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In all the regression models that we have considered so far, we have implic-
itly assumed that the regressand, the dependent variable, or the response
variable Y is quantitative, whereas the explanatory variables are either quan-
titative, qualitative (or dummy), or a mixture thereof. In fact, in Chapter 9,
on dummy variables, we saw how the dummy regressors are introduced in a
regression model and what role they play in specific situations.

In this chapter we consider several models in which the regressand itself
is qualitative in nature. Although increasingly used in various areas of social
sciences and medical research, qualitative response regression models pose
interesting estimation and interpretation challenges. In this chapter we only
touch on some of the major themes in this area, leaving the details to more
specialized books.1

15.1 THE NATURE OF QUALITATIVE RESPONSE MODELS

Suppose we want to study the labor force participation (LFP) decision of
adult males. Since an adult is either in the labor force or not, LFP is a yes or
no decision. Hence, the response variable, or regressand, can take only two

1At the introductory level, the reader may find the following sources very useful. Daniel A.
Powers and Yu Xie, Statistical Methods for Categorical Data Analysis, Academic Press, 2000;
John H. Aldrich and Forrest Nelson, Linear Probability, Logit, and Probit Models, Sage Publica-
tions, 1984; Tim Futing Liao, Interpreting Probability Models: Logit, Probit and Other Generalized
Linear Models, Sage Publications, 1994. For a very comprehensive review of the literature,
see G. S. Maddala, Limited-Dependent and Qualitative Variables in Econometrics, Cambridge
University Press, 1983.
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2See, for example, Ray Fair, “Econometrics and Presidential Elections,” Journal of Eco-
nomic Perspective, Summer 1996, pp. 89–102, and Machael S. Lewis-Beck, Economics and
Elections: The Major Western Democracies, University of Michigan Press, Ann Arbor, 1980.

values, say, 1 if the person is in the labor force and 0 if he or she is not. In
other words, the regressand is a binary, or dichotomous, variable. Labor
economics research suggests that the LFP decision is a function of the un-
employment rate, average wage rate, education, family income, etc.

As another example, consider U.S. presidential elections. Assume that
there are two political parties, Democratic and Republican. The dependent
variable here is vote choice between the two political parties. Suppose we let
Y = 1, if the vote is for a Democratic candidate, and Y = 0, if the vote is for
a Republican candidate. A considerable amount of research on this topic
has been done by the economist Ray Fair of Yale University and several
political scientists.2 Some of the variables used in the vote choice are growth
rate of GDP, unemployment and inflation rates, whether the candidate is
running for reelection, etc. For the present purposes, the important thing to
note is that the regressand is a qualitative variable.

One can think of several other examples where the regressand is qualita-
tive in nature. Thus, a family either owns a house or it does not, it has dis-
ability insurance or it does not, both husband and wife are in the labor force
or only one spouse is. Similarly, a certain drug is effective in curing an ill-
ness or it is not. A firm decides to declare a stock dividend or not, a senator
decides to vote for a tax cut or not, a U.S. President decides to veto a bill or
accept it, etc.

We do not have to restrict our response variable to yes/no or dichoto-
mous categories only. Returning to our presidential elections example, sup-
pose there are three parties, Democratic, Republican, and Independent. The
response variable here is trichotomous. In general, we can have a poly-
chotomous (or multiple-category) response variable.

What we plan to do is to first consider the dichotomous regressand and
then consider various extensions of the basic model. But before we do that,
it is important to note a fundamental difference between a regression model
where the regressand Y is quantitative and a model where it is qualitative.

In a model where Y is quantitative, our objective is to estimate its ex-
pected, or mean, value given the values of the regressors. In terms of Chap-
ter 2, what we want is E(Yi | X1i , X2i , . . . , Xki), where the X ’s are regressors,
both quantitative and qualitative. In models where Y is qualitative, our ob-
jective is to find the probability of something happening, such as voting for
a Democratic candidate, or owning a house, or belonging to a union, or par-
ticipating in a sport etc. Hence, qualitative response regression models are
often known as probability models.

In the rest of this chapter, we seek answers to the following questions:

1. How do we estimate qualitative response regression models? Can we
simply estimate them with the usual OLS procedures?
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2. Are there special inference problems? In other words, is the hypothe-
sis testing procedure any different from the ones we have learned so far?

3. If a regressand is qualitative, how can we measure the goodness of fit
of such models? Is the conventionally computed R2 of any value in such
models?

4. Once we go beyond the dichotomous regressand case, how do we es-
timate and interpret the polychotomous regression models? Also, how do we
handle models in which the regressand is ordinal, that is, an ordered cate-
gorical variable, such as schooling (less than 8 years, 8 to 11 years, 12 years,
and 13 or more years), or the regressand is nominal where there is no inher-
ent ordering, such as ethnicity (Black, White, Hispanic, Asian, and other)?

5. How do we model phenomena, such as the number of visits to one’s
physician per year, the number of patents received by a firm in a given year,
the number of articles published by a college professor in a year, the num-
ber of telephone calls received in a span of 5 minutes, or the number of cars
passing through a toll booth in a span of 5 minutes? Such phenomena,
called count data, or rare event data, are an example of the Poisson (prob-
ability) process.

In this chapter we provide answers to some of these questions at the ele-
mentary level, for some of the topics are quite advanced and require more
background in mathematics and statistics than assumed in this book. Refer-
ences cited in the various footnotes may be consulted for further details.

We start our study of qualitative response models by first considering the
binary response regression model. There are three approaches to develop-
ing a probability model for a binary response variable:

1. The linear probability model (LPM)
2. The logit model
3. The probit model

Because of its comparative simplicity, and because it can be estimated by
OLS, we will first consider the LPM, leaving the other two models for sub-
sequent sections.

15.2 THE LINEAR PROBABILITY MODEL (LPM)

To fix ideas, consider the following regression model:

Yi = β1 + β2Xi + ui (15.2.1)

where X = family income and Y = 1 if the family owns a house and 0 if it
does not own a house.

Model (15.2.1) looks like a typical linear regression model but because
the regressand is binary, or dichotomous, it is called a linear probability
model (LPM). This is because the conditional expectation of Yi given
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Xi , E(Yi | Xi), can be interpreted as the conditional probability that the event
will occur given Xi , that is, Pr (Yi = 1 | Xi). Thus, in our example, E(Yi | Xi)
gives the probability of a family owning a house and whose income is the
given amount Xi .

The justification of the name LPM for models like (15.2.1) can be seen as
follows: Assuming E(ui) = 0, as usual (to obtain unbiased estimators), we
obtain

E(Yi | Xi) = β1 + β2Xi (15.2.2)

Now, if Pi = probability that Yi = 1 (that is, the event occurs), and (1− Pi) =
probability that Yi = 0 (that is, that the event does not occur), the variable Yi

has the following (probability) distribution.

Yi Probability

0 1− Pi

1 Pi

Total 1

That is, Yi follows the Bernoulli probability distribution.
Now, by the definition of mathematical expectation, we obtain:

E(Yi) = 0(1− Pi)+ 1(Pi) = Pi (15.2.3)

Comparing (15.2.2) with (15.2.3), we can equate

E(Yi | Xi) = β1 + β2Xi = Pi (15.2.4)

that is, the conditional expectation of the model (15.2.1) can, in fact, be in-
terpreted as the conditional probability of Yi . In general, the expectation of
a Bernoulli random variable is the probability that the random variable
equals 1. In passing note that if there are n independent trials, each with a
probability p of success and probability (1− p) of failure, and X of these
trials represent the number of successes, then X is said to follow the bino-
mial distribution. The mean of the binomial distribution is np and its
variance is np(1− p). The term success is defined in the context of the
problem.

Since the probability Pi must lie between 0 and 1, we have the restriction

0 ≤ E(Yi | Xi) ≤ 1 (15.2.5)

that is, the conditional expectation (or conditional probability) must lie be-
tween 0 and 1.

From the preceding discussion it would seem that OLS can be easily
extended to binary dependent variable regression models. So, perhaps there
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3Recall that we have recommended that the normality assumption be checked in an appli-
cation by suitable normality tests, such as the Jarque–Bera test.

4The proof is based on the central limit theorem and may be found in E. Malinvaud, Statis-
tical Methods of Econometrics, Rand McNally, Chicago, 1966, pp. 195–197. If the regressors are
deemed stochastic and are jointly normally distributed, the F and t tests can still be used even
though the disturbances are non-normal. Also keep in mind that as the sample size increases
indefinitely, the binomial distribution converges to the normal distribution.

is nothing new here. Unfortunately, this is not the case, for the LPM poses
several problems, which are as follows:

Non-Normality of the Disturbances ui

Although OLS does not require the disturbances (ui) to be normally distrib-
uted, we assumed them to be so distributed for the purpose of statistical in-
ference.3 But the assumption of normality for ui is not tenable for the LPMs
because, like Yi , the disturbances ui also take only two values; that is, they
also follow the Bernoulli distribution. This can be seen clearly if we write
(15.2.1) as

ui = Yi − β1 − β2Xi (15.2.6)

The probability distribution of ui is

ui Probability

When Yi = 1 1− β1 − β2Xi Pi

When Yi = 0 −β1 − β2Xi (1− Pi )
(15.2.7)

Obviously, ui cannot be assumed to be normally distributed; they follow
the Bernoulli distribution.

But the nonfulfillment of the normality assumption may not be so critical
as it appears because we know that the OLS point estimates still remain un-
biased (recall that, if the objective is point estimation, the normality as-
sumption is not necessary). Besides, as the sample size increases indefi-
nitely, statistical theory shows that the OLS estimators tend to be normally
distributed generally.4 As a result, in large samples the statistical inference
of the LPM will follow the usual OLS procedure under the normality
assumption.

