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The major emphasis of this book is on linear regression models, that is,
models that are linear in the parameters and/or models that can be trans-
formed so that they are linear in the parameters. On occasions, however, for
theoretical or empirical reasons we have to consider models that are non-
linear in the parameters.1 In this chapter we take a look at such models and
study their special features.

14.1 INTRINSICALLY LINEAR AND INTRINSICALLY NONLINEAR

REGRESSION MODELS

When we started our discussion of linear regression models in Chapter 2,
we stated that our concern in this book is basically with models that are lin-
ear in the parameters; they may or may not be linear in the variables. If you
refer to Table 2.3, you will see that a model that is linear in the parameters
as well as the variables is a linear regression model and so is a model that is
linear in the parameters but nonlinear in the variables. On the other hand,
if a model is nonlinear in the parameters it is a nonlinear (in-the-parameter)
regression model whether the variables of such a model are linear or not.

1We noted in Chap. 4 that under the assumption of normally distributed error term, the OLS
estimators are not only BLUE but are BUE (best unbiased estimator) in the entire class of esti-
mators, linear or not. But if we drop the assumption of normality, as Davidson and MacKinnon
note, it is possible to obtain nonlinear and/or biased estimators that may perform better than
the OLS estimators. See Russell Davidson and James G. MacKinnon, Estimation and Inference
in Econometrics, Oxford University Press, New York, 1993, p. 161.

14
NONLINEAR REGRESSION
MODELS
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However, one has to be careful here, for some models may look nonlinear
in the parameters but are inherently or intrinsically linear because with
suitable transformation they can be made linear-in-the-parameter regres-
sion models. But if such models cannot be linearized in the parameters,
they are called intrinsically nonlinear regression models. From now on
when we talk about a nonlinear regression model, we mean that it is intrinsi-
cally nonlinear. For brevity, we will call them NLRM.
To drive home the distinction between the two, let us revisit exercises 2.6

and 2.7. In exercise 2.6, Models a, b, c, and e are linear regression models
because they are all linear in the parameters. Model d is a mixed bag, for β2
is linear but not ln β1. But if we let α = lnβ1, then this model is linear in α
and β2.
In exercise 2.7, Models d and e are intrinsically nonlinear because there

is no simple way to linearize them. Model c is obviously a linear regression
model. What about Models a and b? Taking the logarithms on both sides of
a, we obtain lnYi = β1 + β2Xi + ui , which is linear in the parameters. Hence
Model a is intrinsically a linear regression model. Model b is an example of
the logistic (probability) distribution function, and we will study this in
Chapter 15. On the surface, it seems that this is a nonlinear regression
model. But a simple mathematical trick will render it a linear regression
model, namely,

ln

(
1− Yi

Yi

)
= β1 + β2Xi + ui (14.1.1)

Therefore, Model b is intrinsically linear. We will see the utility of models
like (14.1.1) in the next chapter.
Consider now the famous Cobb–Douglas (C–D) production function.

Letting Y = output, X2 = labor input, and X3 = capital input, we will write
this function in three different ways:

Yi = β1X
β2
2i X

β3
3i e

ui (14.1.2)

or,

lnYi = α + β2 ln X2i + β3 ln X3i + ui (14.1.2a)

where α = lnβ1. Thus in this format the C–D function is intrinsically linear.
Now consider this version of the C–D function:

Yi = β1X
β2
2i X

β3
3i ui (14.1.3)
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2If you try to log-transform the model, it will not work because ln (A+ B) #= ln A+ ln B.
3For properties of the CES production function, see Michael D. Intriligator, Ronald Bodkin,

and Cheng Hsiao, Econometric Models, Techniques, and Applications, 2d ed., Prentice Hall,
1996, pp. 294–295.

or,

lnYi = α + β2 ln X2i + β3 ln X3i + lnui (14.1.3a)

where α = lnβ1. This model too is linear in the parameters.
But now consider the following version of the C–D function:

