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14James Davidson, Econometric Theory, Blackwell Publishers, Oxford, U.K., 2000, p. 153.

precisely as possible because the underlying theory is weak or because
we do not have the right kind of data to test the model. As Davidson notes,
“Because of the non-experimental nature of economics, we are never sure
how the observed data were generated. The test of any hypothesis in eco-
nomics always turns out to depend on additional assumptions necessary
to specify a reasonably parsimonious model, which may or may not be
justified.”14

The practical question then is not why specification errors are made, for
they generally are, but how to detect them. Once it is found that specifica-
tion errors have been made, the remedies often suggest themselves. If, for
example, it can be shown that a variable is inappropriately omitted from a
model, the obvious remedy is to include that variable in the analysis, as-
suming, of course, the data on that variable are available.

In this section we discuss some tests that one may use to detect specifica-
tion errors.

Detecting the Presence of Unnecessary Variables

(Overfitting a Model)

Suppose we develop a k-variable model to explain a phenomenon:

Yi = β1 + β2X2i + · · · + βkXki + ui (13.4.1)

However, we are not totally sure that, say, the variable Xk really belongs in
the model. One simple way to find this out is to test the significance of the
estimated βk with the usual t test: t = β̂k/se (β̂k). But suppose that we are not
sure whether, say, X3 and X4 legitimately belong in the model. This can be
easily ascertained by the F test discussed in Chapter 8. Thus, detecting the
presence of an irrelevant variable (or variables) is not a difficult task.

It is, however, very important to remember that in carrying out these tests
of significance we have a specific model in mind. We accept that model as
the maintained hypothesis or the “truth,” however tentative it may be.
Given that model, then, we can find out whether one or more regressors are
really relevant by the usual t and F tests. But note carefully that we should
not use the t and F tests to build a model iteratively, that is, we should not
say that initially Y is related to X2 only because β̂2 is statistically significant
and then expand the model to include X3 and decide to keep that variable in
the model if β̂3 turns out to be statistically significant, and so on. This strat-
egy of building a model is called the bottom-up approach (starting with
a smaller model and expanding it as one goes along) or by the somewhat
pejorative term, data mining (other names are regression fishing, data
grubbing, data snooping, and number crunching).
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15William Pool, “Is Inflation Too Low,” the Cato Journal, vol. 18, no. 3, Winter 1999, p. 456.
16M. Lovell, “Data Mining,” Review of Economics and Statistics, vol. 65, 1983, pp. 1–12.
17For a detailed discussion of pretesting and the biases it can lead to, see Wallace, T. D.,

“Pretest Estimation in Regression: A Survey,” American Journal of Agricultural Economics,
vol. 59, 1977, pp. 431–443.

The primary objective of data mining is to develop the “best” model after
several diagnostic tests so that the model finally chosen is a “good” model
in the sense that all the estimated coefficients have the “right” signs, they
are statistically significant on the basis of the t and F tests, the R2 value is
reasonably high and the Durbin–Watson d has acceptable value (around 2),
etc. The purists in the profession look down on the practice of data mining.
In the words of William Pool, “. . . making an empirical regularity the foun-
dation, rather than an implication of economic theory, is always danger-
ous.”15 One reason for “condemning” data mining is as follows.

Nominal versus True Level of Significance in the Presence of Data
Mining. A danger of data mining that the unwary researcher faces is that
the conventional levels of significance (α) such as 1, 5, or 10 percent are not
the true levels of significance. Lovell has suggested that if there are c candi-
date regressors out of which k are finally selected (k ≤ c) on the basis of data
mining, then the true level of significance (α*) is related to the nominal level
of significance (α) as follows:16

α* = 1− (1− α)c/k (13.4.2)

or approximately as

α* ≈ (c/k)α (13.4.3)

For example, if c = 15, k = 5, and α = 5 percent, from (13.4.3) the true level
of significance is (15/5)(5) = 15 percent. Therefore, if a researcher data-
mines and selects 5 out of 15 regressors and reports only the results of the
condensed model at the nominal 5 percent level of significance and declares
that the results are statistically significant, one should take this conclusion
with a big grain of salt, for we know the (true) level of significance is in fact
15 percent. It should be noted that if c = k, that is, there is no data mining,
the true and nominal levels of significance are the same. Of course, in prac-
tice most researchers report only the results of their “final” regression with-
out necessarily telling about all the data mining, or pretesting, that has
gone before.17

Despite some of its obvious drawbacks, there is increasing recognition,
especially among applied econometricians, that the purist (i.e., non–data
mining) approach to model building is not tenable. As Zaman notes:

Unfortunately, experience with real data sets shows that such a [purist approach]
is neither feasible nor desirable. It is not feasible because it is a rare economic
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18Asad Zaman, Statistical Foundations for Econometric Techniques, Academic Press, New
York, 1996, p. 226.

19Kerry Patterson, An Introduction to Applied Econometrics, St. Martin’s Press, New York,
2000, p. 10.

20Peter Kennedy, “Sinning in the Basement: What Are the Rules? The Ten Commandments
of Applied Econometrics,” unpublished manuscript.

