t = (15.1977) (29.6066) (12.5.1)

r2 = 0.9584 d = 0.1229 σ̂ = 2.6755

where d is the Durbin–Watson statistic, which will be discussed shortly.

̂lnYt = 1.5239 + 0.6716 ln Xt

se = (0.0762)  (0.0175)

t = (19.9945) (38.2892) (12.5.2)

r2 = 0.9747 d = 0.1542 σ̂ = 0.0260

For discussion purposes, we will call (12.5.1) and (12.5.2) wages–
productivity regressions.

40
50

60 80
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FIGURE 12.7 Index of compensation (Y ) and index of productivity (X ), United States, 1959–1998.
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Qualitatively, both the models give similar results. In both cases the esti-
mated coefficients are “highly” significant, as indicated by the high t values.
In the linear model, if the index of productivity goes up by a unit, on aver-
age, the index of compensation goes up by about 0.71 units. In the log–
linear model, the slope coefficient being elasticity (why?), we find that if the
index of productivity goes up by 1 percent, on average, the index of real
compensation goes up by about 0.67 percent.
How reliable are the results given in (12.5.1) and (12.5.2) if there is auto-

correlation? As stated previously, if there is autocorrelation, the estimated
standard errors are biased, as a result of which the estimated t ratios are un-
reliable. We obviously need to find out if our data suffer from autocorrela-
tion. In the following section we discuss several methods of detecting auto-
correlation. We will illustrate these methods with the linear model (12.5.1)
only, leaving the log–linear model (12.5.2) as an exercise.

12.6 DETECTING AUTOCORRELATION

I. Graphical Method

Recall that the assumption of nonautocorrelation of the classical model
relates to the population disturbances ut , which are not directly observable.
What we have instead are their proxies, the residuals ût , which can be ob-
tained by the usual OLS procedure. Although the ût are not the same thing
as ut ,

17 very often a visual examination of the û’s gives us some clues about
the likely presence of autocorrelation in the u’s. Actually, a visual exami-
nation of ût or (û

2
t ) can provide useful information not only about autocor-

relation but also about heteroscedasticity (as we saw in the preceding chap-
ter), model inadequacy, or specification bias, as we shall see in the next
chapter. As one author notes:

The importance of producing and analyzing plots of [residuals] as a standard part
of statistical analysis cannot be overemphasized. Besides occasionally providing
an easy to understand summary of a complex problem, they allow the simultane-
ous examination of the data as an aggregate while clearly displaying the behavior
of individual cases.18

There are various ways of examining the residuals. We can simply plot
them against time, the time sequence plot, as we have done in Figure 12.8,
which shows the residuals obtained from the wages–productivity regression
(12.5.1). The values of these residuals are given in Table 12.5 along with
some other data. 

17Even if the disturbances ut are homoscedastic and uncorrelated, their estimators, the
residuals, ût , are heteroscedastic and autocorrelated. On this, see G. S. Maddala, Introduction
to Econometrics, 2d ed., Macmillan, New York, 1992, pp. 480–481. However, it can be shown
that as the sample size increases indefinitely, the residuals tend to converge to their true values,
the ut ’s. On this see, E. Malinvaud, Statistical Methods of Econometrics, 2d ed., North-Holland
Publishers, Amsterdam, 1970, p. 88.

18Stanford Weisberg, Applied Linear Regression, John Wiley & Sons, New York, 1980, p. 120.
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FIGURE 12.8 Residuals and standardized residuals from the wages–productivity regression (12.5.1).

TABLE 12.5 RESIDUALS: ACTUAL, STANDARDIZED, AND LAGGED

Observation RES1 SRES1 RES1(−1) Observation RES1 SRES1 RES1(−1)

1959 −4.703979 −1.758168 1979 3.602089 1.346324 3.444821

1960 −3.874907 −1.448293 −4.703979 1980 3.230723 1.207521 3.602089

1961 −3.359494 −1.255651 −3.874907 1981 2.188868 0.818116 3.230723

1962 −2.800911 −1.046874 −3.359494 1982 3.631600 1.357354 2.188868

1963 −2.828229 −1.057084 −2.800911 1983 1.733354 0.647862 3.631600

1964 −2.112378 −0.789526 −2.828229 1984 0.320571 0.119817 1.733354

1965 −2.039697 −0.762361 −2.112378 1985 0.407350 0.152252 0.320571

1966 −1.252480 −0.468129 −2.039697 1986 1.651836 0.617393 0.407350

1967 −0.280237 −0.104742 −1.252480 1987 1.623640 0.606855 1.651836

1968 0.949713 0.354966 −0.280237 1988 1.838615 0.687204 1.623640

1969 1.835615 0.686083 0.949713 1989 −0.303679 −0.113504 1.838615

1970 2.236492 0.835915 1.835615 1990 −0.560070 −0.209333 −0.303679

1971 1.880977 0.703038 2.236492 1991 −0.559193 −0.209005 −0.560070

1972 2.710926 1.013241 1.880977 1992 −0.885197 −0.330853 −0.559193

1973 3.012241 1.125861 2.710926 1993 −1.056563 −0.394903 −0.885197

1974 2.654535 0.992164 3.012241 1994 −2.184320 −0.816416 −1.056563

1975 1.599020 0.597653 2.654535 1995 −3.355248 −1.254064 −2.184320

1976 2.386238 0.891885 1.599020 1996 −4.996226 −1.867399 −3.355248

1977 2.629847 0.982936 2.386238 1997 −5.137643 −1.920255 −4.996226

1978 3.444821 1.287543 2.629847 1998 −3.278621 −1.225424 −5.137643

Notes: RES 1 = residuals from regression (12.5.1).
SRES 1 = standardized residuals = RES1/2.6755.
RES(−1) = residuals lagged one period.
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FIGURE 12.9 Current residuals versus lagged residuals.

19Actually, it is the so-called Studentized residuals that have a unit variance. But in prac-
tice the standardized residuals will give the same picture, and hence we may rely on them. On
this, see Norman Draper and Harry Smith, Applied Regression Analysis, 3d ed., John Wiley &
Sons, New York, 1998, pp. 207–208.

Alternatively, we can plot the standardized residuals against time, which
are also shown in Figure 12.8 and Table 12.5. The standardized residuals are
simply the residuals (ût) divided by the standard error of the regression

(
√
σ̂ 2), that is, they are (ût/σ̂ ). Notice that ût and σ̂ are measured in the units

in which the regressand Y is measured. The values of the standardized resid-
uals will therefore be pure numbers (devoid of units of measurement) and
can be compared with the standardized residuals of other regressions. More-
over, the standardized residuals, like ût, have zero mean (why?) and approx-
imately unit variance.19 In large samples (ût/σ̂ ) is approximately normally
distributed with zero mean and unit variance. For our example, σ̂ = 2.6755.
Examining the time sequence plot given in Figure 12.8, we observe that

both ût and the standardized ût exhibit a pattern observed in Figure 12.1d,
suggesting that perhaps ut are not random.
To see this differently, we can plot ût against ût−1, that is, plot the residu-

als at time t against their value at time (t − 1), a kind of empirical test of the
AR(1) scheme. If the residuals are nonrandom, we should obtain pictures
similar to those shown in Figure 12.3. This plot for our wages–productivity
regression is as shown in Figure 12.9; the underlying data are given in
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20In nonparametric tests we make no assumptions about the (probability) distribution
from which the observations are drawn. On the Geary test, see R. C. Geary, “Relative Efficiency
of Count Sign Changes for Assessing Residual Autoregression in Least Squares Regression,’’
Biometrika, vol. 57, 1970, pp. 123–127.

Table 12.5. As this figure reveals, most of the residuals are bunched in the
second (northeast) and the fourth (southwest) quadrants, suggesting a
strong positive correlation in the residuals.
The graphical method we have just discussed, although powerful and

suggestive, is subjective or qualitative in nature. But there are several quan-
titative tests that one can use to supplement the purely qualitative approach.
We now consider some of these tests.