Yi = β1X
β2
2i X

β3
3i + ui (14.1.4)

As we just noted, C–D versions (14.1.2a) and (14.1.3a) are intrinsically linear
(in the parameter) regression models, but there is no way to transform
(14.1.4) so that the transformed model can be made linear in the parame-
ters.2 Therefore, (14.1.4) is intrinsically a nonlinear regression model.
Another well-known but intrinsically nonlinear function is the constant

elasticity of substitution (CES) production function of which the Cobb–
Douglas production is a special case. The CES production takes the follow-
ing form:

Yi = A
[
δK

−β
i + (1− δ)L

−β
i

]−1/β
(14.1.5)

where Y = output, K = capital input, L = labor input, A = scale parameter,
δ = distribution parameter (0 < δ < 1), and β = substitution parameter
(β ≥ −1).3 No matter in what form you enter the stochastic error term ui in
this production function, there is no way to make it a linear (in parameter)
regression model. It is intrinsically a nonlinear regression model.

14.2 ESTIMATION OF LINEAR AND NONLINEAR 

REGRESSION MODELS

To see the difference in estimating linear and nonlinear regression models,
consider the following two models:

Yi = β1 + β2Xi + ui (14.2.1)

Yi = β1e
β2Xi + ui (14.2.2)

By now you know that (14.2.1) is a linear regression model, whereas (14.2.2)
is a nonlinear regression model. Regression (14.2.2) is known as the expo-
nential regression model and is often used to measure the growth of a
variable, such as population, GDP, or money supply.
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Suppose we consider estimating the parameters of the two models by
OLS. In OLS we minimize the residual sum of squares (RSS), which for
model (14.2.1) is:

∑
û2i =

∑
(Yi − β̂1 − β̂2Xi)

2
(14.2.3)

where as usual β̂1 and β̂2 are the OLS estimators of the true β ’s. Differenti-
ating the preceding expression with respect to the two unknowns, we obtain
the normal equations shown in (3.1.4) and (3.1.5). Solving these equations
simultaneously, we obtain the OLS estimators given in Eqs. (3.1.6) and
(3.1.7). Observe very carefully that in these equations the unknowns (β ’s) are
on the left-hand side and the knowns (X and Y) are on the right-hand side.
As a result we get explicit solutions of the two unknowns in terms of our
data.
Now see what happens if we try to minimize the RSS of (14.2.2). As

shown in Appendix 14A, Section 14A.1, the normal equations correspond-
ing to (3.1.4) and (3.1.5) are as follows:

∑
Yie

β̂2Xi = β1e
2β̂2Xi (14.2.4)

∑
YiXie

β̂2Xi = β̂1
∑

Xie
2β̂2Xi (14.2.5)

Unlike the normal equations in the case of the linear regression model, the
normal equations for nonlinear regression have the unknowns (the β̂ ’s) both
on the left- and right-hand sides of the equations. As a consequence, we can-
not obtain explicit solutions of the unknowns in terms of the known quanti-
ties. To put it differently, the unknowns are expressed in terms of themselves
and the data! Therefore, although we can apply the method of least squares
to estimate the parameters of the nonlinear regression models, we cannot
obtain explicit solutions of the unknowns. Incidentally, OLS applied to a
nonlinear regression model is called nonlinear least squares (NLLS). So,
what is the solution? We take this question up next.