21Kennedy, op. cit., p. 13.

theory which leads to a unique model. It is not desirable because a crucial aspect
of learning from the data is learning what types of models are and are not sup-
ported by data. Even if, by rare luck, the initial model shows a good fit, it is fre-
quently important to explore and learn the types of the models the data does or
does not agree with.18

A similar view is expressed by Kerry Patterson who maintains that:

This [data mining] approach suggests that economic theory and empirical speci-
fication interact rather than be kept in separate compartments.19

Instead of getting caught in the data mining versus the purist approach to
model-building controversy, one can endorse the view expressed by Peter
Kennedy:

[that model specification] needs to be a well-thought-out combination of theory
and data, and that testing procedures used in specification searches should be
designed to minimize the costs of data mining. Examples of such procedures are
setting aside data for out-of-sample prediction tests, adjusting significance levels
[a la Lovell], and avoiding questionable criteria such as maximizing R2.20

If we look at data mining in a broader perspective as a process of dis-
covering empirical regularities that might suggest errors and/or omissions
in (existing) theoretical models, it has a very useful role to play. To quote
Kennedy again, “The art of the applied econometrician is to allow for data-
driven theory while avoiding the considerable dangers in data mining.”21

Tests for Omitted Variables and Incorrect Functional Form

In practice we are never sure that the model adopted for empirical testing is
“the truth, the whole truth and nothing but the truth.” On the basis of the-
ory or introspection and prior empirical work, we develop a model that we
believe captures the essence of the subject under study. We then subject the
model to empirical testing. After we obtain the results, we begin the post-
mortem, keeping in mind the criteria of a good model discussed earlier. It
is at this stage that we come to know if the chosen model is adequate. In
determining model adequacy, we look at some broad features of the results,
such as the R̄2 value, the estimated t ratios, the signs of the estimated coef-
ficients in relation to their prior expectations, the Durbin–Watson statistic,
and the like. If these diagnostics are reasonably good, we proclaim that the
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chosen model is a fair representation of reality. By the same token, if the
results do not look encouraging because the R̄2 value is too low or because
very few coefficients are statistically significant or have the correct signs or
because the Durbin–Watson d is too low, then we begin to worry about
model adequacy and look for remedies: Maybe we have omitted an impor-
tant variable, or have used the wrong functional form, or have not first-
differenced the time series (to remove serial correlation), and so on. To aid
us in determining whether model inadequacy is on account of one or more
of these problems, we can use some of the following methods.

Examination of Residuals. As noted in Chapter 12, examination of
the residuals is a good visual diagnostic to detect autocorrelation or het-
eroscedasticity. But these residuals can also be examined, especially in cross-
sectional data, for model specification errors, such as omission of an impor-
tant variable or incorrect functional form. If in fact there are such errors, a
plot of the residuals will exhibit distinct patterns.

To illustrate, let us reconsider the cubic total cost of production function
first considered in Chapter 7. Assume that the true total cost function is de-
scribed as follows, where Y = total cost and X = output:

Yi = β1 + β2Xi + β3X
2
i + β4X

3
i + ui (13.4.4)

but a researcher fits the following quadratic function:

Yi = α1 + α2Xi + α3X
2
i + u2i (13.4.5)

and another researcher fits the following linear function:

Yi = λ1 + λ2Xi + u3i (13.4.6)

Although we know that both researchers have made specification errors,
for pedagogical purposes let us see how the estimated residuals look in the
three models. (The cost-output data are given in Table 7.4.) Figure 13.1
speaks for itself: As we move from left to right, that is, as we approach the
truth, not only are the residuals smaller (in absolute value) but also they do
not exhibit the pronounced cyclical swings associated with the misfitted
models.

The utility of examining the residual plot is thus clear: If there are speci-
fication errors, the residuals will exhibit noticeable patterns.

The Durbin–Watson d Statistic Once Again. If we examine the rou-
tinely calculated Durbin–Watson d in Table 13.1, we see that for the linear
cost function the estimated d is 0.716, suggesting that there is positive “cor-
relation” in the estimated residuals: for n = 10 and k′ = 1, the 5 percent
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FIGURE 13.1 Residuals ûi from (a) linear, (b) quadratic, and (c) cubic total cost functions.

TABLE 13.1 ESTIMATED RESIDUALS FROM THE LINEAR, QUADRATIC, AND

CUBIC TOTAL COST FUNCTIONS

Observation ûi, ûi, ûi,
number linear model* quadratic model† cubic model**

1 6.600 −23.900 −0.222

2 19.667 9.500 1.607

3 13.733 18.817 −0.915

4 −2.200 13.050 −4.426

5 −9.133 11.200 4.435

6 −26.067 −5.733 1.032

7 −32.000 −16.750 0.726

8 −28.933 −23.850 −4.119

9 4.133 −6.033 1.859

10 54.200 23.700 0.022

* Ŷi = 166.467 + 19.933Xi R2 = 0.8409
(19.021) (3.066) R̄ 2 = 0.8210
(8.752) (6.502) d = 0.716

† Ŷi = 222.383 − 8.0250Xi + 2.542Xi
2 R2 = 0.9284

(23.488) (9.809) (0.869) R̄ 2 = 0.9079
(9.468) (−0.818) (2.925) d = 1.038

**Ŷi = 141.767 + 63.478Xi − 12.962Xi
2
+ 0.939Xi

3 R2 = 0.9983
(6.375) (4.778) (0.9856) (0.0592) R̄ 2 = 0.9975
(22.238) (13.285) (−13.151) (15.861) d = 2.70
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22In the present context, a value of d = 2 will mean no specification error. (Why?)
23It does not matter if we order ûi according to X

2
i or X3

i since these are functions of Xi,
which is already ordered.

critical d values are dL = 0.879 and dU = 1.320. Likewise, the computed
d value for the quadratic cost function is 1.038, whereas the 5 percent criti-
cal values are dL = 0.697 and dU = 1.641, indicating indecision. But if we use
the modified d test (see Chapter 12), we can say that there is positive “cor-
relation” in the residuals, for the computed d is less than dU. For the cubic
cost function, the true specification, the estimated d value does not indicate
any positive “correlation” in the residuals.22

The observed positive “correlation” in the residuals when we fit the linear
or quadratic model is not a measure of (first-order) serial correlation but of
(model) specification error(s). The observed correlation simply reflects the
fact that some variable(s) that belong in the model are included in the error
term and need to be culled out from it and introduced in their own right as
explanatory variables: If we exclude the X3

i from the cost function, then as
(13.2.3) shows, the error term in the mis-specified model (13.2.2) is in fact
(u1i + β4X

3
i ) and it will exhibit a systematic pattern (e.g., positive autocorre-

lation) if X3
i in fact affects Y significantly.

