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17
DYNAMIC
ECONOMETRIC MODELS:
AUTOREGRESSIVE AND
DISTRIBUTED-LAG MODELS

In regression analysis involving time series data, if the regression model
includes not only the current but also the lagged (past) values of the ex-
planatory variables (the X ’s), it is called a distributed-lag model. If the
model includes one or more lagged values of the dependent variable among
its explanatory variables, it is called an autoregressive model. Thus,

Yt = α + β0Xt + β1Xt−1 + β2Xt−2 + ut

represents a distributed-lag model, whereas

Yt = α + βXt + γYt−1 + ut

is an example of an autoregressive model. The latter are also known as
dynamic models since they portray the time path of the dependent variable
in relation to its past value(s).

Autoregressive and distributed-lag models are used extensively in econo-
metric analysis, and in this chapter we take a close look at such models with
a view to finding out the following:

1. What is the role of lags in economics?
2. What are the reasons for the lags?
3. Is there any theoretical justification for the commonly used lagged

models in empirical econometrics?
4. What is the relationship, if any, between autoregressive and

distributed-lag models? Can one be derived from the other?
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5. What are some of the statistical problems involved in estimating such
models?

6. Does a lead–lag relationship between variables imply causality? If so,
how does one measure it?

17.1 THE ROLE OF “TIME,’’ OR “LAG,’’ IN ECONOMICS

In economics the dependence of a variable Y (the dependent variable) on
another variable(s) X (the explanatory variable) is rarely instantaneous.
Very often, Y responds to X with a lapse of time. Such a lapse of time is
called a lag. To illustrate the nature of the lag, we consider several examples.

By the end of the third year, the person’s annual con-

sumption expenditure will be increased by $1800. We

can thus write the consumption function as

Yt = constant+ 0.4Xt + 0.3Xt−1 + 0.2Xt−2 + ut

(17.1.1)

where Y is consumption expenditure and X is income.

Equation (17.1.1) shows that the effect of an increase

in income of $2000 is spread, or distributed, over a pe-

riod of 3 years. Models such as (17.1.1) are therefore

called distributed-lag models because the effect of a

given cause (income) is spread over a number of time

periods. Geometrically, the distributed-lag model (17.1.1)

is shown in Figure 17.1, or alternatively, in Figure 17.2.

(Continued)

EXAMPLE 17.1

THE CONSUMPTION FUNCTION

Suppose a person receives a salary increase of $2000

in annual pay, and suppose that this is a “permanent’’ in-

crease in the sense that the increase in salary is main-

tained. What will be the effect of this increase in income

on the person’s annual consumption expenditure?

Following such a gain in income, people usually do

not rush to spend all the increase immediately. Thus, our

recipient may decide to increase consumption expendi-

ture by $800 in the first year following the salary increase

in income, by another $600 in the next year, and by an-

other $400 in the following year, saving the remainder.
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FIGURE 17.1 Example of distributed lags.
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1Technically, β0 is the partial derivative of Y with respect to Xt, β1 that with respect to
Xt−1, β2 that with respect to Xt−2, and so forth. Symbolically, ∂Yt/∂Xt−k = βk.

EXAMPLE 17.1 (Continued)
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FIGURE 17.2
The effect of a unit change in X at time t on Y at time t and subsequent time periods.

More generally we may write

Yt = α + β0Xt + β1Xt−1 + β2Xt−2 + · · · + βkXt−k + ut (17.1.2)

which is a distributed-lag model with a finite lag of k time periods. The coef-
ficient β0 is known as the short-run, or impact, multiplier because it gives
the change in the mean value of Y following a unit change in X in the same
time period.1 If the change in X is maintained at the same level thereafter,
then, (β0 + β1) gives the change in (the mean value of) Y in the next period,
(β0 + β1 + β2) in the following period, and so on. These partial sums are called
interim, or intermediate, multipliers. Finally, after k periods we obtain

k∑

i=0

βi = β0 + β1 + β2 + · · · + βk = β (17.1.3)

which is known as the long-run, or total, distributed-lag multiplier, pro-
vided the sum β exists (to be discussed elsewhere).

If we define

β*
i =

βi∑
βi

=
βi

β
(17.1.4)

we obtain “standardized’’ βi . Partial sums of the standardized βi then give
the proportion of the long-run, or total, impact felt by a certain time period.