II. The Runs Test

If we carefully examine Figure 12.8, we notice a peculiar feature: Initially,
we have several residuals that are negative, then there is a series of positive
residuals, and then there are several residuals that are negative. If these
residuals were purely random, could we observe such a pattern? Intuitively,
it seems unlikely. This intuition can be checked by the so-called runs test,
sometimes also know as the Geary test, a nonparametric test.20

To explain the runs test, let us simply note down the signs (+ or −) of the
residuals obtained from the wages–productivity regression, which are given
in the first column of Table 12.5.

(−−−−−−−−−)(+++++++++++++++++++++)(−−−−−−−−−−)
(12.6.1)

Thus there are 9 negative residuals, followed by 21 positive residuals, fol-
lowed by 10 negative residuals, for a total of 40 observations.
We now define a run as an uninterrupted sequence of one symbol or at-

tribute, such as + or −. We further define the length of a run as the num-
ber of elements in it. In the sequence shown in (12.6.1), there are 3 runs: a
run of 9 minuses (i.e., of length 9), a run of 21 pluses (i.e., of length 21) and
a run of 10 minuses (i.e., of length 10). For a better visual effect, we have
presented the various runs in parentheses.
By examining how runs behave in a strictly random sequence of observa-

tions, one can derive a test of randomness of runs. We ask this question: Are
the 3 runs observed in our illustrative example consisting of 40 observations
too many or too few compared with the number of runs expected in a
strictly random sequence of 40 observations? If there are too many runs, it
would mean that in our example the residuals change sign frequently, thus
indicating negative serial correlation (cf. Figure 12.3b). Similarly, if there
are too few runs, they may suggest positive autocorrelation, as in Fig-
ure 12.3a. A priori, then, Figure 12.8 would indicate positive correlation in
the residuals.
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Now let

Then under the null hypothesis that the successive outcomes (here, residu-
als) are independent, and assuming that N1 > 10 and N2 > 10, the number
of runs is (asymptotically) normally distributed with

Note: N = N1 + N2.
If the null hypothesis of randomness is sustainable, following the proper-

ties of the normal distribution, we should expect that

Prob [E(R)− 1.96σR ≤ R≤ E(R)+ 1.96σR] = 0.95 (12.6.3)

That is, the probability is 95 percent that the preceding interval will include
R. Therefore we have this rule:

Decision Rule. Do not reject the null hypothesis of randomness with 95% confidence if R,

the number of runs, lies in the preceding confidence interval; reject the null hypothesis if the

estimated R lies outside these limits. (Note: You can choose any level of confidence you

want.)

Returning to our example, we know that N1, the number of minuses, is 19
and N2, the number of pluses, is 21 and R = 3. Using the formulas given in
(12.6.2), we obtain:

The 95% confidence interval for R in our example is thus:

[10.975± 1.96(3.1134)] = (4.8728, 17.0722)

Obviously, this interval does not include 3. Hence, we can reject the hypoth-
esis that the residuals in our wages–productivity regression are random

(12.6.4)

E(R) = 10.975

σ 2R = 9.6936

σR = 3.1134

(12.6.2)

Mean: E(R) = 2N1N2

N
+ 1

Variance: σ 2R = 2N1N2(2N1N2 − N)

(N)2(N− 1)

N = total number of observations = N1 + N2

N1 = number of + symbols (i.e., + residuals)

N2 = number of − symbols (i.e., − residuals)
R = number of runs
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21J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least-Squares Regression,’’
Biometrika, vol. 38, 1951, pp. 159–171.

22However, R. W. Farebrother has calculated d values when the intercept term is absent
from the model. See his “The Durbin–Watson Test for Serial Correlation When There Is No In-
tercept in the Regression,’’ Econometrica, vol. 48, 1980, pp. 1553–1563.

with 95% confidence. In other words, the residuals exhibit autocorrelation.
As a general rule, if there is positive autocorrelation, the number of runs will
be few, whereas if there is negative autocorrelation, the number of runs
will be many. Of course, from (12.6.2) we can find out whether we have too
many runs or too few runs.
Swed and Eisenhart have developed special tables that give critical values

of the runs expected in a random sequence of N observations if N1 or N2 is
smaller than 20. These tables are given inAppendix D, Table D.6. Using these
tables, the reader can verify that the residuals in our wages–productivity re-
gression are indeed nonrandom; actually they are positively correlated.

III. Durbin–Watson d Test21

The most celebrated test for detecting serial correlation is that developed
by statisticians Durbin and Watson. It is popularly known as the Durbin–
Watson d statistic, which is defined as

d =
∑t=n

t=2(ût − ût−1)2∑t=n
t=1 û

2
t

(12.6.5)

which is simply the ratio of the sum of squared differences in successive
residuals to the RSS. Note that in the numerator of the d statistic the num-
ber of observations is n− 1 because one observation is lost in taking succes-
sive differences.
A great advantage of the d statistic is that it is based on the estimated

residuals, which are routinely computed in regression analysis. Because of
this advantage, it is now a common practice to report the Durbin–Watson d
along with summary measures, such as R2, adjusted R2, t, and F. Although
it is now routinely used, it is important to note the assumptions underly-
ing the d statistic.

1. The regression model includes the intercept term. If it is not present,
as in the case of the regression through the origin, it is essential to rerun the
regression including the intercept term to obtain the RSS.22

2. The explanatory variables, the X ’s, are nonstochastic, or fixed in re-
peated sampling.

3. The disturbances ut are generated by the first-order autoregressive
scheme: ut = ρut−1 + εt . Therefore, it cannot be used to detect higher-order
autoregressive schemes.

4. The error term ut is assumed to be normally distributed.
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23For further details, see Gabor Korosi, Laszlo Matyas, and Istvan P. Szekey, Practical
Econometrics, Avebury Press, England, 1992, pp. 88–89.

24But see the discussion on the “exact’’ Durbin–Watson test given later in the section.

5. The regression model does not include the lagged value(s) of the de-
pendent variable as one of the explanatory variables. Thus, the test is inap-
plicable in models of the following type:

Yt = β1 + β2X2t + β3X3t + · · · + βkXkt + γYt−1 + ut (12.6.6)

where Yt−1 is the one period lagged value of Y. Such models are known as
autoregressive models, which we will study in Chapter 17.

6. There are no missing observations in the data. Thus, in our wages–
productivity regression for the period 1959–1998, if observations for, say,
1978 and 1982 were missing for some reason, the d statistic makes no
allowance for such missing observations.23

The exact sampling or probability distribution of the d statistic given in
(12.6.5) is difficult to derive because, as Durbin and Watson have shown, it
depends in a complicated way on the X values present in a given sample.24

This difficulty should be understandable because d is computed from ût ,
which are, of course, dependent on the given X’s. Therefore, unlike the t, F,
or χ2 tests, there is no unique critical value that will lead to the rejection or
the acceptance of the null hypothesis that there is no first-order serial cor-
relation in the disturbances ui . However, Durbin and Watson were success-
ful in deriving a lower bound dL and an upper bound dU such that if the
computed d from (12.6.5) lies outside these critical values, a decision can
be made regarding the presence of positive or negative serial correlation.
Moreover, these limits depend only on the number of observations n and the
number of explanatory variables and do not depend on the values taken by
these explanatory variables. These limits, for n going from 6 to 200 and up
to 20 explanatory variables, have been tabulated by Durbin and Watson and
are reproduced in Appendix D, Table D.5 (up to 20 explanatory variables).
The actual test procedure can be explained better with the aid of Fig-

ure 12.10, which shows that the limits of d are 0 and 4. These can be estab-
lished as follows. Expand (12.6.5) to obtain

d =
∑
û2t +

∑
û2t−1 − 2

∑
ûtût−1∑

û2t
(12.6.7)

Since
∑
û2t and

∑
û2t−1 differ in only one observation, they are approxi-

mately equal. Therefore, setting 
∑
û2t−1 ≈

∑
û2t , (12.6.7) may be written as

d ≈ 2

(
1−

∑
ûtût−1∑
û2t

)
(12.6.8)

where ≈ means approximately.
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H0:  No positive autocorrelation
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0:  No negative autocorrelation

FIGURE 12.10 Durbin–Watson d statistic.