To use the Durbin–Watson test for detecting model specification error(s),
we proceed as follows:

1. From the assumed model, obtain the OLS residuals.
2. If it is believed that the assumed model is mis-specified because it

excludes a relevant explanatory variable, say, Z from the model, order the
residuals obtained in Step 1 according to increasing values of Z. Note: The Z
variable could be one of the X variables included in the assumed model or it
could be some function of that variable, such as X2 or X3.

3. Compute the d statistic from the residuals thus ordered by the usual
d formula, namely,

d =

∑n
t=2(ût − ût−1)

2

∑n
t=1 û

2
t

Note: The subscript t is the index of observation here and does not neces-
sarily mean that the data are time series.

4. From the Durbin–Watson tables, if the estimated d value is signifi-
cant, then one can accept the hypothesis of model mis-specification. If that
turns out to be the case, the remedial measures will naturally suggest them-
selves.

In our cost example, the Z (= X) variable (output) was already ordered.23

Therefore, we do not have to compute the d statistic afresh. As we have
seen, the d statistic for both the linear and quadratic cost functions suggests
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FIGURE 13.2 Residuals ûi and estimated Y from the linear cost function: Yi = λ1+ λ2Xi + ui.

24J. B. Ramsey, “Tests for Specification Errors in Classical Linear Least Squares Regression
Analysis,” Journal of the Royal Statistical Society, series B, vol. 31, 1969, pp. 350–371.

specification errors. The remedies are clear: Introduce the quadratic and
cubic terms in the linear cost function and the cubic term in the quadratic
cost function. In short, run the cubic cost model.

Ramsey’s RESET Test. Ramsey has proposed a general test of specifi-
cation error called RESET (regression specification error test).24 Here we
will illustrate only the simplest version of the test. To fix ideas, let us con-
tinue with our cost-output example and assume that the cost function is
linear in output as

Yi = λ1 + λ2Xi + u3i (13.4.6)

where Y = total cost and X = output. Now if we plot the residuals ûi obtained
from this regression against Ŷi , the estimated Yi from this model, we get the
picture shown in Figure 13.2. Although

∑
ûi and

∑
ûiŶi are necessarily zero
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(why? see Chapter 3), the residuals in this figure show a pattern in which
their mean changes systematically with Ŷi . This would suggest that if we
introduce Ŷi in some form as regressor(s) in (13.4.6), it should increase R2.
And if the increase in R2 is statistically significant (on the basis of the F test
discussed in Chapter 8), it would suggest that the linear cost function
(13.4.6) was mis-specified. This is essentially the idea behind RESET. The
steps involved in RESET are as follows:

1. From the chosen model, e.g., (13.4.6), obtain the estimated Yi, that
is, Ŷi .

2. Rerun (13.4.6) introducing Ŷi in some form as an additional regres-
sor(s). From Figure 13.2, we observe that there is a curvilinear relationship
between ûi and Ŷi , suggesting that one can introduce Ŷ

2
i and Ŷ3

i as additional
regressors. Thus, we run

Yi = β1 + β2Xi + β3Ŷ
2
i + β4Ŷ

3
i + ui (13.4.7)

3. Let the R2 obtained from (13.4.7) be R2new and that obtained from
(13.4.6) be R2old. Then we can use the F test first introduced in (8.5.18),
namely,

F =

(
R2new − R2

old

)/
number of new regressors(

1− R2new
)/
(n− number of parameters in the new model)

(8.5.18)

to find out if the increase in R2 from using (13.4.7) is statistically significant.
4. If the computed F value is significant, say, at the 5 percent level, one

can accept the hypothesis that the model (13.4.6) is mis-specified.

Returning to our illustrative example, we have the following results (stan-
dard errors in parentheses):

Ŷi = 166.467 + 19.933Xi (13.4.8)
(19.021) (3.066) R2 = 0.8409

Ŷi = 2140.7223 + 476.6557Xi − 0.09187Ŷ2
i + 0.000119Ŷ3

i

(132.0044) (33.3951) (0.00620) (0.0000074) (13.4.9)

R2 = 0.9983

Note: Ŷ2
i and Ŷ3

i in (13.4.9) are obtained from (13.4.8).
Now applying the F test we find

F =
(0.9983− 0.8409)/2

(1− 0.9983)/(10− 4)

= 284.4035

(13.4.10)
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25R. F. Engle, “A General Approach to Lagrangian Multiplier Model Diagnostics,” Journal of
Econometrics, vol. 20, 1982, pp. 83–104.

The reader can easily verify that this F value is highly significant, indicating
that themodel (13.4.8) is mis-specified. Of course, we have reached the same
conclusion on the basis of the visual examination of the residuals as well as
the Durbin–Watson d value.

One advantage of RESET is that it is easy to apply, for it does not require
one to specify what the alternative model is. But that is also its disadvantage
because knowing that a model is mis-specified does not help us necessarily
in choosing a better alternative.

Lagrange Multiplier (LM) Test for Adding Variables. This is an alter-
native to Ramsey’s RESET test. To illustrate this test, we will continue with
the preceding illustrative example.

If we compare the linear cost function (13.4.6) with the cubic cost func-
tion (13.4.4), the former is a restricted version of the latter (recall our
discussion of restricted least-squares from Chapter 8). The restricted
regression (13.4.6) assumes that the coefficients of the squared and cubed
output terms are equal to zero. To test this, the LM test proceeds as follows:

1. Estimate the restricted regression (13.4.6) by OLS and obtain the
residuals, ûi .

2. If in fact the unrestricted regression (13.4.4) is the true regression,
the residuals obtained in (13.4.6) should be related to the squared and
cubed output terms, that is, X2

i and X
3
i .