Returning to the consumption regression (17.1.1), we see that the short-
run multiplier, which is nothing but the short-run marginal propensity to
consume (MPC), is 0.4, whereas the long-run multiplier, which is the
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long-run marginal propensity to consume, is 0.4 + 0.3 + 0.2 = 0.9. That is,
following a $1 increase in income, the consumer will increase his or her
level of consumption by about 40 cents in the year of increase, by another
30 cents in the next year, and by yet another 20 cents in the following year.
The long-run impact of an increase of $1 in income is thus 90 cents. If we
divide each βi by 0.9, we obtain, respectively, 0.44, 0.33, and 0.23, which in-
dicate that 44 percent of the total impact of a unit change in X on Y is felt
immediately, 77 percent after one year, and 100 percent by the end of the
second year.

EXAMPLE 17.2

CREATION OF BANK MONEY (DEMAND DEPOSITS)

Suppose the Federal Reserve System pours $1000 of new money into the banking system

by buying government securities. What will be the total amount of bank money, or demand

deposits, that will be generated ultimately?

Following the fractional reserve system, if we assume that the law requires banks to keep

a 20 percent reserve backing for the deposits they create, then by the well-known multiplier

process the total amount of demand deposits that will be generated will be equal to

$1000[1/(1 − 0.8)] = $5000. Of course, $5000 in demand deposits will not be created

overnight. The process takes time, which can be shown schematically in Figure 17.3.

FIGURE 17.3
Cumulative expansion in bank deposits (initial reserve $1000 and
20 percent reserve requirement).
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EXAMPLE 17.3

LINK BETWEEN MONEY AND PRICES

According to the monetarists, inflation is essentially a monetary phenomenon in the sense

that a continuous increase in the general price level is due to the rate of expansion in money

supply far in excess of the amount of money actually demanded by the economic units.

Of course, this link between inflation and changes in money supply is not instantaneous.

Studies have shown that the lag between the two is anywhere from 3 to about 20 quarters.

The results of one such study are shown in Table 17.1,2 where we see the effect of a 1 per-

cent change in the M1B money supply ( = currency + checkable deposits at financial institu-

tions) is felt over a period of 20 quarters. The long-run impact of a 1 percent change in the

money supply on inflation is about 1 (=
∑
mi ), which is statistically significant, whereas the

short-run impact is about 0.04, which is not significant, although the intermediate multipliers

seem to be generally significant. Incidentally, note that since P and M are both in percent

forms, the mi (βi in our usual notation) give the elasticity of P with respect to M, that is, the

percent response of prices to a 1 percent increase in the money supply. Thus, m0 = 0.041

means that for a 1 percent increase in the money supply the short-run elasticity of prices

is about 0.04 percent. The long-term elasticity is 1.03 percent, implying that in the long run a

1 percent increase in the money supply is reflected by just about the same percentage in-

crease in the prices. In short, a 1 percent increase in the money supply is accompanied in the

long run by a 1 percent increase in the inflation rate.

TABLE 17.1 ESTIMATE OF MONEY-PRICE EQUATION: ORIGINAL SPECIFICATION

Sample period: 1955–I to 1969–IV: m21 = 0

Ṗ = −0.146+
20∑
i=0

mi Ṁ−i

(0.395)

Coeff. |t | Coeff. |t | Coeff. |t |

m0 0.041 1.276 m8 0.048 3.249 m16 0.069 3.943

m1 0.034 1.538 m9 0.054 3.783 m17 0.062 3.712

m2 0.030 1.903 m10 0.059 4.305 m18 0.053 3.511

m3 0.029 2.171 m11 0.065 4.673 m19 0.039 3.338

m4 0.030 2.235 m12 0.069 4.795 m20 0.022 3.191

m5 0.033 2.294 m13 0.072 4.694
∑
mi 1.031 7.870

m6 0.037 2.475 m14 0.073 4.468 Mean lag 10.959 5.634

m7 0.042 2.798 m15 0.072 4.202

R̄
2

0.525

se 1.066

D.W. 2.00

Notation: Ṗ = compounded annual rate of change of GNP deflator
Ṁ = compounded annual rate of change of M1B

Source: Keith M. Carlson, “The Lag from Money to Prices,” Review, Federal Reserve Bank of
St. Louis, October 1980, Table 1, p. 4.