Heteroscedastic Variances of the Disturbances

Even if E(ui) = 0 and cov (ui , uj ) = 0 for i %= j (i.e., no serial correlation),
it can no longer be maintained that in the LPM the disturbances are
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5For the justification of this procedure, see Arthur S. Goldberger, Econometric Theory, John
Wiley & Sons, New York, 1964, pp. 249–250. The justification is basically a large-sample one
that we discussed under the topic of feasible or estimated generalized least squares in the chap-
ter on heteroscedasticity (see Sec. 11.6).

homoscedastic. This is, however, not surprising. As statistical theory shows,
for a Bernoulli distribution the theoretical mean and variance are, respec-
tively, p and p(1− p), where p is the probability of success (i.e., something
happening), showing that the variance is a function of the mean. Hence the
error variance is heteroscedastic.

For the distribution of the error term given in (15.2.7), applying the defi-
nition of variance, the reader should verify that (see exercise 15.10)

var (ui) = Pi(1− Pi) (15.2.8)

That is, the variance of the error term in the LPM is heteroscedastic. Since
Pi = E(Yi | Xi) = β1 + β2Xi , the variance of ui ultimately depends on the val-
ues of X and hence is not homoscedastic.

We already know that, in the presence of heteroscedasticity, the OLS esti-
mators, although unbiased, are not efficient; that is, they do not have mini-
mum variance. But the problem of heteroscedasticity, like the problem of
non-normality, is not insurmountable. In Chapter 11 we discussed several
methods of handling the heteroscedasticity problem. Since the variance of
ui depends on E(Yi | Xi), one way to resolve the heteroscedasticity problem
is to transform the model (15.2.1) by dividing it through by

√

E(Yi/Xi)[1− E(Yi/Xi)] =
√

Pi(1− Pi) = say
√

wi

that is,

Yi√
wi
= β1√

wi
+ β2

Xi√
wi
+ ui√

wi
(15.2.9)

As you can readily verify, the transformed error term in (15.2.9) is ho-
moscedastic. Therefore, after estimating (15.2.1), we can now estimate
(15.2.9) by OLS, which is nothing but the weighted least squares (WLS) with
wi serving as the weights.

In theory, what we have just described is fine. But in practice the true
E(Yi | Xi) is unknown; hence the weights wi are unknown. To estimate wi ,
we can use the following two-step procedure5:

Step 1. Run the OLS regression (15.2.1) despite the heteroscedasticity
problem and obtain Ŷi = estimate of the true E(Yi | Xi). Then obtain ŵi =
Ŷi(1− Ŷi), the estimate of wi.
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6Aldrich and Nelson, op. cit., p. 15. For other measures of goodness of fit in models involv-
ing dummy regressands, see T. Amemiya, “Qualitative Response Models,’’ Journal of Economic
Literature, vol. 19, 1981, pp. 331–354.

Step 2. Use the estimated wi to transform the data as shown in (15.2.9)
and estimate the transformed equation by OLS (i.e., weighted least squares).

We will illustrate this procedure for our example shortly. But there is an-
other problem with LPM that we need to address first.

Nonfulfillment of 0 ≤ E(Yi | X) ≤ 1

Since E(Yi | X) in the linear probability models measures the conditional
probability of the event Y occurring given X, it must necessarily lie between
0 and 1. Although this is true a priori, there is no guarantee that Ŷi , the esti-
mators of E(Yi | Xi), will necessarily fulfill this restriction, and this is the real
problem with the OLS estimation of the LPM. There are two ways of finding
out whether the estimated Ŷi lie between 0 and 1. One is to estimate the
LPM by the usual OLS method and find out whether the estimated Ŷi lie
between 0 and 1. If some are less than 0 (that is, negative), Ŷi is assumed to
be zero for those cases; if they are greater than 1, they are assumed to be 1.
The second procedure is to devise an estimating technique that will guaran-
tee that the estimated conditional probabilities Ŷi will lie between 0 and 1.
The logit and probit models discussed later will guarantee that the esti-
mated probabilities will indeed lie between the logical limits 0 and 1.

Questionable Value of R2 as a Measure of Goodness of Fit

The conventionally computed R2 is of limited value in the dichotomous re-
sponse models. To see why, consider the following figure. Corresponding to
a given X, Y is either 0 or 1. Therefore, all the Y values will either lie along
the X axis or along the line corresponding to 1. Therefore, generally no
LPM is expected to fit such a scatter well, whether it is the unconstrained
LPM (Figure 15.1a) or the truncated or constrained LPM (Figure 15.1b), an
LPM estimated in such a way that it will not fall outside the logical band
0–1. As a result, the conventionally computed R2 is likely to be much lower
than 1 for such models. In most practical applications the R2 ranges be-
tween 0.2 to 0.6. R2 in such models will be high, say, in excess of 0.8 only
when the actual scatter is very closely clustered around points A and B
(Figure 15.1c), for in that case it is easy to fix the straight line by joining
the two points A and B. In this case the predicted Yi will be very close to
either 0 or 1.

For these reasons John Aldrich and Forrest Nelson contend that “use of
the coefficient of determination as a summary statistic should be avoided in
models with qualitative dependent variable.’’6
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FIGURE 15.1 Linear probability models.

(Continued)

LPM: A NUMERICAL EXAMPLE

To illustrate some of the points made about the LPM in

the preceding section, we present a numerical example.

Table 15.1 gives invented data on home ownership

Y (1 = owns a house, 0 = does not own a house) and

family income X (thousands of dollars) for 40 families.

From these data the LPM estimated by OLS was as

follows:

Ŷi = −0.9457 + 0.1021Xi

(0.1228)    (0.0082) (15.2.10)

t = (−7.6984) (12.515) R2 = 0.8048
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7One can loosely interpret the highly negative value as near improbability of owning a
house when income is zero.

noticeable feature of this table is that six estimated values

are negative and six values are in excess of 1, demon-

strating clearly the point made earlier that, although

E(Yi | X ) is positive and less than 1, their estimators, Ŷi ,

need not be necessarily positive or less than 1. This is

one reason that the LPM is not the recommended model

when the dependent variable is dichotomous.

Even if the estimated Yi were all positive and less

than 1, the LPM still suffers from the problem of het-

eroscedasticity, which can be seen readily from (15.2.8).

As a consequence, we cannot trust the estimated stan-

dard errors reported in (15.12.10). (Why?) But we can

use the weighted least-squares (WLS) procedure dis-

cussed earlier to obtain more efficient estimates of the

standard errors. The necessary weights, ŵ i , required

for the application of WLS are also shown in Table 15.2.

But note that since some Yi are negative and some are

in excess of one, the ŵ i corresponding to these values

will be negative. Thus, we cannot use these observa-

tions in WLS (why?), thereby reducing the number of

LPM: A NUMERICAL EXAMPLE (Continued)

(Continued)

First, let us interpret this regression. The intercept of

−0.9457 gives the “probability’’ that a family with zero

income will own a house. Since this value is negative,

and since probability cannot be negative, we treat this

value as zero, which is sensible in the present in-

stance.7 The slope value of 0.1021 means that for a

unit change in income (here $1000), on the average the

probability of owning a house increases by 0.1021 or

about 10 percent. Of course, given a particular level of

income, we can estimate the actual probability of own-

ing a house from (15.2.10). Thus, for X = 12 ($12,000),

the estimated probability of owning a house is

(Ŷi | X = 12) = −0.9457 + 12(0.1021)

= 0.2795

That is, the probability that a family with an income

of $12,000 will own a house is about 28 percent.

Table 15.2 shows the estimated probabilities, Ŷi , for the

various income levels listed in the table. The most

TABLE 15.1

HYPOTHETICAL DATAON HOME OWNERSHIP (Y = 1 IF OWNS HOME, 0 OTHERWISE)

AND INCOME X (THOUSANDS OF DOLLARS)

Family Y X Family Y X

1 0 8 21 1 22

2 1 16 22 1 16

3 1 18 23 0 12

4 0 11 24 0 11

5 0 12 25 1 16

6 1 19 26 0 11

7 1 20 27 1 20

8 0 13 28 1 18

9 0 9 29 0 11

10 0 10 30 0 10

11 1 17 31 1 17

12 1 18 32 0 13

13 0 14 33 1 21

14 1 20 34 1 20

15 0 6 35 0 11

16 1 19 36 0 8

17 1 16 37 1 17

18 0 10 38 1 16

19 0 8 39 0 7

20 1 18 40 1 17
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8To avoid the loss of the degrees of freedom, we could let Ŷi = 0.01 when the estimated Yi

are negative and Ŷi = 0.99 when they are in excess of or equal to 1. See exercise 15.1.

LPM: A NUMERICAL EXAMPLE (Continued)

15.3 APPLICATIONS OF LPM

Until the availability of readily accessible computer packages to estimate
the logit and probit models (to be discussed shortly), the LPM was used
quite extensively because of its simplicity. We now illustrate some of these
applications.