3. This suggests that we regress the ûi obtained in Step 1 on all the re-
gressors (including those in the restricted regression), which in the present
case means

ûi = α1 + α2Xi + α3X
2
i + α4X

3
i + vi (13.4.11)

where v is an error term with the usual properties.
4. For large-sample size, Engle has shown that n (the sample size) times

the R2 estimated from the (auxiliary) regression (13.4.11) follows the chi-
square distribution with df equal to the number of restrictions imposed by
the restricted regression, two in the present example since the terms X2

i and
X3
i are dropped from the model.25 Symbolically, we write

nR2 ∼
asy

χ2
(numberof restrictions) (13.4.12)

where asy means asymptotically, that is, in large samples.
5. If the chi-square value obtained from (13.4.12) exceeds the critical

chi-square value at the chosen level of significance, we reject the restricted
regression. Otherwise, we do not reject it.
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26This phrase is due to Milton Friedman. See also exercise 13.8.

For our example, the regression results are as follows:

Ŷi = 166.467+ 19.333Xi (13.4.13)

where Y is total cost and X is output. The standard errors for this regression
are already given in Table 13.1.

When the residuals from (13.4.13) are regressed as just suggested in
Step 3, we obtain the following results:

̂̂ui = −24.7 + 43.5443Xi − 12.9615X2
i + 0.9396X3

i

se = (6.375) (4.779) (0.986) (0.059) (13.4.14)

R2 = 0.9896

Although our sample size of 10 is by no means large, just to illustrate the
LMmechanism, we obtain nR2 = (10)(0.9896) = 9.896. From the chi-square
table we observe that for 2 df the 1 percent critical chi-square value is about
9.21. Therefore, the observed value of 9.896 is significant at the 1 percent
level, and our conclusion would be to reject the restricted regression (i.e.,
the linear cost function). We reached the similar conclusion on the basis of
Ramsey’s RESET test.

13.5 ERRORS OF MEASUREMENT

All along we have assumed implicitly that the dependent variable Y and the
explanatory variables, the X ’s, are measured without any errors. Thus, in the
regression of consumption expenditure on income and wealth of house-
holds, we assume that the data on these variables are “accurate”; they are
not guess estimates, extrapolated, interpolated, or rounded off in any sys-
tematic manner, such as to the nearest hundredth dollar, and so on. Unfor-
tunately, this ideal is not met in practice for a variety of reasons, such as
nonresponse errors, reporting errors, and computing errors. Whatever the
reasons, error of measurement is a potentially troublesome problem, for it
constitutes yet another example of specification bias with the consequences
noted below.

Errors of Measurement in the Dependent Variable Y

Consider the following model:

Y*
i = α + βXi + ui (13.5.1)

where Y*
i = permanent consumption expenditure26

Xi = current income
ui = stochastic disturbance term
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27But note that this variance is still unbiased because under the stated conditions the com-
posite error term vi = ui + εi still satisfies the assumptions underlying the method of least
squares.

Since Y*
i is not directly measurable, we may use an observable expenditure

variable Yi such that

Yi = Y
*
i + εi (13.5.2)

where εi denote errors of measurement in Y*
i . Therefore, instead of estimat-

ing (13.5.1), we estimate

Yi = (α + βXi + ui)+ εi

= α + βXi + (ui + εi) (13.5.3)

= α + βXi + vi

where vi = ui + εi is a composite error term, containing the population dis-
turbance term (which may be called the equation error term) and the mea-
surement error term.

For simplicity assume that E(ui) = E(εi) = 0, cov (Xi, ui) = 0 (which is the
assumption of the classical linear regression), and cov (Xi, εi)= 0; that is, the
errors of measurement in Y*

i are uncorrelated with Xi, and cov (ui, εi) = 0;
that is, the equation error and the measurement error are uncorrelated.
With these assumptions, it can be seen that β estimated from either (13.5.1)
or (13.5.3) will be an unbiased estimator of the true β (see exercise 13.7);
that is, the errors of measurement in the dependent variable Y do not de-
stroy the unbiasedness property of the OLS estimators. However, the vari-
ances and standard errors of β estimated from (13.5.1) and (13.5.3) will be
different because, employing the usual formulas (see Chapter 3), we obtain

Model (13.5.1): var (β̂) =
σ 2
u∑
x2i

(13.5.4)

Model (13.5.3): var (β̂) =
σ 2
v∑
x2i

=
σ 2
u + σ 2

ε∑
x2i

(13.5.5)

Obviously, the latter variance is larger than the former.27 Therefore, al-
though the errors of measurement in the dependent variable still give
unbiased estimates of the parameters and their variances, the esti-
mated variances are now larger than in the case where there are no
such errors of measurement.
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28As shown in App. A, β̂ is a consistent estimator of β if, as n increases indefinitely, the sam-
pling distribution of β̂ will ultimately collapse to the true β. Technically, this is stated as
plimn→∞β̂ = β . As noted in App. A, consistency is a large-sample property and is often used to
study the behavior of an estimator when its finite or small-sample properties (e.g., unbiased-
ness) cannot be determined.

Errors of Measurement in the Explanatory Variable X

Now assume that instead of (13.5.1), we have the following model:

Yi = α + βX*
i + ui (13.5.6)

where Yi = current consumption expenditure
X*
i = permanent income
ui = disturbance term (equation error)

Suppose instead of observing X*
i , we observe

Xi = X*
i +wi (13.5.7)

where wi represents errors of measurement in X*
i . Therefore, instead of es-

timating (13.5.6), we estimate

Yi = α + β(Xi −wi)+ ui

= α + βXi + (ui − βwi) (13.5.8)

= α + βXi + zi

where zi = ui − βwi, a compound of equation and measurement errors.
Now even if we assume that wi has zero mean, is serially independent,

and is uncorrelated with ui, we can no longer assume that the composite
error term zi is independent of the explanatory variable Xi because [assum-
ing E(zi) = 0]

cov (zi , Xi) = E[zi − E(zi)][Xi − E(Xi)]

= E(ui − βwi)(wi) using (13.5.7)

= E
(
−βw2

i

) (13.5.9)