14.3 ESTIMATING NONLINEAR REGRESSION MODELS:

THE TRIAL-AND-ERROR METHOD

To set the stage, let us consider a concrete example. The data in Table 14.1
relates to the management fees that a leading mutual fund in the United
States pays to its investment advisors to manage its assets. The fees paid de-
pend on the net asset value of the fund. As you can see, the higher the net
asset value of the fund, the lower are the advisory fees, which can be seen
clearly from Figure 14.1.
To see how the exponential regression model in (14.2.2) fits the data given

in Table 14.1, we can proceed by trial and error. Suppose we assume that
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TABLE 14.1 ADVISORY FEES CHARGED AND ASSET SIZE

Fee, % Asset*

1 0.520 0.5

2 0.508 5.0

3 0.484 10

4 0.46 15

5 0.4398 20

6 0.4238 25

7 0.4115 30

8 0.402 35

9 0.3944 40

10 0.388 45

11 0.3825 55

12 0.3738 60

*Asset represents net asset value, billions of dollars.
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FIGURE 14.1 Relationship of advisory fees to fund assets.

initially β1 = 0.45 and β2 = 0.01. These are pure guesses, sometimes based
on prior experience or prior empirical work or obtained by just fitting a lin-
ear regression model even though it may not be appropriate. At this stage do
not worry about how these values are obtained.
Since we know the values of β1 and β2, we can write (14.2.2) as:

ui = Yi − β1e
β2Xi = Yi − 0.45e

0.01Xi (14.3.1)
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4Note that we call 
∑
u2i the error sum of squares and not the usual residual sum of squares

because the values of the parameters are assumed to be known.
5The following discussion leans heavily on these sources: Robert S. Pindyck and Daniel L.

Rubinfeld, Econometric Models and Economic Forecasts, 4th ed., McGraw-Hill, 1998, Chap. 10;
Norman R. Draper and Harry Smith, Applied Regression Analysis, 3d ed., John Wiley & Sons,
1998, Chap. 24; Arthur S. Goldberger, A Course in Econometrics, Harvard University Press,
1991, Chap. 29; Russell Davidson and James MacKinnon, op. cit., pp. 201–207; John Fox,
Applied Regression Analysis, Linear Models, and Related Methods, Sage Publications, 1997,
pp. 393–400; and Ronald Gallant, Nonlinear Statistical Models, John Wiley and Sons, 1987.

Therefore,

∑
u2i =

∑
(Yi − 0.45e

0.01Xi )2 (14.3.2)

Since Y, X, β1, and β2 are known, we can easily find the error sum of squares
in (14.3.2).4 Remember that in OLS our objective is to find those values of
the unknown parameters that will make the error sum of squares as small
as possible. This will happen if the estimated Y values from the model are as
close as possible to the actual Y values. With the given values, we obtain∑
u2i = 0.3044. But how do we know that this is the least possible error sum

of squares that we can obtain? What happens if you choose another value
for β1 and β2, say, 0.50 and −0.01, respectively? Repeating the procedure
just laid down, we find that we now obtain 

∑
u2i = 0.0073. Obviously, this

error sum of squares is much smaller than the one obtained before, namely,
0.3044. But how do we know that we have reached the lowest possible error
sum of squares, for by choosing yet another set of values for the β ’s, we will
obtain yet another error sum of squares?
As you can see, such a trial-and-error, or iterative, process can be easily

implemented. And if one has infinite time and infinite patience, the trial-
and-error process may ultimately produce values of β1 and β2 that may
guarantee the lowest possible error sum of squares. But you might ask, how
did we go from (β1 = 0.45; β2 = 0.01) to (β1 = 0.50; β2 = −0.1)? Clearly, we
need some kind of algorithm that will tell us how we go from one set of val-
ues of the unknowns to another set before we stop. Fortunately such algo-
rithms are available, and we discuss them in the next section.