Now let us define

as the sample first-order coefficient of autocorrelation, an estimator of ρ.
(See footnote 9.) Using (12.6.9), we can express (12.6.8) as

But since −1 ≤ ρ ≤ 1, (12.6.10) implies that

0 ≤ d ≤ 4 (12.6.11)

These are the bounds of d; any estimated d value must lie within these
limits.
It is apparent from Eq. (12.6.10) that if ρ̂ = 0, d = 2; that is, if there is no

serial correlation (of the first-order), d is expected to be about 2. Therefore,
as a rule of thumb, if d is found to be 2 in an application, one may assume that
there is no first-order autocorrelation, either positive or negative. If ρ̂ = +1, in-
dicating perfect positive correlation in the residuals, d ≈ 0. Therefore, the
closer d is to 0, the greater the evidence of positive serial correlation. This
relationship should be evident from (12.6.5) because if there is positive au-
tocorrelation, the ût ’s will be bunched together and their differences will
therefore tend to be small. As a result, the numerator sum of squares will
be smaller in comparison with the denominator sum of squares, which re-
mains a unique value for any given regression.

(12.6.10)d ≈ 2(1− ρ̂)

(12.6.9)ρ̂ =
∑
ûtût−1∑
û2t
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TABLE 12.6 DURBIN–WATSON d TEST: DECISION RULES

Null hypothesis Decision If

No positive autocorrelation Reject 0 < d < dL
No positive autocorrelation No decision dL ≤ d ≤ dU
No negative correlation Reject 4 − dL < d < 4

No negative correlation No decision 4 − dU ≤ d ≤ 4 − dL
No autocorrelation, positive or negative Do not reject dU < d < 4 − dU

25For details, see Thomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced
Econometric Methods, Springer Verlag, New York, 1984, pp. 225–228.

If ρ̂ = −1, that is, there is perfect negative correlation among successive
residuals, d ≈ 4. Hence, the closer d is to 4, the greater the evidence of neg-
ative serial correlation. Again, looking at (12.6.5), this is understandable.
For if there is negative autocorrelation, a positive ût will tend to be followed
by a negative ût and vice versa so that |ût − ût−1| will usually be greater than
|ût|. Therefore, the numerator of d will be comparatively larger than the
denominator.
The mechanics of the Durbin–Watson test are as follows, assuming that

the assumptions underlying the test are fulfilled:

1. Run the OLS regression and obtain the residuals.
2. Compute d from (12.6.5). (Most computer programs now do this

routinely.)
3. For the given sample size and given number of explanatory variables,

find out the critical dL and dU values.
4. Now follow the decision rules given in Table 12.6. For ease of refer-

ence, these decision rules are also depicted in Figure 12.10.

To illustrate the mechanics, let us return to our wages–productivity re-
gression. From the data given in Table 12.5 the estimated d value can be
shown to be 0.1229, suggesting that there is positive serial correlation in the
residuals. From the Durbin–Watson tables, we find that for 40 observations
and one explanatory variable, dL = 1.44 and dU = 1.54 at the 5 percent level.
Since the computed d of 0.1229 lies below dL, we cannot reject the hypothe-
sis that there is positive serial correlations in the residuals.
Although extremely popular, the d test has one great drawback in that, if

it falls in the indecisive zone, one cannot conclude that (first-order) auto-
correlation does or does not exist. To solve this problem, several authors
have proposed modifications of the d test but they are rather involved and
beyond the scope of this book.25 In many situations, however, it has been
found that the upper limit dU is approximately the true significance limit
and therefore in case d lies in the indecisive zone, one can use the following
modified d test: Given the level of significance α,

1. H0: ρ = 0 versus H1: ρ > 0. Reject H0 at α level if d < dU . That is, there
is statistically significant positive autocorrelation.
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26For an advanced discussion, see Ron C. Mittelhammer, George G. Judge, and Douglas J.
Miller, Econometric Foundations, Cambridge University Press, New York, 2000, p. 550.

27See James Davidson, Econometric Theory, Blackwell Publishers, New York, 2000, p. 161.

2. H0: ρ = 0 versus H1: ρ < 0. Reject H0 at α level if the estimated
(4− d) < dU , that is, there is statistically significant evidence of negative
autocorrelation.

3. H0: ρ = 0 versus H1: ρ != 0. Reject H0 at 2α level if d < dU or (4− d) <
dU , that is, there is statistically significant evidence of autocorrelation, posi-
tive or negative.

It may be pointed out that the indecisive zone narrows as the sample size
increases, which can be seen clearly from the Durbin–Watson tables. For ex-
ample, with 4 regressors and 20 observations, the 5 percent lower and upper
d values are 0.894 and 1.828, respectively, but these values are 1.515 and
1.739 if the sample size is 75.
The computer program Shazam performs an exact d test, that is, it gives

the p value, the exact probability of the computed d value. With modern
computing facilities, it is no longer difficult to find the p value of the com-
puted d statistic. Using SHAZAM (version 9) for our wages–productivity re-
gression, we find the p value of the computed d of 0.1229 is practically zero,
thereby reconfirming our earlier conclusion based on the Durbin–Watson
tables.
The Durbin–Watson d test has become so venerable that practitioners

often forget the assumptions underlying the test. In particular, the assump-
tions that (1) the explanatory variables, or regressors, are nonstochastic;
(2) the error term follows the normal distribution; and (3) that the regres-
sion models do not include the lagged value(s) of the regressand are very im-
portant for the application of the d test.
If a regression model contains lagged value(s) of the regressand, the d

value in such cases is often around 2, which would suggest that there is no
(first-order) autocorrelation in such models. Thus, there is a built-in bias
against discovering (first-order) autocorrelation in such models. This does
not mean that autoregressive models do not suffer from the autocorrelation
problem. As a matter of fact, Durbin has developed the so-called h test to
test serial correlation in such models. But this test is not as powerful, in a
statistical sense, as the Breusch–Godfrey test to be discussed shortly, so
there is no need to use the h test. However, because of its historical
importance, it is discussed in exercise 12.36.
Also, if the error term ut are not NIID, the routinely used d test may not

be reliable.26 In this respect the runs test discussed earlier has an advantage
in that it does not make any (probability) distributional assumption about
the error term. However, if the sample is large (technically infinite), we can
use the Durbin–Watson d, for it can be shown that27

√
n

(
1− 1

2
d

)
≈ N(0, 1) (12.6.12)
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28Ibid., p. 161.
29Fumio Hayashi, Econometrics, Princeton University Press, Princeton, N.J., 2000, p. 45.
30See, L. G. Godfrey, “Testing Against General Autoregressive and Moving Average Error

Models When the Regressor include Lagged Dependent Variables,’’ Econometrica, vol. 46, 1978,
pp. 1293–1302, and T. S. Breusch, “Testing for Autocorrelation in Dynamic Linear Models,’’
Australian Economic Papers, vol. 17, 1978, pp. 334–355.

That is, in large samples the d statistic as transformed in (12.6.12) follows
the standard normal distribution. Incidentally, in view of the relationship
between d and ρ̂, the estimated first-order autocorrelation coefficient,
shown in (12.6.10), it follows that 

√
nρ̂ ≈ N(0, 1) (12.6.13)

that is, in large samples, the square root of the sample size times the esti-
mated first-order autocorrelation coefficient also follows the standard nor-
mal distribution.
As an illustration of the test, for our wages–productivity example, we

found that d = 0.1229 with n = 40. Therefore, from (12.6.12) we find that 

√
40

(
1− 0.1229

2

)
≈ 5.94

Asymptotically, if the null hypothesis of zero (first-order) autocorrelation
were true, the probability of obtaining a Z value (i.e., a standardized normal
variable) of as much as 5.94 or greater is extremely small. Recall that for a
standard normal distribution, the (two-tail) critical 5 percent Z value is only
1.96 and the 1 percent critical Z value is about 2.58. Although our sample size
is only 40, for practical purposes it may be large enough to use the normal
approximation. The conclusion remains the same, namely, that the residuals
from the wages–productivity regression suffer from autocorrelation.
But the most serious problem with the d test is the assumption that the

regressors are nonstochastic, that is, their values are fixed in repeated
sampling. If this is not the case, then the d test is not valid either in finite, or
small, samples or in large samples.28 And since this assumption is usually
difficult to maintain in economic models involving time series data, one
author contends that the Durbin–Watson statistic may not be useful in
econometrics involving time series data.29 In his view, more useful tests of
autocorrelation are available, but they are all based on large samples. We
discuss one such test below, the Breusch–Godfrey test.