TABLE 15.2

ACTUAL Y, ESTIMATED Y, AND WEIGHTS wi FOR THE HOME OWNERSHIP EXAMPLE

Yi Ŷi ŵ i
‡

√

ŵ i Yi Ŷi ŵ i
‡

√

ŵ i

0 −0.129* 1 1.301†

1 0.688 0.2146 0.4633 1 0.688 0.2147 0.4633

1 0.893 0.0956 0.3091 0 0.280 0.2016 0.4990

0 0.178 0.1463 0.3825 0 0.178 0.1463 0.3825

0 0.280 0.2016 0.4490 1 0.688 0.2147 0.4633

1 0.995 0.00498 0.0705 0 0.178 0.1463 0.3825

1 1.098† 1 1.097†

0 0.382 0.2361 0.4859 1 0.893 0.0956 0.3091

0 −0.0265* 0 0.178 0.1463 0.3825

0 0.076 0.0702 0.2650 0 0.076 0.0702 0.2650

1 0.791 0.1653 0.4066 1 0.791 0.1653 0.4055

1 0.893 0.0956 0.3091 0 0.382 0.2361 0.4859

0 0.484 0.2497 0.4997 1 1.199†

1 1.097† 1 1.097†

0 −0.333* 0 0.178 0.1463 0.3825

1 0.995 0.00498 0.0705 0 −0.129*
1 0.688 0.2147 0.4633 1 0.791 0.1653 0.4066

0 0.076 0.0702 0.2650 1 0.688 0.2147 0.4633

0 −0.129* 0 −0.231*
1 0.893 0.0956 0.3091 1 0.791 0.1653 0.4066

*Treated as zero to avoid probabilities being negative.
†Treated as unity to avoid probabilities exceeding one.
‡Ŷi (1− Ŷi ).

observations, from 40 to 28 in the present example.8

Omitting these observations, the WLS regression is

Ŷi
√

ŵi
= −1.2456 1

√

ŵi
+ 0.1196

Xi
√

ŵi

(0.1206)         (0.0069)
(15.2.11)

t = (−10.332)         (17.454) R2 = 0.9214

These results show that, compared with (15.12.10), the

estimated standard errors are smaller and, correspond-

ingly, the estimated t ratios (in absolute value) larger. But

one should take this result with a grain of salt since in

estimating (15.12.11) we had to drop 12 observations.

Also, since wi are estimated, the usual statistical hypo-

thesis-testing procedures are, strictly speaking, valid in

the large samples (see Chapter 11).
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EXAMPLE 15.1

COHEN–REA–LERMAN STUDY9

In a study prepared for the U.S. Department of Labor, Cohen, Rea, and Lerman were inter-

ested in examining the labor-force participation of various categories of labor as a function of

several socioeconomic–demographic variables. In all their regressions, the dependent vari-

able was a dummy, taking a value of 1 if a person is in the labor force, 0 if he or she is not. In

Table 15.3 we reproduce one of their several dummy-dependent variable regressions.

Before interpreting the results, note these features: The preceding regression was esti-

mated by using the OLS. To correct for heteroscedasticity, the authors used the two-step pro-

cedure outlined previously in some of their regressions but found that the standard errors of

the estimates thus obtained did not differ materially from those obtained without correction for

heteroscedasticity. Perhaps this result is due to the sheer size of the sample, namely, about

25,000. Because of this large sample size, the estimated t values may be tested for statisti-

cal significance by the usual OLS procedure even though the error term takes dichotomous

values. The estimated R2 of 0.175 may seem rather low, but in view of the large sample size,

this R2 is still significant on the basis of the F test given in Section 8.5. Finally, notice how the

authors have blended quantitative and qualitative variables and how they have taken into

account the interaction effects.

Turning to the interpretations of the findings, we see that each slope coefficient gives the

rate of change in the conditional probability of the event occurring for a given unit change in

the value of the explanatory variable. For instance, the coefficient of −0.2753 attached to the
variable “age 65 and over’’ means, holding all other factors constant, the probability of par-

ticipation in the labor force by women in this age group is smaller by about 27 percent (as

compared with the base category of women aged 22 to 54). By the same token, the coeffi-

cient of 0.3061 attached to the variable “16 or more years of schooling’’ means, holding all

other factors constant, the probability of women with this much education participating in the

labor force is higher by about 31 percent (as compared with women with less than 5 years of

schooling, the base category).

Now consider the interaction term marital status and age. The table shows that the

labor-force participation probability is higher by some 29 percent for those women who were

never married (as compared with the base category) and smaller by about 28 percent for

those women who are 65 and over (again in relation to the base category). But the probabil-

ity of participation of women who were never married and are 65 or over is smaller by about

20 percent as compared with the base category. This implies that women aged 65 and over

but never married are likely to participate in the labor force more than those who are aged 65

and over and are married or fall into the “other’’ category.

Following this procedure, the reader can easily interpret the rest of the coefficients given

in Table 15.3. From the given information, it is easy to obtain the estimates of the conditional

probabilities of labor-force participation of the various categories. Thus, if we want to find the

probability for married women (other), aged 22 to 54, with 12 to 15 years of schooling, with

an unemployment rate of 2.5 to 3.4 percent, employment change of 3.5 to 6.49 percent, rel-

ative employment opportunities of 74 percent and over, and with FILOW of $7500 and over,

we obtain

0.4368+ 0.1523+ 0.2231− 0.0213+ 0.0301+ 0.0571− 0.2455 = 0.6326

In other words, the probability of labor-force participation by women with the preceding char-

acteristics is estimated to be about 63 percent.

9Malcolm S. Cohen, Samuel A. Rea, Jr., and Robert I. Lerman, A Micro Model of Labor Sup-
ply, BLS Staff Paper 4, U.S. Department of Labor, 1970.

(Continued)
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TABLE 15.3 LABOR-FORCE PARTICIPATION

Regression of women, age 22 and over, living in largest 96 standard metropolitan statistical

areas (SMSA) (dependent variable: in or out of labor force during 1966)

Explanatory variable Coefficient t ratio

Constant 0.4368 15.4

Marital status

Married, spouse present — —

Married, other 0.1523 13.8

Never married 0.2915 22.0

Age

22–54 — —

55–64 −0.0594 −5.7
65 and over −0.2753 −9.0

Years of schooling

0–4 — —

5–8 0.1255 5.8

9–11 0.1704 7.9

12–15 0.2231 10.6

16 and over 0.3061 13.3

Unemployment rate (1966), %

Under 2.5 — —

2.5–3.4 −0.0213 −1.6
3.5–4.0 −0.0269 −2.0
4.1–5.0 −0.0291 −2.2
5.1 and over −0.0311 −2.4

Employment change (1965–1966), %

Under 3.5 — —

3.5–6.49 0.0301 3.2

6.5 and over 0.0529 5.1

Relative employment opportunities, %

Under 62 — —

62–73.9 0.0381 3.2

74 and over 0.0571 3.2

FILOW, $

Less than 1,500 and negative — —

1,500–7,499 −0.1451 −15.4
7,500 and over −0.2455 −24.4

Interaction (marital status and age)

Marital status Age

Other 55–64 −0.0406 −2.1
Other 65 and over −0.1391 −7.4
Never married 55–64 −0.1104 −3.3
Never married 65 and over −0.2045 −6.4

Interaction (age and years of schooling completed)

Age Years of schooling

65 and over 5–8 −0.0885 −2.8
65 and over 9–11 −0.0848 −2.4
65 and over 12–15 −0.1288 −4.0
65 and over 16 and over −0.1628 −3.6

R2 = 0.175

No. of observations = 25,153

Note:— indicates the base or omitted category.
FILOW: family income less own wage and salary income.

Source: Malcolm S. Cohen, Samuel A. Rea, Jr., and Robert I. Lerman, A Micro Model of Labor
Supply, BLS Staff Paper 4, U.S. Department of Labor, 1970, Table F-6, pp. 212–213.

EXAMPLE 15.1 (Continued)
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10Joseph Cappelleri, “Predicting a Bond Rating,’’ unpublished term paper, C.U.N.Y. The
model used in the paper is a modification of the model used by Thomas F. Pogue and Robert
M. Soldofsky, “What Is in a Bond Rating?’’ Journal of Financial and Quantitative Analysis,
June 1969, pp. 201–228.

11Some of the estimated probabilities before correcting for heteroscedasticity were negative
and some were in excess of 1; in these cases they were assumed to be 0.01 and 0.99, respec-
tively, to facilitate the computation of the weights wi.

EXAMPLE 15.2

PREDICTING A BOND RATING

Based on a pooled time series and cross-sectional data of 200 Aa (high-quality) and Baa

(medium-quality) bonds over the period 1961–1966, Joseph Cappelleri estimated the follow-

ing bond rating prediction model.10

Yi = β1 + β2X
2
2i + β3X3i + β4X4i + β5X5i + ui

where Yi = 1 if the bond rating is Aa (Moody’s rating)

= 0 if the bond rating is Baa (Moody’s rating)

X2 = debt capitalization ratio, a measure of leverage

= dollar value of long-term debt

dollar value of total capitalization
· 100

X3 = profit rate

= dollar value of after-tax income

dollar value of net total assets
· 100

X4 = standard deviation of the profit rate, a measure of profit rate variability

X5 = net total assets (thousands of dollars), a measure of size

A priori, β2 and β4 are expected to be negative (why?) and β3 and β5 are expected to be

positive.

After correcting for heteroscedasticity and first-order autocorrelation, Cappelleri obtained

the following results11:

Ŷi = 0.6860 − 0.0179X2
2i + 0.0486X3i + 0.0572X4i + 0.378(E-7)X5

(0.1775) (0.0024) (0.0486) (0.0178) (0.039)(E-8) (15.3.1)

R2 = 0.6933

Note: 0.378 E-7 means 0.0000000378, etc.

All but the coefficient of X4 have the correct signs. It is left to finance students to rational-

ize why the profit rate variability coefficient has a positive sign, for one would expect that the

greater the variability in profits, the less likely it is Moody’s would give an Aa rating, other

things remaining the same.

The interpretation of the regression is straightforward. For example, 0.0486 attached to

X3 means that, other things being the same, a 1 percentage point increase in the profit rate

will lead on average to about a 0.05 increase in the probability of a bond getting the Aa rat-

ing. Similarly, the higher the squared leveraged ratio, the lower by 0.02 is the probability of a

bond being classified as an Aa bond per unit increase in this ratio.
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12D. Rubinfeld, “An Econometric Analysis of the Market for General Municipal Bonds,’’ un-
published doctoral dissertation, Massachusetts Institute of Technology, 1972. The results given
in this example are reproduced from Robert S. Pindyck and Daniel L. Rubinfeld, Econometric
Models and Economic Forecasts, 2d ed., McGraw-Hill, New York, 1981, p. 279.