14.4 APPROACHES TO ESTIMATING NONLINEAR

REGRESSION MODELS

There are several approaches, or algorithms, to NLRMs: (1) direct search or
trial and error, (2) direct optimization, and (3) iterative linearization.5

Direct Search or Trial-and-Error or Derivative-Free Method

In the previous section we showed how this method works. Although intu-
itively appealing because it does not require the use of calculus methods as
the other methods do, this method is generally not used. First, if an NLRM
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6There is another method that is sometimes used, called the Marquard method, which is a
compromise between the method of steepest descent and the linearization (or Taylor series)
method. The interested reader may consult the references for the details of this method.

involves several parameters, the method becomes very cumbersome and
computationally expensive. For example, if an NLRM involves 5 parameters
and 25 alternative values for each parameter are considered, you will have
to compute the error sum of squares (25)5 = 9,765,625 times! Second, there
is no guarantee that the final set of parameter values you have selected will
necessarily give you the absolute minimum error sum of squares. In the lan-
guage of calculus, you may obtain a local and not an absolute minimum. In
fact, no method guarantees a global minimum.

Direct Optimization

In direct optimization we differentiate the error sum of squares with respect
to each unknown coefficient, or parameter, set the resulting equation to
zero, and solve the resulting normal equations simultaneously. We have
already seen this in Eqs. (14.2.4) and (14.2.5). But as you can see from these
equations, they cannot be solved explicitly or analytically. Some iterative
routine is therefore called for. One routine is called the method of steepest
descent. We will not discuss the technical details of this method as they are
somewhat involved, but the reader can find the details in the references.
Like the method of trial and error, the method of steepest descent also in-
volves selecting initial trial values of the unknown parameters but then it
proceeds more systematically than the hit-or-miss or trial-and-error
method. One disadvantage of this method is that it may converge to the final
values of the parameters extremely slowly.

Iterative Linearization Method

In this method we linearize a nonlinear equation around some initial values
of the parameters. The linearized equation is then estimated by OLS and the
initially chosen values are adjusted. These adjusted values are used to relin-
earize the model, and again we estimate it by OLS and readjust the esti-
mated values. This process is continued until there is no substantial change
in the estimated values from the last couple of iterations. The main tech-
nique used in linearizing a nonlinear equation is the Taylor series expan-
sion from calculus. Rudimentary details of this method are given in Appen-
dix 14A, Section 14A.2. Estimating NLRM using Taylor series expansion is
systematized in two algorithms, known as the Gauss–Newton iterative
method and the Newton–Raphson iterative method. Since one or both of
these methods are now incorporated in several computer packages, and
since a discussion of their technical details will take us far beyond the scope
of this book, there is no need to dwell on them here.6 In the next section we
discuss some examples using these methods.
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7Eviews provides three options: quadratic hill climbing, Newton–Raphson, and Berndt–
Hall–Hall–Hausman. The default option is quadratic hill climbing, which is a variation of the
Newton–Raphson method.

14.5 ILLUSTRATIVE EXAMPLES

EXAMPLE 14.1

MUTUAL FUND ADVISORY FEES

Refer to the data given in Table 14.1 and the NLRM (14.2.2). Using the Eviews 4 nonlinear re-

gression routine, which uses the linearization method,7 we obtained the following regression

results; the coefficients, their standard errors, and their t values are given in a tabular form:

Variable Coefficient Std. error t value p value

Intercept 0.5089 0.0074 68.2246 0.0000

Asset −0.0059 0.00048 −12.3150 0.0000

R2 = 0.9385 d = 0.3493

From these results, we can write the estimated model as:

F̂ee i = 0.5089Asset−0.0059 (14.5.1)

Before we discuss these results, it may be noted that if you do not supply the initial values of

the parameters to start the linearization process, Eviews will do it on its own. It took Eviews

five iterations to obtain the results shown in (14.5.1). However, you can supply your own ini-

tial values to start the process. To demonstrate, we chose the initial value of β1 = 0.45 and

β2 = 0.01. We obtained the same results as in (14.5.1) but it took eight iterations. It is im-

portant to note that fewer iterations will be required if your initial values are not very far from

the final values. In some cases you can choose the initial values of the parameters by simply

running an OLS regression of the regressand on the regressor(s), simply ignoring the non-

linearities. For instance, using the data in Table 14.1, if you were to regress fee on assets, the

OLS estimate of β1 is 0.5028 and that of β2 is −0.002, which are much closer to the final val-

ues given in (14.5.1). (For the technical details, see Appendix 14A, Section 14A.3.)