2Keith M. Carlson, “The Lag from Money to Prices,’’ Review, Federal Reserve Bank of St.
Louis, October, 1980, Table 1, p. 4.



Gujarati: Basic 

Econometrics, Fourth 

Edition

III. Topics in Econometrics 17. Dynamic Econometric 

Models: Autoregressive 

and Distributed−Lag 

Models

© The McGraw−Hill 

Companies, 2004

CHAPTER SEVENTEEN: DYNAMIC ECONOMETRIC MODELS 661

3Zvi Griliches, “Distributed Lags: A Survey,’’ Econometrica, vol. 36, no. 1, January 1967,
pp. 16–49.

EXAMPLE 17.4

LAG BETWEEN R&D EXPENDITURE AND PRODUCTIVITY

The decision to invest in research and development (R&D) expenditure and its ultimate pay-

off in terms of increased productivity involve considerable lag, actually several lags, such as,

“. . . the lag between the investment of funds and the time inventions actually begin to appear,

the lag between the invention of an idea or device and its development up to a commercially

applicable stage, and the lag which is introduced by the process of diffusion: it takes time

before all the old machines are replaced by the better new ones.’’3

EXAMPLE 17.5

THE J CURVE OF INTERNATIONAL ECONOMICS

Students of international economics are familiar with what is called the J curve, which shows

the relationship between trade balance and depreciation of currency. Following deprecia-

tion of a country’s currency (e.g., due to devaluation), initially the trade balance deteriorates

but eventually it improves, assuming other things are the same. The curve is as shown in

Figure 17.4.

2
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Time

Real depreciation takes

place and J curve begins

Current account

(in domestic output units)

Long-run effect of

real depreciation

on the current

account

End of
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FIGURE 17.4 The J curve.

Source: Paul R. Krugman and Maurice Obstfeld, International Economics:

Theory and Practice, 3d ed., Harper Collins, New York, 1994, p. 465.
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4This section leans heavily on Marc Nerlove, Distributed Lags and Demand Analysis for Agri-
cultural and Other Commodities, Agricultural Handbook No. 141, U.S. Department of Agricul-
ture, June 1958.

EXAMPLE 17.6

THE ACCELERATOR MODEL OF INVESTMENT

In its simplest form, the acceleration principle of investment theory states that investment is

proportional to changes in output. Symbolically,

I t = β(Xt − Xt−1) β > 0 (17.1.5)

where I t is investment at time t, Xt is output at time t, and Xt−1 is output at time (t − 1).

The preceding examples are only a sample of the use of lag in economics.
Undoubtedly, the reader can produce several examples from his or her own
experience.

17.2 THE REASONS FOR LAGS4

Although the examples cited in Section 17.1 point out the nature of lagged
phenomena, they do not fully explain why lags occur. There are three main
reasons:

1. Psychological reasons. As a result of the force of habit (inertia), peo-
ple do not change their consumption habits immediately following a price
decrease or an income increase perhaps because the process of change may
involve some immediate disutility. Thus, those who become instant million-
aires by winning lotteries may not change the lifestyles to which they were
accustomed for a long time because they may not know how to react to such
a windfall gain immediately. Of course, given reasonable time, they may
learn to live with their newly acquired fortune. Also, people may not know
whether a change is “permanent’’ or “transitory.’’ Thus, my reaction to an
increase in my income will depend on whether or not the increase is per-
manent. If it is only a nonrecurring increase and in succeeding periods my
income returns to its previous level, I may save the entire increase, whereas
someone else in my position might decide to “live it up.’’

2. Technological reasons. Suppose the price of capital relative to labor
declines, making substitution of capital for labor economically feasible. Of
course, addition of capital takes time (the gestation period). Moreover, if
the drop in price is expected to be temporary, firms may not rush to sub-
stitute capital for labor, especially if they expect that after the temporary
drop the price of capital may increase beyond its previous level. Sometimes,
imperfect knowledge also accounts for lags. At present the market for per-
sonal computers is glutted with all kinds of computers with varying features
and prices. Moreover, since their introduction in the late 1970s, the prices of
most personal computers have dropped dramatically. As a result, prospective
consumers for the personal computer may hesitate to buy until they have
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5If there is more than one explanatory variable in the model, each variable may have a
lagged effect on Y. For simplicity only, we assume one explanatory variable.