IV. A General Test of Autocorrelation: 

The Breusch–Godfrey (BG) Test30

To avoid some of the pitfalls of the Durbin–Watson d test of autocorrelation,
statisticians Breusch and Godfrey have developed a test of autocorrelation
that is general in the sense that it allows for (1) nonstochastic regressors,
such as the lagged values of the regressand; (2) higher-order autoregressive
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31For example, in the regression Yt = β1 + β2Xt + ut the error term can be represented as
ut = εt + λ1εt−1 + λ2εt−2 , which represents a three-period moving average of the white noise
error term εt .

32The test is based on the Lagrange Multiplier principle briefly mentioned in Chap. 8.
33The reason that the original regressor X is included in the model is to allow for the fact

that X may not be strictly nonstochastic. But if it is strictly nonstochastic, it may be omitted
from the model. On this, see Jeffrey M. Wooldridge, Introductory Econometrics: A Modern
Approach, South-Western Publishing Co., 200, p. 386.

schemes, such as AR(1), AR(2), etc.; and (3) simple or higher-order moving
averages of white noise error terms, such as εt in (12.2.1).

31

Without going into the mathematical details, which can be obtained from
the references, the BG test, which is also known as the LM test,32 proceeds
as follows: We use the two-variable regression model to illustrate the test,
although many regressors can be added to the model. Also, lagged values of
the regressand can be added to the model. Let

Yt = β1 + β2Xt + ut (12.6.14)

Assume that the error term ut follows the pth-order autoregressive, AR(p),
scheme as follows:

ut = ρ1ut−1 + ρ2ut−2 + · · · + ρput−p + εt (12.6.15)

where εt is a white noise error term as discussed previously. As you will rec-
ognize, this is simply the extension of the AR(1) scheme.
The null hypothesis H0 to be tested is that

H0: ρ1 = ρ2 = · · · = ρp = 0 (12.6.16)

That is, there is no serial correlation of any order. The BG test involves the
following steps:

1. Estimate (12.6.14) by OLS and obtain the residuals, ût .
2. Regress ût on the original Xt (if there is more than one X variable in

the original model, include them also) and ût−1, ût−2, . . . , ût−p, where the
latter are the lagged values of the estimated residuals in step 1. Thus, if
p = 4, we will introduce four lagged values of the residuals as additional
regressor in the model. Note that to run this regression we will have only
(n − p) observations (why?). In short, run the following regression:

ût = α1 + α2Xt + ρ̂1ût−1 + ρ̂2ût−2 + · · · + ρ̂pût−p + εt (12.6.17)

and obtain R2 from this (auxiliary) regression.33

3. If the sample size is large (technically, infinite), Breusch and Godfrey
have shown that

(n− p)R2 ∼ χ2p (12.6.18)
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That is, asymptotically, n − p times the R2 value obtained from the auxil-
iary regression (12.6.17) follows the chi-square distribution with p df. If in
an application, (n − p)R2 exceeds the critical chi-square value at the chosen
level of significance, we reject the null hypothesis, in which case at least one
rho in (12.6.15) is statistically significantly different from zero.

The following practical points about the BG test may be noted:

1. The regressors included in the regression model may contain lagged
values of the regressand Y, that is, Yt−1, Yt−2, etc., may appear as explanatory
variables. Contrast this model with the Durbin–Watson test restriction that
there be no lagged values of the regressand among the regressors.

2. As noted earlier, the BG test is applicable even if the disturbances fol-
low a pth-ordermoving average (MA) process, that is, the ut are generated
as follows:

ut = εt + λ1εt−1 + λ2εt−2 + · · · + λpεt−p (12.6.19)

where εt is a white noise error term, that is, the error term that satisfies all
the classical assumptions.

In the chapters on time series econometrics, we will study in some
detail the pth-order autoregressive and moving average processes.

3. If in (12.6.15) p = 1, meaning first-order autoregression, then the BG
test is known as Durbin’s M test.

4. A drawback of the BG test is that the value of p, the length of the lag,
cannot be specified a priori. Some experimentation with the p value is
inevitable. Sometimes one can use the so-called Akaike and Schwarz
information criteria to select the lag length. We will discuss these criteria in
Chapter 13 and later in the chapters on time series econometrics.

Why So Many Tests of Autocorrelation?

The answer to this question is that “. . . no particular test has yet been
judged to be unequivocally best [i.e., more powerful in the statistical sense],
and thus the analyst is still in the unenviable position of considering a

ILLUSTRATION OF THE BG TEST:
THE WAGES–PRODUCTIVITY RELATION

To illustrate the test, we will apply it to our illustrative ex-

ample. Using an AR(6) scheme, we obtained the results

shown in exercise 12.25. From the regression results

given there, it can be seen that (n − p) = 34 and R 2 =
0.8920. Therefore, multiplying these two, we obtain a

chi-square value of 30.328. For 6 df (why?), the proba-

bility of obtaining a chi-square value of as much as

30.328 or greater is extremely small; the chi-square

table in Appendix D.4 shows that the probability of ob-

taining a chi-square value of as much as 18.5476 or

greater is only 0.005. Therefore, for the same df, the

probability of obtaining a chi-square value of about 30

must be extremely small. As a matter of fact, the actual

p value is almost zero.

Therefore, the conclusion is that, for our example, at

least one of the six autocorrelations must be nonzero.

Trying varying lag lengths from 1 to 6, we find that only

the AR(1) coefficient is significant, suggesting that there

is no need to consider more than one lag. In essence the

BG test in this case turns out to be Durbin’sm test.
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34Ron C. Mittelhammer et al., op. cit., p. 547. Recall that the power of a statistical test is
one minus the probability of committing a Type II error, that is, one minus the probability of
accepting a false hypothesis. The maximum power of a test is 1 and the minimum is 0. The
closer of the power of a test is to zero, the worse is that test, and the closer it is to 1, the more
powerful is that test. What these authors are essentially saying is that there is no single most
powerful test of autocorrelation.

varied collection of test procedures for detecting the presence or structure,
or both, of autocorrelation.”34 Of course, a similar argument can be made
about the various tests of heteroscedasticity discussed in the previous
chapter.

12.7 WHAT TO DO WHEN YOU FIND AUTOCORRELATION:

REMEDIAL MEASURES

If after applying one or more of the diagnostic tests of autocorrelation dis-
cussed in the previous section, we find that there is autocorrelation, what
then? We have four options:

1. Try to find out if the autocorrelation is pure autocorrelation and not
the result of mis-specification of the model. As we discussed in Section 12.1,
sometimes we observe patterns in residuals because the model is mis-
specified—that is, it has excluded some important variables—or because its
functional form is incorrect.

2. If it is pure autocorrelation, one can use appropriate transformation
of the original model so that in the transformed model we do not have the
problem of (pure) autocorrelation. As in the case of heteroscedasticity, we
will have to use some type of generalized least-square (GLS) method.

3. In large samples, we can use the Newey–West method to obtain
standard errors of OLS estimators that are corrected for autocorrelation.
Thismethod is actually an extension ofWhite’s heteroscedasticity-consistent
standard errors method that we discussed in the previous chapter.

4. In some situations we can continue to use the OLS method.

Because of the importance of each of these topics, we devote a section to
each one.