Now about the properties of NLLS estimators. You may recall that, in the case of linear re-

gression models with normally distributed error terms, we were able to develop exact infer-

ence procedures (i.e., test hypotheses) using the t, F, and χ2 tests in small as well as large

samples. Unfortunately, this is not the case with NLRMs, even with normally distributed error

terms. The NLLS estimators are not normally distributed, are not unbiased, and do not have

minimum variance in finite, or small, samples. As a result, we cannot use the t test (to test the

significance of an individual coefficient) or the F test (to test the overall significance of the es-

timated regression) because we cannot obtain an unbiased estimate of the error variance σ 2

from the estimated residuals. Furthermore, the residuals (the difference between the actual

Y values and the estimated Y values from the NLRM) do not necessarily sum to zero, ESS

and RSS do not necessarily add up to the TSS, and therefore R2 = ESS/TSS may not be a

meaningful descriptive statistic for such models. However, we can compute R2 as:

R2 = 1−

∑
û2

i∑
(Yi −Ȳ )2

(14.5.2)

where Y = regressand and û i = Yi − Ŷi , where Ŷi are the estimated Y values from the

(fitted) NLRM.

(Continued)
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8John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman,
Applied Regression Analysis, 3d ed., Irwin, 1996, pp. 548–549.

Consequently, inferences about the regression parameters in nonlinear regression are

usually based on large-sample theory. This theory tells us that the least-squares and maxi-

mum likelihood estimators for nonlinear regression models with normal error terms, when the

sample size is large, are approximately normally distributed and almost unbiased, and have

almost minimum variance. This large-sample theory also applies when the error terms are

not normally distributed.8

In short, then, all inference procedures in NLRM are large sample, or asymptotic. Returning

to Example 14.1, the t statistics given in (14.5.1) are meaningful only if interpreted in the large-

sample context. In that sense, we can say that estimated coefficients shown in Eq. (14.5.1)

are individually statistically significant. Of course, our sample in the present instance is rather

small.

Returning to Eq. (14.5.1), how do we find out the rate of change of Y ( = fee) with respect

to X (asset size)? Using the basic rules of derivatives, the reader can see that the rate of

change of Y with respect to X is:

dY

dX
= β1β2e β2X = (−0.0059)(0.5089)e−0.0059X (14.5.3)

As can be seen, the rate of change of fee depends on the value of the assets. For example,

if X = 20 (million), the expected rate of change in the fees charged can be seen from (14.5.3)

to be about −0.0031 percent. Of course, this answer will change depending on the X value

used in the computation. Judged by the R2 as computed from (14.5.2), the R2 value of

0.9385 suggests that the chosen NLRM fits the data in Table 14.1 quite well. The estimated

Durbin–Watson value of 0.3493 may suggest that there is autocorrelation or possibly model

specification error. Although there are procedures to take care of these problems as well as

the problem of heteroscedasticity in NLRM, we will not pursue these topics here. The inter-

ested reader may consult the references.

EXAMPLE 14.2

THE COBB–DOUGLAS PRODUCTION OF THE MEXICAN ECONOMY

Refer to the data given in exercise 14.9. These data refer to the Mexican economy for years

1955–1974. We will see if the NLRM given in (14.1.4) fits the data, noting that Y = output,

X2 = labor input, and X3 = capital input. Using Eviews 4, we obtained the following regres-

sion results, after 32 iterations.

Variable Coefficient Std. error t value p value

Intercept 0.5292 0.2712 1.9511 0.0677

Labor 0.1810 0.1412 1.2814 0.2173

Capital 0.8827 0.0708 12.4658 0.0000

R2 = 0.9942 d = 0.2899

EXAMPLE 14.1 (Continued)

(Continued)
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Therefore, the estimated Cobb–Douglas function is:

ĜDPt = 0.5292Labor0.1810t Capital0.8827t (14.5.2)

Interpreted asymptotically, the equation shows that only the coefficient of the capital input is

significant in this model. In exercise 14.9 you are asked to compare these results with those

obtained from the multiplicative Cobb–Douglas production function as given in (14.1.2).