EXAMPLE 15.3

PREDICTING BOND DEFAULTS

To predict the probability of default on their bond obligations, Daniel Rubinfeld studied a sam-

ple of 35 municipalities in Massachusetts for the year 1930, several of which did in fact de-

fault. The LPM model he chose and estimated was as follows12:

P̂ = 1.96 − 0.029 TAX − 4.86 INT + 0.063 AV + 0.007 DAV − 0.48 WELF

(0.29)   (0.009)       (2.13)          (0.028) (0.003)          (0.88) (15.3.2)

R2 = 0.36

Where P = 0 if the municipality defaulted and 1 otherwise, TAX = average of 1929, 1930,

and 1931 tax rates: INT = percentage of current budget allocated to interest payments in

1930; AV = percentage growth in assessed property valuation from 1925 to 1930; DAV =
ratio of total direct net debt to total assessed valuation in 1930; and WELF = percentage of

1930 budget allocated to charities, pensions, and soldiers’ benefits.

The interpretation (15.3.2) is again fairly straightforward. Thus, other things being the

same, an increase in the tax rate of $1 per thousand will raise the probability of default by

about 0.03, or 3 percent. The R2 value is rather low but, as noted previously, in LPMs the

R2 values generally tend to be lower and are of limited use in judging the goodness of fit of

the model.

15.4 ALTERNATIVES TO LPM

As we have seen, the LPM is plagued by several problems, such as (1) non-
normality of ui , (2) heteroscedasticity of ui , (3) possibility of Ŷi lying outside
the 0–1 range, and (4) the generally lower R2 values. But these problems are
surmountable. For example, we can use WLS to resolve the heteroscedas-
ticity problem or increase the sample size to minimize the non-normality
problem. By resorting to restricted least-squares or mathematical program-
ming techniques we can even make the estimated probabilities lie in the 0–1
interval.

But even then the fundamental problem with the LPM is that it is not
logically a very attractive model because it assumes that Pi = E(Y = 1 | X)
increases linearly with X, that is, the marginal or incremental effect of X
remains constant throughout. Thus, in our home ownership example we
found that as X increases by a unit ($1000), the probability of owning a
house increases by the same constant amount of 0.10. This is so whether
the income level is $8000, $10,000, $18,000, or $22,000. This seems patently
unrealistic. In reality one would expect that Pi is nonlinearly related to Xi :
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P
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–

CDF
1

∞ ∞

FIGURE 15.2 A cumulative distribution function (CDF).

13John Aldrich and Forrest Nelson, op. cit., p. 26.
14As discussed in App. A, the CDF of a random variable X is simply the probability that it

takes a value less than or equal to x0, where x0 is some specified numerical value of X. In short,
F(X), the CDF of X, is F(X = x0) = P(X ≤ x0).

At very low income a family will not own a house but at a sufficiently high
level of income, say, X*, it most likely will own a house. Any increase in in-
come beyond X* will have little effect on the probability of owning a house.
Thus, at both ends of the income distribution, the probability of owning a
house will be virtually unaffected by a small increase in X.

Therefore, what we need is a (probability) model that has these two fea-
tures: (1) As Xi increases, Pi = E(Y = 1 | X) increases but never steps out-
side the 0–1 interval, and (2) the relationship between Pi and Xi is nonlin-
ear, that is, “one which approaches zero at slower and slower rates as Xi

gets small and approaches one at slower and slower rates as Xi gets very
large.’’13

Geometrically, the model we want would look something like Figure 15.2.
Notice in this model that the probability lies between 0 and 1 and that it
varies nonlinearly with X.

The reader will realize that the sigmoid, or S-shaped, curve in the figure
very much resembles the cumulative distribution function (CDF) of a ran-
dom variable.14 Therefore, one can easily use the CDF to model regressions
where the response variable is dichotomous, taking 0–1 values. The practi-
cal question now is, which CDF? For although all CDFs are S shaped, for
each random variable there is a unique CDF. For historical as well as prac-
tical reasons, the CDFs commonly chosen to represent the 0–1 response
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15The logistic model has been used extensively in analyzing growth phenomena, such as
population, GNP, money supply, etc. For theoretical and practical details of logit and probit
models, see J. S. Kramer, The Logit Model for Economists, Edward Arnold Publishers, London,
1991; and G. S. Maddala, op. cit.

16Note that as Zi →+∞, e−Zi tends to zero and as Zi →−∞, e−Zi increases indefinitely.
Recall that e = 2.71828.

17Of course, one could use nonlinear estimation techniques discussed in Chap. 14. See also
Sec. 15.8.

models are (1) the logistic and (2) the normal, the former giving rise to the
logit model and the latter to the probit (or normit) model.

Although a detailed discussion of the logit and probit models is beyond
the scope of this book, we will indicate somewhat informally how one esti-
mates such models and how one interprets them.

15.5 THE LOGIT MODEL

We will continue with our home ownership example to explain the basic
ideas underlying the logit model. Recall that in explaining home ownership
in relation to income, the LPM was

Pi = E(Y = 1 | Xi) = β1 + β2Xi (15.5.1)

where X is income and Y = 1 means the family owns a house. But now con-
sider the following representation of home ownership:

(15.5.2)

For ease of exposition, we write (15.5.2) as

Pi =
1

1+ e−Zi
= ez

1+ ez
(15.5.3)

where Zi = β1 + β2Xi .

Equation (15.5.3) represents what is known as the (cumulative) logistic
distribution function.15

It is easy to verify that as Zi ranges from −∞ to +∞, Pi ranges between 0
and 1 and that Pi is nonlinearly related to Zi (i.e., Xi), thus satisfying the two
requirements considered earlier.16 But it seems that in satisfying these re-
quirements, we have created an estimation problem because Pi is nonlinear
not only in X but also in the β ’s as can be seen clearly from (15.5.2). This
means that we cannot use the familiar OLS procedure to estimate the para-
meters.17 But this problem is more apparent than real because (15.5.2) can
be linearized, which can be shown as follows.

Pi = E(Y = 1 | Xi) =
1

1+ e−(β1+β2Xi )
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18Recall that the linearity assumption of OLS does not require that the X variable be neces-
sarily linear. So we can have X2, X3, etc., as regressors in the model. For our purpose, it is lin-
earity in the parameters that is crucial.

19Using calculus, it can be shown that dP/dX = β2P(1− P), which shows that the rate of
change in probability with respect to X involves not only β2 but also the level of probability
from which the change is measured (but more on this in Sec. 15.7). In passing, note that the
effect of a unit change in Xi on P is greatest when P = 0.5 and least when P is close to 0 or 1.

If Pi , the probability of owning a house, is given by (15.5.3), then (1− Pi),
the probability of not owning a house, is

1− Pi =
1

1+ eZi
(15.5.4)

Therefore, we can write

Pi

1− Pi
= 1+ eZi

1+ e−Zi
= eZi (15.5.5)

Now Pi/(1− Pi) is simply the odds ratio in favor of owning a house—the
ratio of the probability that a family will own a house to the probability that
it will not own a house. Thus, if Pi = 0.8, it means that odds are 4 to 1 in
favor of the family owning a house.

Now if we take the natural log of (15.5.5), we obtain a very interesting re-
sult, namely,

(15.5.6)

that is, L, the log of the odds ratio, is not only linear in X, but also (from the
estimation viewpoint) linear in the parameters.18 L is called the logit, and
hence the name logit model for models like (15.5.6).

Notice these features of the logit model.

1. As P goes from 0 to 1 (i.e., as Z varies from −∞ to +∞), the logit L
goes from −∞ to +∞. That is, although the probabilities (of necessity) lie
between 0 and 1, the logits are not so bounded.

2. Although L is linear in X, the probabilities themselves are not. This
property is in contrast with the LPM model (15.5.1) where the probabilities
increase linearly with X.19

3. Although we have included only a single X variable, or regressor, in
the preceding model, one can add as many regressors as may be dictated by
the underlying theory.

4. If L, the logit, is positive, it means that when the value of the regres-
sor(s) increases, the odds that the regressand equals 1 (meaning some event
of interest happens) increases. If L is negative, the odds that the regressand
equals 1 decreases as the value of X increases. To put it differently, the logit

Li = ln

(

Pi

1− Pi

)

= Zi

= β1 + β2Xi
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20This point is due to David Garson.

becomes negative and increasingly large in magnitude as the odds ratio de-
creases from 1 to 0 and becomes increasingly large and positive as the odds
ratio increases from 1 to infinity.20

5. More formally, the interpretation of the logit model given in (15.5.6)
is as follows: β2, the slope, measures the change in L for a unit change in X,
that is, it tells how the log-odds in favor of owning a house change as in-
come changes by a unit, say, $1000. The intercept β1 is the value of the log-
odds in favor of owning a house if income is zero. Like most interpretations
of intercepts, this interpretation may not have any physical meaning.

6. Given a certain level of income, say, X*, if we actually want to esti-
mate not the odds in favor of owning a house but the probability of owning
a house itself, this can be done directly from (15.5.3) once the estimates of
β1 + β2 are available. This, however, raises the most important question:
How do we estimate β1 and β2 in the first place? The answer is given in the
next section.

7. Whereas the LPM assumes that Pi is linearly related to Xi, the logit
model assumes that the log of the odds ratio is linearly related to Xi .

15.6 ESTIMATION OF THE LOGIT MODEL

For estimation purposes, we write (15.5.6) as follows:

Li = ln

(

Pi

1− Pi

)

= β1 + β2Xi + ui (15.6.1)

We will discuss the properties of the stochastic error term ui shortly.
To estimate (15.6.1), we need, apart from Xi, the values of the regressand,

or logit, Li. This depends on the type of data we have for analysis. We
distinguish two types of data: (1) data at the individual, or micro, level, and
(2) grouped or replicated data.