= −βσ 2
w

Thus, the explanatory variable and the error term in (13.5.8) are correlated,
which violates the crucial assumption of the classical linear regression
model that the explanatory variable is uncorrelated with the stochastic dis-
turbance term. If this assumption is violated, it can be shown that the OLS
estimators are not only biased but also inconsistent, that is, they remain
biased even if the sample size n increases indefinitely.28
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For model (13.5.8), it is shown in Appendix 13A, Section 13A.3 that

plim β̂ = β

[
1

1+ σ 2
w

/
σ 2
X*

]
(13.5.10)

where σ 2
w and σ 2

X* are variances of wi and X
*, respectively, and where plim β̂

means the probability limit of β.
Since the term inside the brackets is expected to be less than 1 (why?),

(13.5.10) shows that even if the sample size increases indefinitely, β̂ will not
converge to β. Actually, if β is assumed positive, β̂ will underestimate β, that
is, it is biased toward zero. Of course, if there are no measurement errors in
X (i.e., σ 2

w = 0), β̂ will provide a consistent estimator of β.
Therefore, measurement errors pose a serious problem when they are

present in the explanatory variable(s) because they make consistent estima-
tion of the parameters impossible. Of course, as we saw, if they are present
only in the dependent variable, the estimators remain unbiased and hence
they are consistent too. If errors of measurement are present in the ex-
planatory variable(s), what is the solution? The answer is not easy. At one
extreme, we can assume that if σ 2

w is small compared to σ 2
X* , for all practical

purposes we can “assume away” the problem and proceed with the usual
OLS estimation. Of course, the rub here is that we cannot readily observe or
measure σ 2

w and σ 2
X* and therefore there is no way to judge their relative

magnitudes.
One other suggested remedy is the use of instrumental or proxy vari-

ables that, although highly correlated with the original X variables, are un-
correlated with the equation and measurement error terms (i.e., ui and wi).
If such proxy variables can be found, then one can obtain a consistent
estimate of β. But this task is much easier said than done. In practice it is
not easy to find good proxies; we are often in the situation of complaining
about the bad weather without being able to do much about it. Besides, it is
not easy to find out if the selected instrumental variable is in fact indepen-
dent of the error terms ui and wi.

In the literature there are other suggestions to solve the problem.29 But
most of them are specific to the given situation and are based on restrictive
assumptions. There is really no satisfactory answer to the measurement
errors problem. That is why it is so crucial to measure the data as accurately
as possible.

29See Thomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced Econometric
Methods, Springer-Verlag, New York, 1984, pp. 273–277. See also Kennedy, op. cit., pp. 138–140,
for a discussion of weighted regression as well as instrumental variables.
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30I am indebted to Kenneth J. White for constructing this example. See his Computer Hand-
book Using SHAZAM, for use with Damodar Gujarati, Basic Econometrics, September 1985,
pp. 117–121.

AN EXAMPLE

We conclude this section with an example constructed to

highlight the preceding points.

Table 13.2 gives hypothetical data on true consump-

tion expenditure Y*, true income X*, measured con-

sumption Y, and measured income X. The table also

explains how these variables were measured.30

Measurement Errors 
in the Dependent Variable Y Only

Based on the given data, the true consumption function is

Ŷ *i = 25.00 + 0.6000X*i

(10.477) (0.0584)

t = (2.3861) (10.276)
(13.5.11)

R2 = 0.9296

whereas, if we use Yi instead of Yi*, we obtain

Ŷi = 25.00 + 0.6000X*i

(12.218) (0.0681)

t = (2.0461) (8.8118)
(13.5.12)

R2 = 0.9066

As these results show, and according to the theory, the

estimated coefficients remain the same. The only effect

of errors of measurement in the dependent variable is

that the estimated standard errors of the coefficients

tend to be larger [see (13.5.5)], which is clearly seen in

(13.5.12). In passing, note that the regression coeffi-

cients in (13.5.11) and (13.5.12) are the same because

the sample was generated to match the assumptions of

the measurement error model.

Errors of Measurement in X

We know that the true regression is (13.5.11). Suppose

now that instead of using X *i, we use Xi. (Note: In reality

X *i is rarely observable.) The regression results are as

follows:

Ŷ *i = 25.992 + 0.5942Xi

(11.0810) (0.0617)
(13.5.13)

t = (2.3457) (9.6270)

R2 = 0.9205

These results are in accord with the theory—when there

are measurement errors in the explanatory variable(s),

the estimated coefficients are biased. Fortunately, in this

example the bias is rather small—from (13.5.10) it is ev-

ident that the bias depends on σ 2w/σ
2
X*, and in generating

the data it was assumed that σ 2w = 36 and σ 2X* = 3667,

thus making the bias factor rather small, about 0.98 per-

cent (= 36/3667).

We leave it to the reader to find out what happens

when there are errors of measurement in both Y and X,

that is, if we regress Yi on Xi rather than Y *i on X *i (see

exercise 13.23).

TABLE 13.2

HYPOTHETICAL DATA ON Y * (TRUE CONSUMPTION EXPENDITURE), X * (TRUE INCOME), Y (MEASURED

CONSUMPTION EXPENDITURE), AND X (MEASURED INCOME); ALL DATA IN DOLLARS

Y * X* Y X ε w u

75.4666 80.00 67.6011 80.0940 −7.8655 0.0940 2.4666

74.9801 100.00 75.4438 91.5721 0.4636 −8.4279 −10.0199

102.8242 120.00 109.6956 112.1406 6.8714 2.1406 5.8242

125.7651 140.00 129.4159 145.5969 3.6509 5.5969 16.7651

106.5035 160.00 104.2388 168.5579 −2.2647 8.5579 −14.4965

131.4318 180.00 125.8319 171.4793 −5.5999 −8.5207 −1.5682

149.3693 200.00 153.9926 203.5366 4.6233 3.5366 4.3693

143.8628 220.00 152.9208 222.8533 9.0579 2.8533 −13.1372

177.5218 240.00 176.3344 232.9879 −1.1874 −7.0120 8.5218

182.2748 260.00 174.5252 261.1813 −7.7496 1.1813 1.2748

Note: The data on X* are assumed to be given. In deriving the other variables the assumptions made were as follows:
(1) E(ui) = E(εi) = E(wi) = 0; (2) cov (X, u) = cov (X, ε) = cov (u, ε) = cov (w, u) = cov (ε, w) = 0; (3) σ

2
u = 100, σ

2
s = 36, and σ

2
w = 36;

and (4) Y*i = 25 + 0.6X*i + ui , Yi = Y*i + εi, and Xi = X*i + wi.
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31More generally, one can use the likelihood ratio test, or the Wald test or the Lagrange
Multiplier test, which were discussed briefly in Chap. 8.