12.8 MODEL MIS-SPECIFICATION VERSUS

PURE AUTOCORRELATION

Let us return to our wages–productivity regression given in (12.5.1). There
we saw that the d value was 0.1229 and based on the Durbin–Watson d test
we concluded that there was positive correlation in the error term. Could
this correlation have arisen because our model was not correctly specified?
Since the data underlying regression (12.5.1) is time series data, it is quite
possible that both wages and productivity exhibit trends. If that is the case,
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then we need to include the time or trend, t, variable in the model to see the
relationship between wages and productivity net of the trends in the two
variables.
To test this, we included the trend variable in (12.5.1) and obtained the

following results

Ŷt = 1.4752 + 1.3057Xt − 0.9032t

se = (13.18) (0.2765) (0.4203)

t = (0.1119) (4.7230) (−2.1490)
(12.8.1)

R2 = 0.9631; d = 0.2046

The interpretation of this model is straightforward: Over time, the index
of real wages has been decreasing by about 0.90 units per year. After
allowing for this, if the productivity index went up by a unit, on average, the
real wage index went up by about 1.30 units, although this number is not
statistically different from one (why?). What is interesting to note is that
even allowing for the trend variable, the d value is still very low, suggesting
that (12.8.1) suffers from pure autocorrelation and not necessarily specifi-
cation error.
How do we know that (12.8.1) is the correct specification? To test this, we

regress Y on X and X2 to test for the possibility that the real wage index may
be nonlinearly related to the productivity index. The results of this regres-
sion are as follows:

Ŷt = −16.2181 + 1.9488Xt − 0.0079X2t

t = (−5.4891) (24.9868) (−15.9363) (12.8.2)

R2 = 0.9947 d = 1.02

These results are interesting. All the coefficients are statistically highly
significant, the p values being extremely small. From the negative quadratic
term, it seems that although the real wage index increases as the productiv-
ity index increases, it increases at a decreasing rate. But look at the d value.
It still suggests positive autocorrelation in the residuals, for dL = 1.391 and
dU = 1.60 and the estimated d value lies below dL.
It may be safe to conclude from the preceding analysis that our wages–

productivity regression probably suffers from pure autocorrelation and not
necessarily from specification bias. Knowing the consequences of autocor-
relation, we may therefore want to take some corrective action. We will do
so shortly.
Incidentally, for all the wages–productivity regressions that we have

presented above, we applied the Jarque–Bera test of normality and found
that the residuals were normally distributed, which is comforting because
the d test assumes normality of the error term.
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12.9 CORRECTING FOR (PURE) AUTOCORRELATION: 

THE METHOD OF GENERALIZED LEAST SQUARES (GLS)

Knowing the consequences of autocorrelation, especially the lack of effi-
ciency of OLS estimators, we may need to remedy the problem. The remedy
depends on the knowledge one has about the nature of interdependence
among the disturbances, that is, knowledge about the structure of auto-
correlation.
As a starter, consider the two-variable regression model:

Yt = β1 + β2Xt + ut (12.9.1)

and assume that the error term follows the AR(1) scheme, namely,

ut = ρut−1 + εt −1 < ρ < 1 (12.9.2)

Now we consider two cases: (1) ρ is known and (2) ρ is not known but has to
be estimated.

When ρ Is Known

If the coefficient of first-order autocorrelation is known, the problem of
autocorrelation can be easily solved. If (12.9.1) holds true at time t, it also
holds true at time (t − 1). Hence,

Yt−1 = β1 + β2Xt−1 + ut−1 (12.9.3)

Multiplying (12.9.3) by ρ on both sides, we obtain

ρYt−1 = ρβ1 + ρβ2Xt−1 + ρut−1 (12.9.4)

Subtracting (12.9.4) from (12.9.1) gives

(Yt − ρYt−1) = β1(1− ρ)+ β2(Xt − ρXt−1)+ εt (12.9.5)

where εt = (ut − ρut−1)
We can express (12.9.5) as

Y*t = β*1 + β*2X
*
t + εt (12.9.6)

where β*1 = β1(1− ρ), Y*t = (Yt − ρYt−1), X*t = (Xt − ρXt−1) , and β
*
2 = β2.

Since the error term in (12.9.6) satisfies the usual OLS assumptions, we
can apply OLS to the transformed variables Y* and X* and obtain estima-
tors with all the optimum properties, namely, BLUE. In effect, running
(12.9.6) is tantamount to using generalized least squares (GLS) discussed in
the previous chapter—recall that GLS is nothing but OLS applied to the
transformed model that satisfies the classical assumptions.



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

12. Autocorrelation: What 

Happens if the Error Terms 

are Correlated?

© The McGraw−Hill 

Companies, 2004

478 PART TWO: RELAXING THE ASSUMPTIONS OF THE CLASSICAL MODEL

35The loss of one observation may not be very serious in large samples but can make a
substantial difference in the results in small samples. Without transforming the first observa-
tion as indicated, the error variance will not be homoscedastic. On this see, Jeffrey Wooldridge,
op. cit., p. 388. For some Monte Carlo results on the importance of the first observation, see
Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics, Oxford
University Press, New York, 1993, Table 10.1, p. 349.

36Maddala, op. cit., p. 232.

Regression (12.9.5) is known as the generalized, or quasi, difference
equation. It involves regressing Y on X, not in the original form, but in
the difference form, which is obtained by subtracting a proportion (= ρ)
of the value of a variable in the previous time period from its value in the
current time period. In this differencing procedure we lose one observation
because the first observation has no antecedent. To avoid this loss of one
observation, the first observation on Y and X is transformed as follows35:
Y1

√
1− ρ2 and X1

√
1− ρ2 . This transformation is known as the Prais–

Winsten transformation.

When ρ Is Not Known

Although conceptually straightforward to apply, the method of generalized
difference given in (12.9.5) is difficult to implement because ρ is rarely
known in practice. Therefore, we need to find ways of estimating ρ. We have
several possibilities.

The First-Difference Method. Since ρ lies between 0 and ±1, one
could start from two extreme positions. At one extreme, one could assume
that ρ = 0, that is, no (first-order) serial correlation, and at the other ex-
treme we could let ρ = ±1, that is, perfect positive or negative correlation.
As a matter of fact, when a regression is run, one generally assumes that
there is no autocorrelation and then lets the Durbin–Watson or other test
show whether this assumption is justified. If, however, ρ = +1, the general-
ized difference equation (12.9.5) reduces to the first-difference equation:

Yt − Yt−1 = β2(Xt − Xt−1)+ (ut − ut−1)

or

$Yt = β2$Xt + εt (12.9.7)

where $ is the first-difference operator introduced in (12.1.10)
Since the error term in (12.9.7) is free from (first-order) serial correlation

(why?), to run the regression (12.9.7) all one has to do is form the first
differences of both the regressand and regressor(s) and run the regression
on these first differences.
The first difference transformation may be appropriate if the coefficient

of autocorrelation is very high, say in excess of 0.8, or the Durbin–Watson d
is quite low. Maddala has proposed this rough rule of thumb:Use the first dif-
ference form whenever d < R2.36 This is the case in our wages–productivity
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37This is easy to show. Let Yt = α1 + β1t + β2Xt + ut . Therefore, Yt−1 = α + β1(t − 1)+
β2Xt−1 + ut−1 . Subtracting the latter from the former, you will obtain: $Yt = β1 + β2$Xt + εt ,
which shows that the intercept term in this equation is indeed the coefficient of the trend vari-
able in the original model. Remember that we are assuming that ρ = 1.