Data at the Individual Level

If we have data on individual families, as in the case of Table 15.1, OLS
estimation of (15.6.1) is infeasible. This is easy to see. In terms of the data
given in Table 15.1, Pi = 1 if a family owns a house and Pi = 0 if it does not
own a house. But if we put these values directly into the logit Li , we obtain:

Li = ln

(

1

0

)

if a family own a house

Li = ln

(

0

1

)

if a family does not own a house

Obviously, these expressions are meaningless. Therefore, if we have data at
the micro, or individual, level, we cannot estimate (15.6.1) by the standard
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TABLE 15.4 HYPOTHETICAL DATA ON Xi (INCOME), Ni (NUMBER OF

FAMILIES AT INCOME Xi), AND ni (NUMBER OF FAMILIES

OWNING A HOUSE)

X
(thousands of dollars) Ni ni

6 40 8

8 50 12

10 60 18

13 80 28

15 100 45

20 70 36

25 65 39

30 50 33

35 40 30

40 25 20

21For a comparatively simple discussion of maximum likelihood in the context of the logit
model, see John Aldrich and Forrest Nelson, op. cit., pp. 49–54. See also, Alfred Demarsi, Logit
Modeling: Practical Applications, Sage Publications, Newbury Park, Calif., 1992.

22From elementary statistics recall that the probability of an event is the limit of the relative
frequency as the sample size becomes infinitely large.

OLS routine. In this situation we may have to resort to the maximum-
likelihood (ML) method to estimate the parameters. Although the rudi-
ments of this method were discussed in the appendix to Chapter 4, its
application in the present context will be discussed in Appendix 15A, Sec-
tion 15A.1, for the benefit of readers who would like to learn more about it.21

Software packages, such as Microfit, Eviews, Limdep, Shazam, PcGive, and
Minitab, have built-in routines to estimate the logit model at the individual
level. We will illustrate the use of the ML method later in the chapter.

Grouped or Replicated Data

Now consider the data given in Table 15.4. This table gives data on several
families grouped or replicated (repeat observations) according to income
level and the number of families owning a house at each income level. Cor-
responding to each income level Xi , there are Ni families, ni among whom
are home owners (ni ≤ Ni). Therefore, if we compute

P̂i =
ni

Ni
(15.6.2)

that is, the relative frequency, we can use it as an estimate of the true Pi cor-
responding to each Xi . If Ni is fairly large, P̂i will be a reasonably good esti-
mate of Pi .

22 Using the estimated Pi, we can obtain the estimated logit as

L̂i = ln

(

P̂i

1− P̂i

)

= β̂1 + β̂2Xi (15.6.3)
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23As shown in elementary probability theory, P̂i , the proportion of successes (here, owning
a house), follows the binomial distribution with mean equal to true Pi and variance equal to
Pi(1− Pi)/Ni ; and as Ni increases indefinitely the binomial distribution approximates the nor-
mal distribution. The distributional properties of ui given in (15.6.4) follow from this basic
theory. For details, see Henry Theil, “On the Relationships Involving Qualitative Variables,’’
American Journal of Sociology, vol. 76, July 1970, pp. 103–154.

24Since P̂i = ni/Ni , Li can be alternatively expressed as L̂i = ln ni/(Ni − ni). In passing it
should be noted that to avoid P̂i taking the value of 0 or 1, in practice L̂i is measured as L̂i =
ln (ni + 1

2 )/(Ni − ni + 1
2 ) = ln (P̂i + 1/2Ni)/(1− P̂i + 1/2Ni). It is recommended as a rule of 

thumb that Ni be at least 5 at each value of Xi . For additional details, see D. R. Cox, Analysis
of Binary Data, Methuen, London, 1970, p. 33.

25If we estimate (15.6.1) disregarding heteroscedasticity, the estimators, although unbiased,
will not be efficient, as we know from Chap. 11.

which will be a fairly good estimate of the true logit Li if the number of ob-
servations Ni at each Xi is reasonably large.

In short, given the grouped or replicated data, such as Table 15.4, one can
obtain the data on the dependent variable, the logits, to estimate the model
(15.6.1). Can we then apply OLS to (15.6.3) and estimate the parameters in
the usual fashion? The answer is, not quite, since we have not yet said any-
thing about the properties of the stochastic disturbance term. It can be
shown that if Ni is fairly large and if each observation in a given income
class Xi is distributed independently as a binomial variable, then

ui ∼ N

[

0,
1

Ni Pi(1− Pi)

]

(15.6.4)

that is ui follows the normal distribution with zero mean and variance equal
to 1/[Ni Pi(1− Pi)].

23

Therefore, as in the case of the LPM, the disturbance term in the logit
model is heteroscedastic. Thus, instead of using OLS we will have to use the
weighted least squares (WLS). For empirical purposes, however, we will re-
place the unknown Pi by P̂i and use

σ̂ 2 = 1

Ni P̂i(1− P̂i)
(15.6.5)

as estimator of σ 2.

We now describe the various steps in estimating the logit regression
(15.6.1):

1. For each income level X, compute the probability of owning a house
as P̂i = ni/Ni .

2. For each Xi , obtain the logit as24

L̂i = ln [P̂i/(1− P̂i)]

3. To resolve the problem of heteroscedasticity, transform (15.6.1) as
follows25:

√
wiLi = β1

√
wi + β2

√
wiXi +

√
wiui (15.6.6)
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which we write as

L*
i = β1

√
wi + β2X

*
i + vi (15.6.7)

where the weights wi = Ni P̂i(1− P̂i); L*
i = transformed or weighted Li; X*

i =
transformed or weighted Xi ; and vi = transformed error term. It is easy to
verify that the transformed error term vi is homoscedastic, keeping in mind
that the original error variance is σ 2

u = 1/[Ni Pi(1− Pi)].
4. Estimate (15.6.6) by OLS—recall that WLS is OLS on the trans-

formed data. Notice that in (15.6.6) there is no intercept term introduced
explicitly (why?). Therefore, one will have to use the regression through the
origin routine to estimate (15.6.6).

5. Establish confidence intervals and/or test hypotheses in the usual
OLS framework, but keep in mind that all the conclusions will be valid strictly
speaking if the sample is reasonably large (why?). Therefore, in small sam-
ples, the estimated results should be interpreted carefully.

15.7 THE GROUPED LOGIT (GLOGIT) MODEL: 

A NUMERICAL EXAMPLE

To illustrate the theory just discussed, we will use the data given in Table
15.4. Since the data in the table are grouped, the logit model based on this
data will be called a grouped logit model, glogit, for short. The necessary raw
data and other relevant calculations necessary to implement glogit are given
in Table 15.5. The results of the weighted least-squares regression (15.6.7)
based on the data given in Table 15.5 are as follows: Note that there is no
intercept in (15.6.7); hence the regression-through-origin procedure is
appropriate here.

L̂*
i = −1.59474

√
wi + 0.07862X*

i

se = (0.11046)        (0.00539) (15.7.1)

t = (−14.43619)         (14.56675) R2 = 0.9642

The R2 is the squared correlation coefficient between actual and estimated
L*

i . L*
i and X*

i are weighted Li and Xi , as shown in (15.6.6).

Interpretation of the Estimated Logit Model

How do we interpret (15.7.1)? There are various ways, some intuitive and
some not:

Logit Interpretation. As (15.7.1) shows, the estimated slope coefficient
suggests that for a unit ($1000) increase in weighted income, the weighted
log of the odds in favor of owning a house goes up by 0.08 units. This me-
chanical interpretation, however, is not very appealing.
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TABLE 15.6 LSTAR, XSTAR, ESTIMATED LSTAR, PROBABILITY, AND CHANGE IN PROBABILITY*

Probability,

Lstar Xstar ELstar Logit P̂ Change in probability†

−3.50710 15.1788 −2.84096 −1.12299 0.24545 0.01456

−3.48070 24.15920 −2.91648 −0.96575 0.27572 0.01570

−3.48070 35.49600 −2.86988 −0.80850 0.30821 0.01676

−2.64070 55.45930 −2.44293 −0.57263 0.36063 0.01813

−0.99850 74.62350 −2.06652 −0.41538 0.39762 0.01883

0.16730 83.65060 −0.09311 −0.02226 0.49443 0.01965

1.60120 98.74250 1.46472 0.37984 0.59166 0.01899

2.22118 100.48800 2.55896 0.76396 0.68221 0.01704

3.00860 95.84050 3.16794 1.15677 0.76074 0.01431

2.77260 80.00000 3.10038 1.55019 0.82494 0.01135

*Lstar and Xstar are from Table 15.5. ELstar is the estimated Lstar. Logit is the unweighted logit. Probability
is the estimated probability of owning a house. Change in probability is the change per unit change in income.

†Computed from β̂2 P̂(1− P̂) = 0.07862P̂(1− P̂).

Odds Interpretation. Remember that Li = ln [Pi/(1− Pi)]. Therefore,
taking the antilog of the estimated logit, we get Pi/(1− Pi), that is, the odds
ratio. Hence, taking the antilog of (15.7.1), we obtain:

P̂i

1− P̂i

= e−1.59474
√

wi+0.07862X*
i

(15.7.2)

= e−1.59474
√

wi · e0.07862X*
i

Using a calculator, you can easily verify that e0.07862 = 1.0817. This means
that for a unit increase in weighted income, the (weighted) odds in favor of
owing a house increases by 1.0817 or about 8.17%. In general, if you take the
antilog of the jth slope coefficient (in case there is more than one regressor in
the model), subtract 1 from it, and multiply the result by 100, you will get the
percent change in the odds for a unit increase in the jth regressor.

Incidentally, if you want to carry the analysis in terms of unweighted
logit, all you have to do is to divide the estimated L*

i by
√

wi. Table 15.6 gives
the estimated weighted and unweighted logits for each observation and
some other data, which we will discuss shortly.