13.6 INCORRECT SPECIFICATION OF THE STOCHASTIC

ERROR TERM

A common problem facing a researcher is the specification of the error term
ui that enters the regression model. Since the error term is not directly ob-
servable, there is no easy way to determine the form in which it enters the
model. To see this, let us return to the models given in (13.2.8) and (13.2.9).
For simplicity of exposition, we have assumed that there is no intercept in
the model. We further assume that ui in (13.2.8) is such that ln ui satisfies
the usual OLS assumptions.

If we assume that (13.2.8) is the “correct” model but estimate (13.2.9),
what are the consequences? It is shown in Appendix 13.A, Section 13A.4,
that if ln ui ∼ N(0, σ 2), then

ui ∼ lognormal
[
eσ

2/2, eσ
2(
eσ

2

− 1
)]

(13.6.1)

as a result:

E(α̂) = βeσ
2/2 (13.6.2)

where e is the base of the natural logarithm.
As you can see, α̂ is a biased estimator, as its average value is not equal to

the true β.
We will have more to say about the specification of the stochastic error

term in the chapter on nonlinear-in-the-parameter regression models.

13.7 NESTED VERSUS NON-NESTED MODELS

In carrying out specification testing, it is useful to distinguish between
nested and non-nested models. To distinguish between the two, consider
the following models:

Model A: Yi = β1 + β2X2i + β3X3i + β4X4i + β5X5i + ui

Model B: Yi = β1 + β2X2i + β3X3i + ui

We say that Model B is nested in Model A because it is a special case of
Model A: If we estimate Model A and test the hypothesis that β4 = β5 = 0
and do not reject it on the basis of, say, the F test,31 Model A reduces
to Model B. If we add variable X4 to Model B, then Model A will reduce to
Model B if β5 is zero; here we will use the t test to test the hypothesis that the
coefficient of X5 is zero.

Without calling them such, the specification error tests that we have dis-
cussed previously and the restricted F test that we discussed in Chapter 8
are essentially tests of nested hypothesis.
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32Andrew Harvey, The Econometric Analysis of Time Series, 2d ed., The MIT Press, Cam-
bridge, Mass., 1990, Chap. 5.

Now consider the following models:

Model C: Yi = α1 + α2X2i + α3X3i + ui

Model D: Yi = β1 + β2Z2i + β3Z3i + vi

where the X’s and Z’s are different variables. We say that Models C and D are
non-nested because one cannot be derived as a special case of the other. In
economics, as in other sciences, more than one competing theory may ex-
plain a phenomenon. Thus, the monetarists would emphasize the role of
money in explaining changes in GDP, whereas the Keynesians may explain
them by changes in government expenditure.

It may be noted here that one can allow Models C and D to contain re-
gressors that are common to both. For example, X3 could be included in
Model D and Z2 could be included in Model C. Even then these are non-
nested models, because Model C does not contain Z3 and Model D does not
contain X2.

Even if the same variables enter the model, the functional form may
make two models non-nested. For example, consider the model:

Model E: Yi = β1 + β2 ln Z2i + β3 ln Z3i +wi

Models D and E are non-nested, as one cannot be derived as a special case
of the other.

Since we already have looked at tests of nested models (t and F tests), in
the following section we discuss some of the tests of non-nested models,
which earlier we called model mis-specification errors.

13.8 TESTS OF NON-NESTED HYPOTHESES

According to Harvey,32 there are two approaches to testing non-nested hy-
potheses: (1) the discrimination approach, where given two or more com-
peting models, one chooses a model based on some criteria of goodness of
fit, and (2) the discerning approach (my terminology) where, in investigat-
ing one model, we take into account information provided by other models.
We consider these approaches briefly.

The Discrimination Approach

Consider Models C and D above. Since both models involve the same de-
pendent variable, we can choose between two (or more) models based on
some goodness-of-fit criterion, such as R2 or adjusted R2, which we have al-
ready discussed. But keep in mind that in comparing two or more models,
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the regressand must be the same. Besides these criteria, there are other
criteria that are also used. These include Akaike’s information criterion
(AIC), Schwarz’s information criterion (SIC), and Mallows’s Cp crite-
rion. We discuss these criteria in Section 13.9. Most modern statistical soft-
ware packages have one or more of these criteria built into their regression
routines. In the last section of this chapter, we will illustrate these criteria
using an extended example. On the basis of one or more of these criteria
a model is finally selected that has the highest R̄2 or the lowest value of AIC
or SIC, etc.

The Discerning Approach

The Non-Nested F Test or Encompassing F Test. Consider Models C
and D introduced earlier. How do we choose between the two models? For
this purpose suppose we estimate the following nested or hybridmodel:

Model F: Yi = λ1 + λ2X2i + λ3X3i + λ4Z2i + λ5Z3i + ui

Notice that Model F nests or encompasses models C and D. But note that C
is not nested in D and D is not nested in C, so they are non-nested models.

Now if Model C is correct, λ4 = λ5 = 0, whereas Model D is correct if
λ2 = λ3 = 0. This testing can be done by the usual F test, hence the name
non-nested F test.