38In exercise 12.38 you are asked to run this model, including the constant term.
39The comparison of r2 in the level and first-difference form is slightly involved. For an ex-

tended discussion on this, see Maddala, op. cit., Chap. 6.
40It is not clear whether the computed d in the first-difference regression can be interpreted

in the same way as it was in the original, level form regression. However, applying the runs test,
it can be seen that there is no evidence of autocorrelation in the residuals of the first-difference
regression.

regression (12.5.1),wherewe found thatd = 0.1229 and r2 = 0.9584. Thefirst-
difference regression for our illustrative example will be presented shortly.
An interesting feature of the first-difference model (12.9.7) is that there

is no intercept in it. Hence, to estimate (12.9.7), you have to use the re-
gression through the origin routine (that is, suppress the intercept term),
which is now available in most software packages. If, however, you forget to
drop the intercept term in the model and estimate the following model that
includes the intercept term

$Yt = β1 + β2$Xt + εt (12.9.8)

then the original model must have a trend in it and β1 represents the coeffi-
cient of the trend variable.37 Therefore, one “accidental” benefit of
introducing the intercept term in the first-difference model is to test for the
presence of a trend variable in the original model.
Returning to our wages–productivity regression (12.5.1), and given the

AR(1) scheme and a low d value in relation to r2, we rerun (12.5.1) in the
first-difference form without the intercept term; remember that (12.5.1) is
in the level form. The results are as follows38:

Compared with the level form regression (12.5.1), we see that the slope
coefficient has not changed much, but the r2 value has dropped consider-
ably. This is generally the case because by taking the first differences we are
essentially studying the behavior of variables around their (linear) trend
values. Of course, we cannot compare the r2 of (12.9.9) directly with that of
the r2 of (12.5.1) because the dependent variables in the two models are
different.39 Also, notice that compared with the original regression, the d
value has increased dramatically, perhaps indicating that there is little
autocorrelation in the first-difference regression.40

Another interesting aspect of the first-difference transformation relates
to the stationarity properties of the underlying time series. Return to
Eq. (12.2.1), which describes the AR(1) scheme. Now if in fact ρ = 1, then it
is clear from Eqs. (12.2.3) and (12.2.4) that the series ut is nonstationary, for
the variances and covariances become infinite. That is why, when we

(12.9.9)
$̂Yt = 0.7199$Xt

t = (9.2073) r2 = 0.3610 d = 1.5096
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41I. I. Berenblutt and G. I. Webb, “A New Test for Autocorrelated Errors in the Linear Re-
gression Model,” Journal of the Royal Statistical Society, Series B, vol. 35, No.1, 1973, pp. 33–50.

discussed this topic, we put the restriction that |ρ| < 1. But it is clear from
(12.2.1) that if the autocorrelation coefficient is in fact 1, then (12.2.1) be-
comes

ut = ut−1 + εt

or

(ut − ut−1) = $ut = εt (12.9.10)

That is, it is the first-differenced ut that becomes stationary, for it is equal to
εt , which is a white noise error term.
The point of the preceding discussion is that if the original time series are

nonstationary, very often their first differences become stationary. And,
therefore, first-difference transformation serves a dual purpose in that it
might get rid of (first-order) autocorrelation and also render the time series
stationary. We will revisit this topic in Part V, where we discuss the econo-
metrics of time series analysis in some depth.
We mentioned that the first-difference transformation may be appropri-

ate if ρ is high or d is low. Strictly speaking, the first-difference transforma-
tion is valid only if ρ = 1. As a matter of fact, there is a test, called the
Berenblutt–Webb test,41 to test the hypothesis that ρ = 1. The test statistic
they use is called the g statistic, which is defined as follows:

g =
∑n

2 ê
2
t∑n

1 û
2
t

(12.9.11)

where ût are the OLS residuals from the original (i.e., level form) regression
and et are the OLS residuals from the first-difference regression. Keep in
mind that in the first-difference form there is no intercept.
To test the significance of the g statistic, assuming that the level form re-

gression contains the intercept term, we can use the Durbin–Watson tables
except that now the null hypothesis is that ρ = 1 rather than the Durbin–
Watson hypothesis that ρ = 0.
Revisiting our wages–productivity regression, for the original regression

(12.5.1) we obtain 
∑
û2t = 272.0220 and for the first regression (12.7.11) we

obtain
∑
ê2t = 0.334270. Putting these values into the g statistic given in

(12.9.11), we obtain

g = 33.4270

272.0220
= 0.0012 (12.9.12)

Consulting the Durbin–Watson table for 39 observations and 1 explanatory
variable, we find that dL = 1.435 and dU = 1.540 (5 percent level). Since the
observed g lies below the lower limit of d, we do not reject the hypothesis
that true ρ = 1. Keep in mind that although we use the same Durbin–Watson



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

12. Autocorrelation: What 

Happens if the Error Terms 

are Correlated?

© The McGraw−Hill 

Companies, 2004

CHAPTER TWELVE: AUTOCORRELATION 481

tables, now the null hypothesis is that ρ = 1 and not that ρ = 0. In view of this
finding, the results given in (12.9.9) may be acceptable.

ρ Based on Durbin–Watson d Statistic. If we cannot use the first
difference transformation because ρ is not sufficiently close to unity, we
have an easy method of estimating it from the relationship between d and
ρ established previously in (12.6.10), from which we can estimate ρ as
follows:

ρ̂ ≈ 1− d

2
(12.9.13)

Thus, in reasonably large samples one can obtain rho from (12.9.13) and
use it to transform the data as shown in the generalized difference equa-
tion (12.9.5). Keep in mind that the relationship between ρ and d given in
(12.9.13) may not hold true in small samples, for which Theil and Nagar
have proposed a modification, which is given in exercise 12.6.
In our wages–productivity regression (12.5.1), we obtain a d value of

0.1229. Using this value in (12.9.13), we obtain ρ̂ ≈ 0.9386. Using this esti-
mated rho value, we can estimate regression (12.9.5). All we have to do is
subtract 0.9386 times the previous value of Y from its current value and sim-
ilarly subtract 0.9386 times the previous value of X from its current value
and run the OLS regression on the variables thus transformed as in (12.9.6),
where Y*t = (Yt − 0.9386Yt−1) and X*t = (Xt − 0.9386Xt−1) .

ρ Estimated from the Residuals. If the AR(1) scheme ut = ρut−1 + εt is
valid, a simple way to estimate rho is to regress the residuals ût on ût−1, for
the ût are consistent estimators of the true ut , as noted previously. That is,
we run the following regression:

ût = ρ . ût−1 + vt (12.9.14)

where ût are the residuals obtained from the original (level form) regression
and where vt are the error term of this regression. Note that there is no need
to introduce the intercept term in (12.9.14), for we know the OLS residuals
sum to zero.
The residuals from our wages–productivity regression given in (12.5.1)

are already shown in Table 12.5. Using these residuals, the following regres-
sion results were obtained:

As this regression shows, ρ̂ = 0.9142. Using this estimate, one can trans-
form the original model as per (12.9.6). Since the rho estimated by this pro-
cedure is about the same as that obtained from the Durbin–Watson d, the

(12.9.15)
̂̂ut = 0.9142ût−1

t = (16.2281) r2 = 0.8736
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regression results using the rho of (12.9.15) should not be very different
from those obtained from the rho estimated from the Durbin–Watson d. We
leave it to the reader to verify this.