6In practice, however, the coefficients of the distant X values are expected to have negligible
effect on Y.

had time to look into the features and prices of all the competing brands.
Moreover, they may hesitate to buy in the expectation of further decline in
price or innovations.

3. Institutional reasons. These reasons also contribute to lags. For ex-
ample, contractual obligations may prevent firms from switching from one
source of labor or raw material to another. As another example, those who
have placed funds in long-term savings accounts for fixed durations such as
1 year, 3 years, or 7 years, are essentially “locked in’’ even though money
market conditions may be such that higher yields are available elsewhere.
Similarly, employers often give their employees a choice among several
health insurance plans, but once a choice is made, an employee may not
switch to another plan for at least 1 year. Although this may be done for ad-
ministrative convenience, the employee is locked in for 1 year.

For the reasons just discussed, lag occupies a central role in economics.
This is clearly reflected in the short-run–long-run methodology of econom-
ics. It is for this reason we say that short-run price or income elasticities
are generally smaller (in absolute value) than the corresponding long-run
elasticities or that short-run marginal propensity to consume is generally
smaller than long-run marginal propensity to consume.

17.3 ESTIMATION OF DISTRIBUTED-LAG MODELS

Granted that distributed-lag models play a highly useful role in economics,
how does one estimate such models? Specifically, suppose we have the fol-
lowing distributed-lag model in one explanatory variable:5

Yt = α + β0Xt + β1Xt−1 + β2Xt−2 + · · · + ut (17.3.1)

where we have not defined the length of the lag, that is, how far back into
the past we want to go. Such a model is called an infinite (lag) model,
whereas a model of the type (17.1.2) is called a finite (lag) distributed-lag
model because the length of the lag k is specified. We shall continue to use
(17.3.1) because it is easy to handle mathematically, as we shall see.6

How do we estimate the α and β ’s of (17.3.1)? We may adopt two ap-
proaches: (1) ad hoc estimation and (2) a priori restrictions on the β ’s by
assuming that the β ’s follow some systematic pattern. We shall consider ad
hoc estimation in this section and the other approach in Section 17.4.

Ad Hoc Estimation of Distributed-Lag Models

Since the explanatory variable Xt is assumed to be nonstochastic (or at least
uncorrelated with the disturbance term ut), Xt−1, Xt−2, and so on, are non-
stochastic, too. Therefore, in principle, the ordinary least squares (OLS) can
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7F. F. Alt, “Distributed Lags,’’ Econometrica, vol. 10, 1942, pp. 113–128.
8J. Tinbergen, “Long-Term Foreign Trade Elasticities,’’ Metroeconomica, vol. 1, 1949,

pp. 174–185.
9If the lag length, k, is incorrectly specified, we will have to contend with the problem of mis-

specification errors discussed in Chap. 13. Also keep in mind the warning about data mining.

be applied to (17.3.1). This is the approach taken by Alt7 and Tinbergen.8

They suggest that to estimate (17.3.1) one may proceed sequentially; that is,
first regress Yt on Xt, then regress Yt on Xt and Xt−1, then regress Yt on
Xt, Xt−1, and Xt−2, and so on. This sequential procedure stops when the
regression coefficients of the lagged variables start becoming statistically
insignificant and/or the coefficient of at least one of the variables changes
signs from positive to negative or vice versa. Following this precept, Alt
regressed fuel oil consumption Y on new orders X. Based on the quarterly
data for the period 1930–1939, the results were as follows:

Ŷt = 8.37 + 0.171Xt

Ŷt = 8.27 + 0.111Xt + 0.064Xt−1

Ŷt = 8.27 + 0.109Xt + 0.071Xt−1 − 0.055Xt−2

Ŷt = 8.32 + 0.108Xt + 0.063Xt−1 + 0.022Xt−2 − 0.020Xt−3

Alt chose the second regression as the “best’’ one because in the last two
equations the sign of Xt−2 was not stable and in the last equation the sign of
Xt−3 was negative, which may be difficult to interpret economically.