However, there are problems with this testing procedure. First, if the X’s
and the Z’s are highly correlated, then, as noted in the chapter on multi-
collinearity, it is quite likely that one or more of the λ’s are individually sta-
tistically insignificant, although on the basis of the F test one can reject the
hypothesis that all the slope coefficients are simultaneously zero. In this
case, we have no way of deciding whether Model C or Model D is the correct
model. Second, there is another problem. Suppose we choose Model C as
the reference hypothesis or model, and find that all its coefficients are signif-
icant. Now we add Z2 or Z3 or both to the model and find, using the F test,
that their incremental contribution to the explained sum of squares (ESS) is
statistically insignificant. Therefore, we decide to choose Model C.

But suppose we had instead chosen Model D as the reference model and
found that all its coefficients were statistically significant. But when we add
X2 or X3 or both to this model, we find, again using the F test, that their in-
cremental contribution to ESS is insignificant. Therefore, we would have
chosen model D as the correct model. Hence, “the choice of the reference
hypothesis could determine the outcome of the choice model,”33 especially
if severe multicollinearity is present in the competing regressors. Finally, the
artificially nested model F may not have any economic meaning.

33Thomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced Econometric Methods,
Springer Verlag, New York, 1984, p. 416.
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34See Keith M. Carlson, “Does the St. Louis Equation Now Believe in Fiscal Policy?” Review,
Federal Reserve Bank of St. Louis, vol. 60, no. 2, February 1978, p. 17, table IV.

AN ILLUSTRATIVE EXAMPLE: THE ST. LOUIS MODEL

To determine whether changes in nominal GNP can be explained by changes in the money

supply (monetarism) or by changes in government expenditure (Keynesianism), we consider

the following models:

Ẏt = α + β0 Ṁ t + β1 Ṁ t−1 + β2 Ṁ t−2 + β3 Ṁ t−3 + β4 Ṁ t−4 + u1t

= α +

4∑

i=0

βi Ṁ t−i + u1t (13.8.1)

Ẏt = γ + λ0 Ėt + λ1 Ėt−1 + λ2 Ėt−2 + λ3 Ėt−3 + λ4 Ėt−4 + u2t

= γ +

4∑

i=0

λi Ėt−i + u2t (13.8.2)

where Ẏt = rate of growth in nominal GNP at time t

Ṁ t = rate of growth in the money supply (M1 version) at time t

Ėt = rate of growth in full, or high, employment government expenditure at time t

In passing, note that (13.8.1) and (13.8.2) are examples of distributed lag models, a topic

thoroughly discussed in Chapter 17. For the time being, simply note that the effect of a unit

change in the money supply or government expenditure on GNP is distributed over a period

of time and is not instantaneous.

Since a priori it may be difficult to decide between the two competing models, let us en-

mesh the two models as shown below:

Ẏt = constant+
4∑

i=0

βi Ṁ t−i +

4∑

i=0

λi Ėt−i + u3t (13.8.3)

This nested model is one form in which the famous (Federal Reserve Bank of) St. Louis model,

a pro-monetary-school bank, has been expressed and estimated. The results of this model for

the period 1953–I to 1976–IV for the United States are as follows (t ratios in parentheses):34

Coefficient Estimate Coefficient Estimate

β0 0.40 (2.96) λ0 0.08 (2.26)

β1 0.41 (5.26) λ1 0.06 (2.52)

β2 0.25 (2.14) λ2 0.00 (0.02)

β3 0.06 (0.71) λ3 −0.06 (−2.20) (13.8.4)

β4 −0.05 (−0.37) λ4 −0.07 (−1.83)

4∑

i=0

βi 1.06 (5.59)
4∑

i=0

λi 0.03 (0.40)

R2 = 0.40

d = 1.78

What do these results suggest about the superiority of one model over the other? If we

consider the cumulative effect of a unit change in Ṁ and Ė on Ẏ, we obtain, respectively,∑4
i=0 βi = 1.06 and

∑4
i=0 λi = 0.03, the former being statistically significant and the latter

not. This comparison would tend to support the monetarist claim that it is changes in the

money supply that determine changes in the (nominal) GNP. It is left as an exercise for the

reader to evaluate critically this claim.
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35R. Davidson and J. G. MacKinnon, “Several Tests for Model Specification in the Presence
of Alternative Hypotheses,” Econometrica, vol. 49, 1981, pp. 781–793.

Davidson–MacKinnon J Test.35 Because of the problems just listed in
the non-nested F testing procedure, alternatives have been suggested. One is
the Davidson–MacKinnon J test. To illustrate this test, suppose we want to
compare hypothesis or Model C with hypothesis or Model D. The J test pro-
ceeds as follows:

1. We estimateModel D and from it we obtain the estimated Y values, ŶDi .
2. We add the predicted Y value in Step 1 as an additional regressor to

Model C and estimate the following model:

Yi = α1 + α2X2i + α3X3i + α4 Ŷ
D
i + ui (13.8.5)

where the ŶDi values are obtained from Step 1. This model is an example of
the encompassing principle, as in the Hendry methodology.

3. Using the t test, test the hypothesis that α4 = 0.
4. If the hypothesis that α4 = 0 is not rejected, we can accept (i.e., not

reject) Model C as the true model because ŶDi included in (13.8.5), which
represent the influence of variables not included in Model C, have no addi-
tional explanatory power beyond that contributed by Model C. In other
words, Model C encompasses Model D in the sense that the latter model
does not contain any additional information that will improve the perfor-
mance of Model C. By the same token, if the null hypothesis is rejected,
Model C cannot be the true model (why?).

5. Now we reverse the roles of hypotheses, or Models C and D. We now
estimate Model C first, use the estimated Y values from this model as re-
gressor in (13.8.5), repeat Step 4, and decide whether to accept Model D
over Model C. More specifically, we estimate the following model:

Yi = β1 + β2Z2i + β3Z3i + β4Ŷ
C
i + ui (13.8.6)

where ŶCi are the estimated Y values from Model C. We now test the hy-
pothesis that β4 = 0. If this hypothesis is not rejected, we choose Model D
over C. If the hypothesis that β4 = 0 is rejected, choose C over D, as the lat-
ter does not improve over the performance of C.