Iterative Methods of Estimating ρ. All the methods of estimating ρ
discussed previously provide us with only a single estimate of ρ. But there
are the so-called iterative methods that estimate ρ iteratively, that is, by
successive approximation, starting with some initial value of ρ. Among
these methods the following may be mentioned: the Cochrane–Orcutt iter-
ative procedure, the Cochrane–Orcutt two-step procedure, the Durbin
two–step procedure, and the Hildreth–Lu scanning or search proce-
dure.Of these, the most popular is the Cochran–Orcutt iterative method. To
save space, the iterative methods are discussed by way of exercises. Re-
member that the ultimate objective of these methods is to provide an esti-
mate of ρ that may be used to obtain GLS estimates of the parameters. One
advantage of the Cochrane–Orcutt iterative method is that it can be used to
estimate not only an AR(1) scheme, but also higher-order autoregressive
schemes, such as ût = ρ̂1ût−1 + ρ̂2ût−2 + vt , which is AR(2). Having obtained
the two rhos, one can easily extend the generalized difference equation
(12.9.6). Of course, the computer can now do all this.
Returning to our wages–productivity regression, and assuming an AR(1)

scheme, we use the Cochrane–Orcutt iterative method, which gives the
following estimates of rho: 0.9142, 0.9052, 0.8992, 0.8956, 0.8935, 0.8924,
and 0.8919. The last value of 0.8919 can now be used to transform the
original model as in (12.9.6) and estimate it by OLS. Of course, OLS on the
transformed model is simply the GLS. The results are as follows:

Dropping the First Observation Since the first observation has no an-
tecedent, in estimating (12.9.6), we drop the first observation. The regres-
sion results are as follows:

Ŷ*t = 45.105 + 0.5503Xt
*

se = (6.190) (0.0652) (12.9.16)

t = (7.287) (8.433) r2 = 0.9959

Comparing the results of this regression with the original regression given
in (12.5.1), we see that the slope coefficient has dropped dramatically.
Notice two things about (12.9.16). First, the intercept coefficient in (12.9.16)
is β1(1− ρ), from which the original β1 can be easily retrieved, since we
know that ρ = 0.8913. Secondly, the r2’s of the transformed model (12.9.16)
and the original model (12.5.1) cannot be directly compared, since the de-
pendent variables in the two models are different.

Retaining the First Observation à la Prais–Winsten. We cautioned
earlier that in small samples keeping the first observation or omitting it can
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42Including the first observation, the iterated values of rho are: 0.9142, 9.9462, 0.9556,
0.9591, 0.9605, and 0.9610. The last value was used in transforming the data to form the gen-
eralized difference equation.

make a substantial difference in small samples, although in large samples
the difference may be inconsequential.
Retaining the first observation à la Prais–Winsten, we obtain the follow-

ing regression results42:

Ŷ*t = 26.454 + 0.7245Xt
*

se = (5.4520) (0.0612) (12.9.17)

t = (4.8521) (11.8382) r2 = 0.9949

The difference between (12.9.16) and (12.9.17) tells us that the inclusion or
exclusion of the first observation can make a substantial difference in the re-
gression results. Also, note that the slope coefficient in (12.9.17) is approxi-
mately the same as that in (12.5.1).

General Comments. There are several points about correcting for au-
tocorrelation using the various methods discussed above.
First, since the OLS estimators are consistent despite autocorrelation, in

large samples, it makes little difference whether we estimate ρ from the
Durbin–Watson d, or from the regression of the residuals in the current
period on the residuals in the previous period, or from the Cochrane–Orcutt
iterative procedure because they all provide consistent estimates of the true
ρ. Second, the various methods discussed above are basically two-step
methods. In step 1 we obtain an estimate of the unknown ρ and in step 2 we
use that estimate to transform the variables to estimate the generalized
difference equation, which is basically GLS. But since we use ρ̂ instead of
the true ρ, all these methods of estimation are known in the literature as
feasible GLS (FGLS) or estimated GLS (EGLS)methods.
Third, it is important to note that whenever we use an FGLS or EGLS

method to estimate the parameters of the transformed model, the estimated
coefficients will not necessarily have the usual optimum properties of the
classical model, such as BLUE, especially in small samples. Without going
into complex technicalities, it may be stated as a general principle that
whenever we use an estimator in place of its true value, the estimated OLS
coefficients may have the usual optimum properties asymptotically, that is, in
large samples. Also, the conventional hypothesis testing procedures are, strictly
speaking, valid asymptotically. In small samples, therefore, one has to be
careful in interpreting the estimated results.
Fourth, in using EGLS, if we do not include the first observation (as

was originally the case with the Cochrane–Orcutt procedure), not only the
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43This is especially so if the regressors exhibit a trend, which is quite common in economic
data.

44W. K. Newey,  and K. West, “A Simple Positive Semi-Definite Heteroscedasticity and Au-
tocorrelation Consistent Covariance Matrix, Econometrica, vol. 55, 1987, pp. 703–708.

45If you can handle matrix algebra, the method is discussed in Greene, op. cit, 4th ed.,
pp. 462–463.

numerical values but also the efficiency of the estimators can be adversely
affected, especially if the sample size is small and if the regressors are not
strictly speaking nonstochastic.43 Therefore, in small samples it is impor-
tant to keep the first observation à la Prais–Winsten. Of course, if the sam-
ple size is reasonably large, EGLS, with or without the first observation,
gives similar results. Incidentally, in the literature EGLS with Prais–Winsten
transformation is known as the full EGLS, or FEGLS, for short. 

12.10 THE NEWEY–WEST METHOD OF CORRECTING

THE OLS STANDARD ERRORS

Instead of using the FGLS methods discussed in the previous section, we
can still use OLS but correct the standard errors for autocorrelation by a
procedure developed by Newey and West.44 This is an extension of White’s
heteroscedasticity-consistent standard errors that we discussed in the
previous chapter. The corrected standard errors are known as HAC
(heteroscedasticity- and autocorrelation-consistent) standard errors
or simply as Newey–West standard errors.We will not present the mathe-
matics behind the Newey–West procedure, for it is involved.45 But most
modern computer packages now calculate the Newey–West standard errors.
But it is important to point out that the Newey–West procedure is strictly
speaking valid in large samples and may not be appropriate in small samples.
But in large samples we now have a method that produces autocorrelation-
corrected standard errors so that we do not have to worry about the EGLS
transformations discussed in the previous chapter. Therefore, if a sample is
reasonably large, one should use the Newey–West procedure to correct OLS
standard errors not only in situations of autocorrelation only but also in
cases of heteroscedasticity, for the HAC method can handle both, unlike the
White method, which was designed specifically for heteroscedasticity.
Once again let us return to our wages–productivity regression (12.5.1).

We know that this regression suffers from autocorrelation. Our sample of 40
observations is reasonably large, so we can use the HAC procedure. Using
Eviews 4, we obtain the following regression results:

Ŷt = 29.5192 + 0.7136X̂t

se = (4.1180)* (0.0512)* (12.10.1)

r2 = 0.9584 d = 0.1229

where * denotes HAC standard errors.
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46Z. Griliches, and P. Rao, “Small Sample Properties of Several Two-stage Regression Meth-
ods in the Context of Autocorrelated Errors,” Journal of the American Statistical Association,
vol. 64, 1969, pp. 253–272.

Comparing this regression with (12.5.1), we find that in both the equa-
tions the estimated coefficients and the r2 value are the same. But, impor-
tantly, note that the HAC standard errors are much greater than the OLS
standard errors and therefore the HAC t ratios are much smaller than the
OLS t ratios. This shows that OLS had in fact underestimated the true stan-
dard errors. Curiously, the d statistics in both (12.5.1) and (12.10.1) is the
same. But don’t worry, for the HAC procedure has already taken this into
account in correcting the OLS standard errors.

12.11 OLS VERSUS FGLS AND HAC

The practical problem facing the researcher is this: In the presence of auto-
correlation, OLS estimators, although unbiased, consistent, and asymptoti-
cally normally distributed, are not efficient. Therefore, the usual inference
procedure based on the t, F, and χ2 tests is no longer appropriate. On the
other hand, FGLS and HAC produce estimators that are efficient, but the
finite, or small-sample, properties of these estimators are not well docu-
mented. This means in small samples the FGLS and HAC might actually do
worse than OLS. As a matter of fact, in a Monte Carlo study Griliches and
Rao46 found that if the sample is relatively small and the coefficient of auto-
correlation, ρ, is less than 0.3, OLS is as good or better than FGLS. As a
practical matter, then, one may use OLS in small samples in which the esti-
mated rho is, say, less than 0.3. Of course, what is a large and what is a small
sample are relative questions, and one has to use some practical judgment.
If you have only 15 to 20 observations, the sample may be small, but if you
have, say, 50 or more observations, the sample may be reasonably large.