Computing Probabilities. Since the language of logit and odds ratio
may be unfamiliar to some, we can always compute the probability of own-
ing a house at a certain level of income. Suppose we want to compute this
probability at X = 20 ($20,000). Plugging this value in (15.7.1), we obtain:
L̂*

i = −0.09311 and dividing this by
√

wi = 4.2661 (see Table 15.5), we obtain
L̂i = −0.02226. Therefore, at the income level of $20,000, we have

−0.02226 = ln

(

P̂i

1− P̂i

)
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Therefore,

P̂

1− P̂i

= e−0.02226 = 1.0225

Solving this for

P̂i =
e−0.02226

1+ e−0.02226

the reader can see that the estimated probability is 0.4944. That is, given
the incomeof $20,000, the probability of a family owning a house is about
49 percent. Table 15.6 shows the probabilities thus computed at various
income levels. As this table shows, the probability of house ownership
increases with income, but not linearly as with the LPM model.

Computing the Rate of Change of Probability. As you can gather
from Table 15.6, the probability of owning a house depends on the income
level. How can we compute the rate of change of probabilities as income
varies? As noted in footnote 19, that depends not only on the estimated
slope coefficient β2 but also on the level of the probability from which the
change is measured; the latter of course depends on the income level at
which the probability is computed.

To illustrate, suppose we want to measure the change in the probability
of owning a house at the income level $20,000. Then, from footnote 19 the
change in probability for a unit increase in income from the level 20 (thou-
sand) is: β̂(1− P̂)P̂ = 0.07862(0.5056)(0.4944) = 0.01965.

It is left as an exercise for the reader to show that at income level $40,000,
the change in probability is 0.01135. Table 15.6 shows the change in proba-
bility of owning a house at various income levels; these probabilities are
also depicted in Figure 15.3.
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TABLE 15.7 DATAON THE EFFECT OF PERSONALIZED SYSTEM OF INSTRUCTION (PSI) ON COURSE GRADES

GPA TUCE Letter GPA TUCE Letter
Observation grade grade PSI Grade grade Observation grade grade PSI Grade grade

1 2.66 20 0 0 C 17 2.75 25 0 0 C

2 2.89 22 0 0 B 18 2.83 19 0 0 C

3 3.28 24 0 0 B 19 3.12 23 1 0 B

4 2.92 12 0 0 B 20 3.16 25 1 1 A

5 4.00 21 0 1 A 21 2.06 22 1 0 C

6 2.86 17 0 0 B 22 3.62 28 1 1 A

7 2.76 17 0 0 B 23 2.89 14 1 0 C

8 2.87 21 0 0 B 24 3.51 26 1 0 B

9 3.03 25 0 0 C 25 3.54 24 1 1 A

10 3.92 29 0 1 A 26 2.83 27 1 1 A

11 2.63 20 0 0 C 27 3.39 17 1 1 A

12 3.32 23 0 0 B 28 2.67 24 1 0 B

13 3.57 23 0 0 B 29 3.65 21 1 1 A

14 3.26 25 0 1 A 30 4.00 23 1 1 A

15 3.53 26 0 0 B 31 3.10 21 1 0 C

16 2.74 19 0 0 B 32 2.39 19 1 1 A

Notes: Grade Y = 1 if the final grade is A
= 0 if the final grade is B or C

TUCE = score on an examination given at the beginning of the term to test entering knowledge of macroeconomics
PSI = 1 if the new teaching method is used

= 0 otherwise
GPA= the entering grade point average

Source: L. Spector and M. Mazzeo, “Probit Analysis and Economic Education,” Journal of Economic Education, vol. 11, 1980,
pp. 37–44.

To conclude our discussion of the glogit model, we present the results
based on OLS, or unweighted regression, for the home ownership example:

L̂i = −1.6587 + 0.0792Xi

se = (0.0958)    (0.0041) (15.7.3)

t = (−17.32)       (19.11)      r2 = 0.9786

We leave it to the reader to compare this regression with the weighted least-
squares regression given by (15.7.1).

15.8 THE LOGIT MODEL FOR UNGROUPED OR INDIVIDUAL DATA

To set the stage, consider the data given in Table 15.7. Letting Y = 1 if a
student’s final grade in an intermediate microeconomics course was A and
Y = 0 if the final grade was a B or a C, Spector and Mazzeo used grade point
average (GPA), TUCE, and Personalized System of Instruction (PSI) as the



Gujarati: Basic 

Econometrics, Fourth 

Edition

III. Topics in Econometrics 15. Qualitative Response 

Regression Models

© The McGraw−Hill 

Companies, 2004

CHAPTER FIFTEEN: QUALITATIVE RESPONSE REGRESSION MODELS 605

26For an accessible discussion, see J. Scott Long, Regression Models for Categorical and
Limited Dependent Variables, Sage Publications, Newbury Park, California, 1997, pp. 102–113.

grade predictors. The logit model here can be written as:

Li =
(

Pi

1− Pi

)

= β1 + β2GPAi + β3TUCEi + β4PSIi + ui (15.8.1)

As we noted in Section 15.6, we cannot simply put Pi = 1 if a family owns
a house, and zero if it does not own a house. Here neither OLS nor weighted
least squares (WLS) is helpful. We have to resort to nonlinear estimating
procedures using the method of maximum likelihood. The details of this
method are given in Appendix 15A, Section 15A.1. Since most modern sta-
tistical packages have routines to estimate logit models on the basis of un-
grouped data, we will present the results of model (15.8.1) using the data
given in Table 15.7 and show how to interpret the results. The results are
given in Table 15.8 in tabular form and are obtained by using Eviews 4.
Before interpreting these results, some general observations are in order.

1. Since we are using the method of maximum likelihood, which is gen-
erally a large-sample method, the estimated standard errors are asymptotic.

2. As a result, instead of using the t statistic to evaluate the statistical
significance of a coefficient, we use the (standard normal) Z statistic. So in-
ferences are based on the normal table. Recall that if the sample size is rea-
sonably large, the t distribution converges to the normal distribution.
3. As noted earlier, the conventional measure of goodness of fit, R2, is not

particularly meaningful in binary regressand models. Measures similar to
R2, called pseudo R2, are available, and there are a variety of them.26 Eviews
presents one such measure, the McFadden R2, denoted by R2

McF, whose

TABLE 15.8 REGRESSION RESULTS OF (15.8.1)

Dependent Variable: Grade

Method: ML-Binary Logit

Convergence achieved after 5 iterations

Variable Coefficient Std. error Z statistic Probability

C -13.0213 4.931 -2.6405 0.0082

GPA 2.8261 1.2629 2.2377 0.0252

TUCE 0.0951 0.1415 0.67223 0.5014

PSI 2.3786 1.0645 2.2345 0.0255

McFadden R
2 = 0.3740 LR statistic (3 df) = 15.40419
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value in our example is 0.3740.27 Like R2, R2
McF also ranges between 0 and 1.

Another comparatively simple measure of goodness of fit is the count R2,
which is defined as:

Count R2 = number of correct predictions

total number of observations
(15.8.2)

Since the regressand in the logit model takes a value of 1 or zero, if the
predicted probability is greater than 0.5, we classify that as 1, but if it is less
than 0.5, we classify that as 0. We then count the number of correct predic-
tions and compute the R2 as given in (15.7.2). We will illustrate this shortly.

It should be noted, however, that in binary regressand models, goodness
of fit is of secondary importance. What matters is the expected signs of the
regression coefficients and their statistical and/or practical significance.

4. To test the null hypothesis that all the slope coefficients are simulta-
neously equal to zero, the equivalent of the F test in the linear regression
model is the likelihood ratio (LR) statistic. Given the null hypothesis, the
LR statistic follows the χ2 distribution with df equal to the number of ex-
planatory variables, three in the present example. (Note: Exclude the inter-
cept term in computing the df).

Now let us interpret the regression results given in (15.8.1). Each slope
coefficient in this equation is a partial slope coefficient and measures the
change in the estimated logit for a unit change in the value of the given re-
gressor (holding other regressors constant). Thus, the GPA coefficient of
2.8261 means, with other variables held constant, that if GPA increases by a
unit, on average the estimated logit increases by about 2.83 units, suggest-
ing a positive relationship between the two. As you can see, all the other re-
gressors have a positive effect on the logit, although statistically the effect of
TUCE is not significant. However, together all the regressors have a signifi-
cant impact on the final grade, as the LR statistic is 15.40, whose p value is
about 0.0015, which is very small.

As noted previously, a more meaningful interpretation is in terms of odds,
which are obtained by taking the antilog of the various slope coefficients.
Thus, if you take the antilog of the PSI coefficient of 2.3786 you will get
10.7897 (≈ e2.3786). This suggests that students who are exposed to the new
method of teaching are more than 10 times likely to get an A than students
who are not exposed to it, other things remaining the same.

Suppose we want to compute the actual probability of a student getting
an A grade. Consider student number 10 in Table 15.7. Putting the actual
data for this student in the estimated logit model given in Table 15.8, the
reader can check that the estimated logit value for this student is 0.8178.

27Technically, this is defined as: 1 − (LLFur/LLFr), where LLFur is the unrestricted log likeli-
hood function where all regressors are included in the model and LLFr is the restricted log like-
lihood function where only the intercept is included in the model. Conceptually, LLFur is equiv-
alent to RSS and LLFr is the equivalent to TSS of the linear regression model.
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TABLE 15.9 ACTUALAND FITTED VALUES BASED ON REGRESSION IN TABLE 15.8

Observation Actual Fitted Residual Residual plot

1 0 0.02658 −0.02658
2 0 0.05950 −0.05950
3 0 0.18726 −0.18726
4 0 0.02590 −0.02590
5 1 0.56989 0.43011

6 0 0.03486 −0.03486
7 0 0.02650 −0.02650
8 0 0.05156 −0.05156
9 0 0.11113 −0.11113

10 1 0.69351 0.30649

11 0 0.02447 −0.02447
12 0 0.19000 −0.19000
13 0 0.32224 −0.32224
*14 1 0.19321 0.80679

15 0 0.36099 −0.36099
16 0 0.03018 −0.03018
17 0 0.05363 −0.05363
18 0 0.03859 −0.03859
*19 0 0.58987 −0.58987
20 1 0.66079 0.33921

21 0 0.06138 −0.06138
22 1 0.90485 0.09515

23 0 0.24177 −0.24177
*24 0 0.85209 −0.85209
25 1 0.83829 0.16171

*26 1 0.48113 0.51887

27 1 0.63542 0.36458

28 0 0.30722 −0.30722
29 1 0.84170 0.15830

30 1 0.94534 0.05466

*31 0 0.52912 −0.52912
*32 1 0.11103 0.88897

*Incorrect predictions.