Although it is intuitively appealing, the J test has some problems. Since
the tests given in (13.8.5) and (13.8.6) are performed independently, we have
the following likely outcomes:

Hypothesis: α4 = 0

Hypothesis: β4 = 0 Do not reject Reject

Do not reject Accept both C and D Accept D, reject C

Reject Accept C, reject D Reject both C and D
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TABLE 13.3

PER CAPITA PERSONAL CONSUMPTION EXPENDITURE (PPCE) AND PER CAPITA

PERSONAL DISPOSABLE INCOME (PDPI), 1987 DOLLARS, U.S., 1970–1991

Year PPCE PDPI Year PPCE PDPI

1970 8,842 9,875 1981 10,770 12,156

1971 9,022 10,111 1982 10,782 12,146

1972 9,425 10,414 1983 11,179 12,349

1973 9,752 11,013 1984 11,617 13,029

1974 9,602 10,832 1985 12,015 13,258

1975 9,711 10,906 1986 12,336 13,552

1976 10,121 11,192 1987 12,568 13,545

1977 10,425 11,406 1988 12,903 13,890

1978 10,744 11,851 1989 13,029 14,005

1979 10,876 12,039 1990 13,044 14,068

1980 10,746 12,005 1991 12,824 13,886

Source: Economic Report of the President, 1993, Table B-5, p. 355.

36Jan Kmenta, op. cit., p. 597.

As this table shows, we will not be able to get a clear answer if the J testing
procedure leads to the acceptance or rejection of both models. In case both
models are rejected, neither model helps us to explain the behavior of Y.
Similarly, if both models are accepted, as Kmenta notes, “the data are
apparently not rich enough to discriminate between the two hypotheses
[models].”36

Another problem with the J test is that when we use the t statistic to test
the significance of the estimated Y variable in models (13.8.5) and (13.8.6),
the t statistic has the standard normal distribution only asymptotically, that
is, in large samples. Therefore, the J test may not be very powerful (in the
statistical sense) in small samples because it tends to reject the true hypoth-
esis or model more frequently than it ought to.

AN ILLUSTRATIVE EXAMPLE

To illustrate the J test, consider the data given in Table 13.3. This table gives data on per

capita personal consumption expenditure (PPCE) and per capita disposable personal in-

come (PDPI), both measured in 1987 dollars, for the United States for the period 1970–1991.

Now consider the following rival models:

Model A: PPCEt = α1 + α2PDPIt + α3PDPIt−1 + ut (13.8.7)

Model B: PPCEt = β1 + β2PDPIt + β3PPCEt−1 + ut (13.8.8)

ModelAstates that PPCE depends on PDPI in the current and previous time period; thismodel

is an example of what is known as the distributed lag model (see Chapter 17). Model B

postulates that PPCE depends on current PDPI as well as PPCE in the previous time period;

this model represents what is known as the autoregressive model (see Chapter 17). The

(Continued)
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reason for introducing the lagged value of PPCE in this model is to reflect inertia or habit

persistence.

The results of estimating these models separately were as follows:

Model A: PP̂CEt = −1,299.0536 + 0.9204 PDPIt + 0.0931 PDPIt−1

t = (−4.0378) (6.0178) (0.6308) (13.8.9)

R2 = 0.9888 d = 0.8092

Model B: PP̂CEt = −841.8568 + 0.7117 PDPIt + 0.2954 PPCEt−1

t = (−2.4137) (5.4634) (2.3681) (13.8.10)

R2 = 0.9912 d = 1.0144

If one were to choose between these two models on the basis of the discrimination approach,

using, say, the highest R2 criterion, one would choose (13.8.10); besides, in (13.8.10) both

variables seem to be individually statistically significant, whereas in (13.8.9) only the current

PDPI is statistically significant (but beware of the collinearity problem!).

But choosing (13.8.10) over (13.8.9) may not be appropriate because for predictive pur-

poses there is not much difference in the two estimated R2 values.

To apply the J test, suppose we assume Model A is the null hypothesis, that is, the main-

tained model, and Model B is the alternative hypothesis. Now following the J test steps

discussed earlier we use the estimated PPCE values from model (13.8.10) as an additional

regressor in Model A, giving the following outcome:

PP̂CEt = 1,322.7958 − 0.7061PDPIt − 0.4357PDPIt−1 + 2.1335PP̂CE
B

t

t = (1.5896) (−1.3958) (−2.1926) (3.3141) (13.8.11)

R2 = 0.9932 d = 1.7115

where PP̂CE
B

t on the right side of (13.8.11) are the estimated PPCE values from model B,

(13.8.10). Since the coefficient of this variable is statistically significant (at the two-tail 0.004

level), following the J test procedure, we have to reject Model A in favor of Model B.

Now assuming Model B as the maintained hypothesis and Model A as the alternative hy-

pothesis, and following exactly the same procedure as before, we obtain the following results:

PP̂CEt = −6,549.8659 + 5.1176PDPIt + 0.6302PPCEt−1 − 4.6776PP̂CE
A

t

t = (−2.4976) (2.5424) (3.4141) (−2.1926) (13.8.12)

R2 = 0.9920 d = 1.7115

where PP̂CEA on the right side of (13.8.12) is obtained from the Model A, (13.8.9). But in this

regression, the coefficient of PP̂CEt
A on the right side is also statistically significant (at the

two-tail 0.0425 level). This result would suggest that we should now reject Model B in favor

of Model A!

All this tells us is that neither model is particularly useful in explaining the behavior of per

capita personal consumption expenditure in the United States over the period 1970–1991.

Of course, we have considered only two competing models. In reality, there may be more

than two models. The J test procedure can be extended to multiple model comparisons,

although the analysis can become quickly complex.

This example shows very vividly why the CLRM assumes that the regression model used

in the analysis is correctly specified. Obviously it is very crucial in developing a model to pay

very careful attention to the phenomenon being modeled.

AN ILLUSTRATIVE EXAMPLE (Continued)