12.12 FORECASTING WITH AUTOCORRELATED ERROR TERMS

In Section 5.10, we introduced the basics of forecasting in the context of the
two-variable regression model using the classical framework. How do these
basics change if there is autocorrelation? Although this topic is generally
covered in a course in economic forecasting, we can provide a glimpse of it
here. To be specific, we will continue with the two-variable model and as-
sume an AR(1) scheme. Thus,

Yt = β1 + β2Xt + ut (12.12.1)

ut = ρut−1 + εt − 1 < ρ < 1 (12.12.2)

where εt is a white noise error term.
Substituting (12.12.2) into (12.12.1), we obtain 

Yt = β1 + β2Xt + ρut−1 + εt (12.12.3)
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47For further discussion, see, Robert S. Pindyck and Daniel L. Rubinfeld, Econometric Mod-
els and Economic Forecasts,McGraw-Hill, 4th ed., 1998, pp. 214–217.

If we want to forecast Y for the next time period (t + 1), we obtain

Yt+1 = β1 + β2Xt+1 + ρut + εt+1 (12.12.4)

Thus, the forecast for the next period consists of three parts: (1) its expected
value = (β1 + β2Xt+1), (2) ρ times the preceding error term, and (3) a purely
white noise term, whose expected value is zero. Given the value of Xt+1, we
estimate (1) by β̂1 + β̂Xt+1, where the OLS estimators are obtained from a
given sample, and we estimate (2) as ρ̂ût , where ρ̂ is estimated by one of the
methods discussed in Section 12.9. At time (t + 1), the value of ût is already
known. Therefore, the estimated value of Yt+1 in (12.1.4) is:

Ŷt+1 = β̂1 + β̂2Xt+1 + ρ̂ût (12.12.5)

Following this logic,

Ŷt+2 = β̂1 + β̂2Xt+2 + ρ̂2ût (12.12.6)

for the second period, and so on.
The forecasting that we did in Section 5.10 is called statistic forecast-

ing, whereas that represented by (12.12.5) and (12.12.6) is called dynamic
forecasting, for in making these forecasts we are taking into account the er-
rors made in the past forecasts.
As in Section 5.10, we will need to compute the forecast (standard) errors

of (12.12.5) and (12.12.6). But the formulas become complicated.47 Since
mostmodern econometrics packages, such asMicrofit, Eviews, and Shazam,
produce the standard errors of forecast, there is no need to present the com-
puting formulas here.
As an illustration, let us fall back on our wages–productivity regression.

Recall that our sample data is for the period 1959–1998. We reestimated this
model using the data for 1959–1996 only, saving the last two observations
for forecasting purposes. Using Microfit 4.1, we obtained the following fore-
cast values of Y for 1997 and 1998, both static and dynamic, using the esti-
mated regression for 1959–1996.

Year 1997 Year 1998

Actual Y value 101.1 105.1

Static forecast of Y 107.24 (2.64) 109.45 (2.67)

Static forecast error −6.14 −4.35

Dynamic forecast 100.75 (1.08) 101.95 (1.64)

Dynamic forecast error 0.35 3.14

Note: Figures in parentheses are the estimated standard errors of
forecast values.
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48See Maddala, op. cit., pp. 321–322.

As you can see from the preceding exercise, the dynamic forecasts are
closer to their actual values than the static forecasts and the standard errors
of dynamic forecasts are smaller than their static counterpart. So, it may be
profitable to incorporate the AR(1) scheme (or higher-order schemes) for the
purpose of forecasting.However, note that for both types of forecasts the stan-
dard errors of forecast for 1998 are greater than that for 1997, which suggests,
not surprisingly, that forecasting into the distant future may be hazardous.

12.13 ADDITIONAL ASPECTS OF AUTOCORRELATION

Dummy Variables and Autocorrelation

In Chapter 9 we considered dummy variable regression models. In particu-
lar, recall the U.S. savings–income regression model for 1970–1995 that we
presented in (9.5.1), which for convenience is reproduced below:

Yt = α1 + α2 + β1Xt + β2(DtXt)+ ut (12.13.1)

where Y = savings
X = income
D = 1 for observations in period 1982–1995
D = 0 for observations in period 1970–1981

The regression results based on this model are given in (9.5.4). Of course,
this model was estimated with the usual OLS assumptions.
But now suppose that ut follows a first-order autoregressive, AR(1),

scheme. That is, ut = ρut−1 + εt . Ordinarily, if ρ is known or can be esti-
mated by one of the methods discussed above, we can use the generalized
difference method to estimate the parameters of the model that is free from
(first-order) autocorrelation. However, the presence of the dummy variable
D poses a special problem: Note that the dummy variable simply classifies
an observation as belonging to the first or second period. How do we trans-
form it? One can follow the following procedure.48

1. In (12.13.1), values of D are zero for all observations in the first
period; in period 2 the value of D for the first observation is 1/(1− ρ) in-
stead of 1, and 1 for all other observations.

2. The variable Xt is transformed as (Xt − ρXt−1). Note that we lose one
observation in this transformation, unless one resorts to Prais–Winsten
transformation for the first observation, as noted earlier.

3. The value of DtXt is zero for all observations in the first period (note:
Dt is zero in the first period); in the second period the first observation
takes the value of DtXt = Xt and the remaining observations in the second
period are set to (DtXt − DtρXt−1) = (Xt − ρXt−1). (Note: the value of Dt in
the second period is 1.)



Gujarati: Basic 

Econometrics, Fourth 

Edition

II. Relaxing the 

Assumptions of the 

Classical Model

12. Autocorrelation: What 

Happens if the Error Terms 

are Correlated?

© The McGraw−Hill 

Companies, 2004

488 PART TWO: RELAXING THE ASSUMPTIONS OF THE CLASSICAL MODEL

49Lois W. Sayrs, Pooled Time Series Analysis, Sage Publications, California, 1989, p. 19.
50See Jeffrey M. Wooldridge, op. cit., pp. 402–403, and A. K. Bera and C. M. Jarque,

“Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Resid-
uals: Monte Carlo Evidence,” Economic Letters, vol. 7, 1981, pp. 313–318.

As the preceding discussion points out, the critical observation is the first ob-
servation in the second period. If this is taken care of in the manner just sug-
gested, there should be no problem in estimating regressions like (12.13.1)
subject to AR(1) autocorrelation. In exercise 12.37, the reader is asked to
carry such a transformation for the data on U.S. savings and income given
in Chapter 9.

ARCH and GARCH Models

Just as the error term u at time t can be correlated with the error term at
time (t – 1) in an AR(1) scheme or with various lagged error terms in a gen-
eral AR(p) scheme, can there be autocorrelation in the variance σ 2 at time t
with its values lagged one or more periods? Such an autocorrelation has
been observed by researchers engaged in forecasting financial time series,
such as stock prices, inflation rates, and foreign exchange rates. Such auto-
correlation is given the rather daunting names autoregressive conditional
heteroscedasticity (ARCH) if the error variance is related to the squared
error term in the previous term and generalized autoregressive condi-
tional heteroscedasticity (GARH) if the error variance is related to
squared error terms several periods in the past. Since this topic belongs in
the general area of time series econometrics, we will discuss it in some
depth in the chapters on time series econometrics. Our objective here is to
point out that autocorrelation is not confined to relationships between cur-
rent and past error terms but also with current and past error variances.

Coexistence of Autocorrelation and Heteroscedasticity

What happens if a regression model suffers from both heteroscedasticity
and autocorrelation? Can we solve the problem sequentially, that is, take
care of heteroscedasticity first and then autocorrelation? As a matter of fact,
one author contends that “Autoregression can only be detected after the het-
eroscedasticity is controlled for.”49 But can we develop an omnipotent test
that can solve these and other problems (e.g., model specification) simulta-
neously? Yes, such tests exist, but their discussion will take us far afield. It
is better to leave them for references.50

12.14 SUMMARY AND CONCLUSIONS

1. If the assumption of the classical linear regression model—that the
errors or disturbances ut entering into the population regression function
(PRF) are random or uncorrelated—is violated, the problem of serial or
autocorrelation arises.