Using Eq. (15.5.2), the reader can easily check that the estimated probabil-
ity is 0.69351. Since this student’s actual final grade was an A, and since our
logit model assigns a probability of 1 to a student who gets an A, the esti-
mated probability of 0.69351 is not exactly 1 but close to it.

Recall the count R2 defined earlier. Table 15.9 gives you the actual and
predicted values of the regressand for our illustrative example. From this
table you can observe that, out of 32 observations, there were 6 incorrect
predictions (students 14, 19, 24, 26, 31, and 32). Hence the count R2 value is
26/32 = 0.8125, whereas the McFadden R2 value is 0.3740. Although these
two values are not directly comparable, they give you some idea about the
orders of magnitude. Besides, one should not overplay the importance of
goodness of fit in models where the regressand is dichotomous.
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28See App. A for a discussion of the normal CDF. Briefly, if a variable X follows the normal
distribution with mean µ and variance σ 2, its PDF is

f (X) = 1√
2σ 2π

e−(X−µ)2/2σ2

and its CDF is

F(X) =
∫ X0

−∞

1√
2σ 2π

e−(X−µ)2/2σ2

where X0 is some specified value of X.
29D. McFadden, “Conditional Logit Analysis of Qualitative Choice Behavior,” in P. Zarembka

(ed.), Frontiers in Econometrics, Academic Press, New York, 1973.
30A normal distribution with zero mean and unit ( = 1) variance is known as a standard or

standardized normal variable (see App. A).

15.9 THE PROBIT MODEL

As we have noted, to explain the behavior of a dichotomous dependent vari-
able we will have to use a suitably chosen CDF. The logit model uses the cu-
mulative logistic function, as shown in (15.5.2). But this is not the only CDF
that one can use. In some applications, the normal CDF has been found use-
ful. The estimating model that emerges from the normal CDF28 is popularly
known as the probit model, although sometimes it is also known as the
normit model. In principle one could substitute the normal CDF in place of
the logistic CDF in (15.5.2) and proceed as in Section 16.5. Instead of fol-
lowing this route, we will present the probit model based on utility theory,
or rational choice perspective on behavior, as developed by McFadden.29

To motivate the probit model, assume that in our home ownership exam-
ple the decision of the ith family to own a house or not depends on an un-
observable utility index Ii (also known as a latent variable), that is deter-
mined by one or more explanatory variables, say income Xi , in such a way
that the larger the value of the index Ii , the greater the probability of a fam-
ily owning a house. We express the index Ii as

Ii = β1 + β2Xi (15.9.1)

where Xi is the income of the ith family.
How is the (unobservable) index related to the actual decision to own a

house? As before, let Y = 1 if the family owns a house and Y = 0 if it does
not. Now it is reasonable to assume that there is a critical or threshold
level of the index, call it I*

i , such that if Ii exceeds I*
i , the family will own a

house, otherwise it will not. The threshold I*
i , like Ii , is not observable, but

if we assume that it is normally distributed with the same mean and vari-
ance, it is possible not only to estimate the parameters of the index given in
(15.9.1) but also to get some information about the unobservable index it-
self. This calculation is as follows.

Given the assumption of normality, the probability that I*
i is less than or

equal to Ii can be computed from the standardized normal CDF as30:

Pi = P(Y = 1 | X) = P(I*
i ≤ Ii) = P(Zi ≤ β1 + β2Xi) = F(β1 + β2Xi)

(15.9.2)
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Ii = β1+ β2 X iββ Ii = F–1(Pi)

Pr (Ii
* ≤ It)

– –+ +∞ ∞ ∞ ∞

FIGURE 15.4 Probit model: (a) given Ii, read Pi from the ordinate; (b) given Pi, read Ii from the abscissa.

where P(Y = 1 | X) means the probability that an event occurs given the
value(s) of the X, or explanatory, variable(s) and where Zi is the standard
normal variable, i.e., Z ∼ N(0, σ 2). F is the standard normal CDF, which
written explicitly in the present context is:

F(Ii) =
1√
2π

∫ Ii

−∞
e−z2/2 dz

= 1√
2π

∫ β1+β2Xi

−∞
e−z2/2 dz

(15.9.3)

Since P represents the probability that an event will occur, here the prob-
ability of owning a house, it is measured by the area of the standard normal
curve from −∞ to Ii as shown in Figure 15.4a.

Now to obtain information on Ii , the utility index, as well as on β1 and β2,
we take the inverse of (15.9.2) to obtain:

Ii = F−1(Ii) = F−1(Pi)

= β1 + β2Xi

(15.9.4)

where F−1 is the inverse of the normal CDF. What all this means can be
made clear from Figure 15.4. In panel a of this figure we obtain from the or-
dinate the (cumulative) probability of owning a house given I*

i ≤ Ii , whereas
in panel b we obtain from the abscissa the value of Ii given the value of Pi ,
which is simply the reverse of the former.

But how do we actually go about obtaining the index Ii as well as estimat-
ing β1 and β2? As in the case of the logit model, the answer depends on
whether we have grouped data or ungrouped data. We consider the two cases
individually.
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TABLE 15.10 ESTIMATING THE INDEX Ii FROM

THE STANDARD NORMAL CDF

P̂i I i = F−1( P̂i )

0.20 −0.8416
0.24 −0.7063
0.30 −0.5244
0.35 −0.3853
0.45 −0.1257
0.51 0.0251

0.60 0.2533

0.66 0.4125

0.75 0.6745

0.80 0.8416

Notes: (1) P̂i are from Table 15.5; (2) Ii are
estimated from the standard normal CDF.

0

1

0.66

0.4– +∞ ∞

FIGURE 15.5 Normal CDF.

Probit Estimation with Grouped Data: gprobit

We will use the same data that we used for glogit, which is given in
Table 15.4. Since we already have P̂i , the relative frequency (the empirical
measure of probability) of owning a house at various income levels as
shown in Table 15.5, we can use it to obtain Ii from the normal CDF as
shown in Table 15.10, or from Figure 15.5.

Once we have the estimated Ii , estimating β1 and β2 is relatively straight-
forward, as we show shortly. In passing, note that in the language of probit
analysis the unobservable utility index Ii is known as the normal equiva-
lent deviate (n.e.d.) or simply normit. Since the n.e.d. or Ii will be negative
whenever Pi < 0.5, in practice the number 5 is added to the n.e.d. and the
result is called a probit.
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TABLE 15.11

Dependent Variable: I

Variable Coefficient Std. error t statistic Probability

C -1.0166 0.0572 -17.7473 1.0397E-07

Income 0.04846 0.00247 19.5585 4.8547E-08

R
2 = 0.97951 Durbin–Watson statistic = 0.91384

TABLE 15.12

Dependent Variable: Probit

Variable Coefficient Std. error t statistic Probability

C 3.9833 0.05728 69.5336 2.03737E-12

Income 0.04846 0.00247 19.5585 4.8547E-08

R
2 = 0.9795 Durbin–Watson statistic = 0.9138

Note: These results are not corrected for heteroscedasticity (see exercise 15.12).

31The following results are not corrected for heteroscedasticity. See exercise 15.12 for the
appropriate procedure to correct heteroscedasticity.

32We use the chain rule of derivatives:

dPi

dXi
= dF(t)

dt
· dt

dX
where t = β1 + β2Xi .

ILLUSTRATION OF GPROBIT USING HOUSING EXAMPLE

Let us continue with our housing example. We have already presented the results of the

glogit model for this example. The grouped probit (gprobit) results of the same data are as

follows:

Using the n.e.d. (= I ) given in Table 15.10, the regression results are as shown in

Table 15.11.31 The regression results based on the probits ( = n.e.d. + 5) are as shown in

Table 15.12.

Except for the intercept term, these results are identical with those given in the previous

table. But this should not be surprising. (Why?)

Interpretation of the Probit Estimates in Table 15.11. How do we
interpret the preceding results? Suppose we want to find out the effect of a
unit change in X (income measured in thousands of dollars) on the proba-
bility that Y = 1, that is, a family purchases a house. To do this, look at
Eq. (15.9.2). We want to take the derivative of this function with respect to
X (that is, the rate of change of the probability with respect to income). It
turns out that this derivative is:

dPi

dXi
= f (β1 + β2Xi)β2 (15.9.5)32
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33Note that the standard normal Z can range from −∞ to+∞, but the density function f (Z)
is always positive.

where f (β1 + β2Xi) is the standard normal probability density function
evaluated at β1 + β2Xi . As you will realize, this evaluation will depend on the
particular value of the X variables. Let us take a value of X from Table 15.5,
say, X = 6 (thousand dollars). Using the estimated values of the parameters
given in Table 15.11, we thus want to find the normal density function
at f [−1.0166+ 0.04846(6)] = f (−0.72548). If you refer to the normal dis-
tribution tables, you will find that for Z = −0.72548, the normal density is
about 0.3066.33 Now multiplying this value by the estimated slope coeffi-
cient of 0.04846, we obtain 0.01485. This means that starting with an in-
come level of $6000, if the income goes up by $1000, the probability of a
family purchasing a house goes up by about 1.4 percent. (Compare this re-
sult with that given in Table 15.6.)