EXAMPLE 14.3

GROWTH OF U.S. POPULATION, 1970–1999

The table in exercise 14.8 gives you data on total U.S. population for the period 1970–1999.

A logistic growth model of the following type is often used to measure the growth of a

population:

Yt =
β1

1+ e(β2+β3t)
+ ut (14.5.4)

where Y = population; t = time, measured chronologically; and the β ’s are the parameters.
Notice an interesting thing about this model. Although there are only two variables, popula-

tion and time, there are three unknowns, which shows that in a NLRM there can be more pa-

rameters than variables.

Sample: 1970–1999

Included observations: 30

Convergence achieved after one iteration

Coefficient Std. error t statistic p value

β1 1432.738 508.0113 2.8202 0.0089

β2 1.7986 0.4124 4.3613 0.0002

β3 −0.0117 0.0008 −14.0658 0.0000

R2 = 0.9997 d = 0.3345

The estimated model, therefore, is:

Ŷt =
1432.739

1+ e1.7986−0.0117t
(14.5.5)

Since we have a reasonably large sample, asymptotically all the estimated coefficients are

statistically significant. The low Durbin–Watson statistic suggests that the error term is prob-

ably autocorrelated. In exercise 14.8 you are asked to compare the preceding model with the

semilog model: lnYt = β1 + β2time+ ut and compute the underlying growth rate of popula-

tion for both models.

EXAMPLE 14.2 (Continued)
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9Adapted from Draper and Smith, op. cit., p. 554.

14.6 SUMMARY AND CONCLUSIONS

The main points discussed in this chapter can be summarized as follows:

1. Although linear regression models predominate theory and practice,
there are occasions where nonlinear-in-the-parameter regression models
(NLRM) are useful.

2. The mathematics underlying linear regression models is compara-
tively simple in that one can obtain explicit, or analytical, solutions of the
coefficients of such models. The small-sample and large-sample theory of
inference of such models is well established.

3. In contrast, for intrinsically nonlinear regression models, parameter
values cannot be obtained explicitly. They have to be estimated numerically,
that is, by iterative procedures.

4. There are several methods of obtaining estimates of NLRMs, such as
(1) trial and error, (2) nonlinear least squares (NLLS), and (3) linearization
through Taylor series expansion.

5. Computer packages now have built-in routines, such as Gauss–
Newton, Newton–Raphson, and Marquard. These are all iterative routines.

6. NLLS estimators do not possess optimal properties in finite samples,
but in large samples they do have such properties. Therefore, the results of
NLLS in small samples must be interpreted carefully.

7. Autocorrelation, heteroscedasticity, and model specification prob-
lems can plague NLRM, as they do linear regression models.

8. We illustrated the NLLS with several examples. With the ready avail-
ability of user-friendly software packages, estimation of NLRM should no
longer be a mystery. Therefore, the reader should not shy away from such
models whenever theoretical or practical reasons dictate their use. As a mat-
ter of fact, if you refer to exercise 12.10, you will see from Eq. (1) that there is
intrinsically a nonlinear regression model that should be estimated as such.

EXERCISES

Questions

14.1. What is meant by intrinsically linear and intrinsically nonlinear regres-
sion models? Give some examples.

14.2. Since the error term in the Cobb–Douglas production function can be en-
tered multiplicatively or additively, how would you decide between the
two?

14.3. What is the difference between OLS and nonlinear least-squares (NLLS)
estimation?

14.4. The relationship between pressure and temperature in saturated steam
can be expressed as9:

Y = β1(10)
β2t/(γ+t) + ut