As you can see from the preceding discussion, compared with the LPM
and logit models, the computation of changes in probability using the pro-
bit model is a bit tedious.

Instead of computing changes in probability, suppose you want to find
the estimated probabilities from the fitted gprobit model. This can be
done easily. Using the data in Table 15.11 and inserting the values of X from
Table 15.5, the reader can check that the estimated n.i.d. values (to two
digits) are as follows:

X 6 8 10 13 15 20 25 30 35 40

Estimated n.i.d. −0.72 −0.63 −0.53 −0.39 −0.29 −0.05 0.19 0.43 0.68 0.92

Now statistical packages such as Minitab can easily compute the (cumula-
tive) probabilities associated with the various n.i.d.’s. For example, corre-
sponding to an n.i.d. value −0.63, the estimated probability is 0.2647 and,
corresponding to an n.i.d. value of 0.43, the estimated probability is 0.6691.
If you compare these estimates with the actual values given in Table 15.5,
you will find that the two are fairly close, suggesting that the fitted model
is quite good. Graphically, what we have just done is already shown in
Figure 15.4.

The Probit Model for Ungrouped or Individual Data

Let us revisit Table 15.7, which gives data on 32 individuals about their final
grade in intermediate microeconomics examination in relation to the vari-
ables GPA, TUCE, and PSI. The results of the logit regression are given in
Table 15.8. Let us see what the probit results look like. Notice that as in the
case of the logit model for individual data, we will have to use a nonlinear
estimating procedure based on the method of maximum likelihood. The re-
gression results calculated by Eviews 4 are given in Table 15.13.
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TABLE 15.13 Dependent Variable: grade

Method: ML—binary probit

Convergence achieved after 5 iterations

Variable Coefficient Std. error Z statistic Probability

C -7.4523 2.5424 -2.9311 0.0033

GPA 1.6258 0.6938 2.3430 0.0191

TUCE 0.0517 0.0838 0.6166 0.5374

PSI 1.4263 5950 2.3970 0.0165

LR statistic (3 df) = 15.5458 McFadden R2 = 0.3774

Probability (LR stat) = 0.0014

“Qualitatively,” the results of the probit model are comparable with those
obtained from the logit model in that GPA and PSI are individually statisti-
cally significant. Collectively, all the coefficients are statistically significant,
since the value of the LR statistic is 15.5458 with a p value of 0.0014. For
reasons discussed in the next sections, we cannot directly compare the logit
and probit regression coefficients.

For comparative purposes, we present the results based on the linear
probability model (LPM) for the grade data in Table 15.14. Again, qualita-
tively, the LPM results are similar to the logit and probit models in that GPA
and PSI are individually statistically significant but TUCE is not. Also, to-
gether the explanatory variables have a significant impact on grade, as the
F value of 6.6456 is statistically significant because its p value is only 0.0015.

The Marginal Effect of a Unit Change in the Value of a Regressor 

in the Various Regression Models

In the linear regression model, the slope coefficient measures the change in
the average value of the regressand for a unit change in the value of a re-
gressor, with all other variables held constant.

In the LPM, the slope coefficient measures directly the change in the
probability of an event occurring as the result of a unit change in the value
of a regressor, with the effect of all other variables held constant.

TABLE 15.14 Dependent Variable: grade

Variable Coefficient Std. error t statistic Probability

C -1.4980 0.5238 -2.8594 0.0079

GPA 0.4638 0.1619 2.8640 0.0078

TUCE 0.0104 0.0194 0.5386 0.5943

PSI 0.3785 0.1391 2.7200 0.0110

R
2 = 0.4159 Durbin–Watson d = 2.3464 F statistic = 6.6456
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FIGURE 15.6 Logit and probit cumulative distributions.

In the logit model the slope coefficient of a variable gives the change in
the log of the odds associated with a unit change in that variable, again
holding all other variables constant. But as noted previously, for the logit
model the rate of change in the probability of an event happening is given
by βj Pi(1− Pi), where βj is the (partial regression) coefficient of the jth re-
gressor. But in evaluating Pi , all the variables included in the analysis are
involved.

In the probit model, as we saw earlier, the rate of change in the probabil-
ity is somewhat complicated and is given by βj f (Zi), where f (Zi) is the den-
sity function of the standard normal variable and Zi = β1 + β2X2i + · · · +
βkXki , that is, the regression model used in the analysis.

Thus, in both the logit and probit models all the regressors are involved
in computing the changes in probability, whereas in the LPM only the jth
regressor is involved. This difference may be one reason for the early popu-
larity of the LPM model.

15.10 LOGIT AND PROBIT MODELS

Although for our grade example LPM, logit, and probit give qualitatively
similar results, we will confine our attention to logit and probit models be-
cause of the problems with the LPM noted earlier. Between logit and probit,
which model is preferable? In most applications the models are quite simi-
lar, the main difference being that the logistic distribution has slightly fatter
tails, which can be seen from Figure 15.6. That is to say, the conditional
probability Pi approaches zero or one at a slower rate in logit than in probit.
This can be seen more clearly from Table 15.15. Therefore, there is no com-
pelling reason to choose one over the other. In practice many researchers
choose the logit model because of its comparative mathematical simplicity.
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TABLE 15.15 VALUES OF CUMULATIVE PROBABILITY FUNCTIONS

Cumulative normal Cumulative logistic

Z P1(Z ) =
1√
2π

∫ z

−∞
e−s

2/2ds P2(Z ) =
1

1+ e−z

−3.0 0.0013 0.0474

−2.0 0.0228 0.1192

−1.5 0.0668 0.1824

−1.0 0.1587 0.2689

−0.5 0.3085 0.3775

0 0.5000 0.5000

0.5 0.6915 0.6225

1.0 0.8413 0.7311

1.5 0.9332 0.8176

2.0 0.9772 0.8808

3.0 0.9987 0.9526

34T. Amemiya, “Qualitative Response Model: A Survey,” Journal of Economic Literature,
vol. 19, 1981, pp. 481–536. 

Though the models are similar, one has to be careful in interpreting the
coefficients estimated by the two models. For example, for our grade exam-
ple, the coefficient of GPA of 1.6258 of the probit model and 2.8261 of the
logit model are not directly comparable. The reason is that, although the
standard logistic (the basis of logit) and the standard normal distributions
(the basis of probit) both have a mean value of zero, their variances are
different; 1 for the standard normal (as we already know) and π2/3 for the
logistic distribution, where π ≈ 22/7. Therefore, if you multiply the probit
coefficient by about 1.81 (which is approximately = π/

√
3), you will get ap-

proximately the logit coefficient. For our example, the probit coefficient of
GPA is 1.6258. Multiplying this by 1.81, we obtain 2.94, which is close to the
logit coefficient. Alternatively, if you multiply a logit coefficient by 0.55
(= 1/1.81), you will get the probit coefficient. Amemiya, however, suggests
multiplying a logit estimate by 0.625 to get a better estimate of the corre-
sponding probit estimate.34 Conversely, multiplying a probit coefficient by
1.6 (= 1/0.625) gives the corresponding logit coefficient.

Incidentally, Amemiya has also shown that the coefficients of LPM and
logit models are related as follows:

βLPM = 0.25βlogit except for intercept

and

βLPM = 0.25βlogit + 0.5 for intercept

We leave it to the reader to find out if these approximations hold for our
grade example.
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35A censored sample should be distinguished from a truncated sample in which infor-
mation on the regressors is available only if the regressand is observed. We will not pursue
this topic here, but the interested reader may consult William H. Greene, Econometric Analy-
sis, Prentice Hall, 4th ed., Englewood Cliffs, N.J., Chap. 19. For an intuitive discussion, see
Peter Kennedy, A Guide to Econometrics, The MIT Press, Cambridge, Mass., 4th ed., 1998,
Chap. 16.

36The bias arises from the fact that if we consider only the n1 observations and omit the oth-
ers, there is no guarantee that E(ui) will be necessarily zero. And without E(ui) = 0 we cannot
guarantee that the OLS estimates will be unbiased. This bias can be readily seen from the dis-
cussion in App. 3A, Eqs. (4) and (5).

15.11 THE TOBIT MODEL

An extension of the probit model is the tobit model originally developed by
James Tobin, the Nobel laureate economist. To explain this model, we con-
tinue with our home ownership example. In the probit model our concern
was with estimating the probability of owning a house as a function of some
socioeconomic variables. In the tobit model our interest is in finding out
the amount of money a person or family spends on a house in relation to
socioeconomic variables. Now we face a dilemma here: If a consumer does
not purchase a house, obviously we have no data on housing expenditure
for such consumers; we have such data only on consumers who actually
purchase a house.

Thus consumers are divided into two groups, one consisting of, say, n1

consumers about whom we have information on the regressors (say, in-
come, mortgage interest rate, number of people in the family, etc.) as well as
the regressand (amount of expenditure on housing) and another consist-
ing of n2 consumers about whom we have information only on the regres-
sors but not on the regressand. A sample in which information on the
regressand is available only for some observations is known as a censored
sample.35 Therefore, the tobit model is also known as a censored regression
model. Some authors call such models limited dependent variable re-
gression models because of the restriction put on the values taken by the
regressand.

Statistically, we can express the tobit model as

Yi = β1 + β2Xi + ui if RHS > 0
(15.11.1)

= 0 otherwise

where RHS = right-hand side. Note: Additional X variables can be easily
added to the model.

Can we estimate regression (15.11.1) using only n1 observations and not
worry about the remaining n2 observations? The answer is no, for the OLS
estimates of the parameters obtained from the subset of n1 observations will
be biased as well as inconsistent; that is, they are biased even asymptotically.36

To see this, consider Figure 15.7. As the figure shows, if Y is not observed
(because of censoring), all such observations (= n2), denoted by crosses, will