Although seemingly straightforward, ad hoc estimation suffers from
many drawbacks, such as the following:

1. There is no a priori guide as to what is the maximum length of the lag.9

2. As one estimates successive lags, there are fewer degrees of freedom
left, making statistical inference somewhat shaky. Economists are not usu-
ally that lucky to have a long series of data so that they can go on estimating
numerous lags.

3. More importantly, in economic time series data, successive values
(lags) tend to be highly correlated; hence multicollinearity rears its ugly
head. As noted in Chapter 10, multicollinearity leads to imprecise estimation;
that is, the standard errors tend to be large in relation to the estimated coef-
ficients. As a result, based on the routinely computed t ratios, we may tend to
declare (erroneously), that a lagged coefficient(s) is statistically insignificant.

4. The sequential search for the lag length opens the researcher to the
charge of data mining. Also, as we noted in Section 13.4, the nominal and
true level of significance to test statistical hypotheses becomes an important
issue in such sequential searches [see Eq. (13.4.2)].

In view of the preceding problems, the ad hoc estimation procedure has
very little to recommend it. Clearly, some prior or theoretical considerations
must be brought to bear upon the various β ’s if we are to make headway
with the estimation problem.



Gujarati: Basic 

Econometrics, Fourth 

Edition

III. Topics in Econometrics 17. Dynamic Econometric 

Models: Autoregressive 

and Distributed−Lag 

Models

© The McGraw−Hill 

Companies, 2004

CHAPTER SEVENTEEN: DYNAMIC ECONOMETRIC MODELS 665

17.4 THE KOYCK APPROACH TO DISTRIBUTED-LAG MODELS

Koyck has proposed an ingenious method of estimating distributed-lag
models. Suppose we start with the infinite lag distributed-lag model (17.3.1).
Assuming that the β ’s are all of the same sign, Koyck assumes that they de-
cline geometrically as follows.10

(17.4.1)11

where λ, such that 0 < λ < 1, is known as the rate of decline, or decay, of the
distributed lag and where 1 − λ is known as the speed of adjustment.

What (17.4.1) postulates is that each successive β coefficient is numeri-
cally less than each preceding β (this statement follows since λ < 1), imply-
ing that as one goes back into the distant past, the effect of that lag on Yt be-
comes progressively smaller, a quite plausible assumption. After all, current
and recent past incomes are expected to affect current consumption expen-
diture more heavily than income in the distant past. Geometrically, the
Koyck scheme is depicted in Figure 17.5.

βk = β0λ
k k = 0, 1, . . .

10L. M. Koyck, Distributed Lags and Investment Analysis, North Holland Publishing Com-
pany, Amsterdam, 1954.

11Sometimes this is also written as

βk = β0(1 − λ)λk k = 0, 1, . . .

for reasons given in footnote 12.

λ = −1
2

Lag (time)
0

βk

λ

λ = −3
4

λ

λ = −1
4

λ

FIGURE 17.5 Koyck scheme (declining geometric distribution).
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As this figure shows, the value of the lag coefficient βk depends, apart
from the common β0; on the value of λ. The closer λ is to 1, the slower the
rate of decline in βk, whereas the closer it is to zero, the more rapid the
decline in βk. In the former case, distant past values of X will exert sizable
impact on Yt, whereas in the latter case their influence on Yt will peter out
quickly. This pattern can be seen clearly from the following illustration:

λ β0 β1 β2 β3 β4 β5 · · · β10

0.75 β0 0.75β0 0.56β0 0.42β0 0.32β0 0.24β0 · · · 0.06β0

0.25 β0 0.25β0 0.06β0 0.02β0 0.004β0 0.001β0 · · · 0.0

Note these features of the Koyck scheme: (1) By assuming nonnegative
values for λ, Koyck rules out the β ’s from changing sign; (2) by assuming
λ < 1, he gives lesser weight to the distant β ’s than the current ones; and
(3) he ensures that the sum of the β ’s, which gives the long-run multiplier, is
finite, namely,

∞∑

k=0

βk = β0

(
1

1 − λ

)
(17.4.2)12

As a result of (17.4.1), the infinite lag model (17.3.1) may be written as

Yt = α + β0Xt + β0λXt−1 + β0λ
2Xt−2 + · · · + ut (17.4.3)

As it stands, the model is still not amenable to easy estimation since a large
(literally infinite) number of parameters remain to be estimated and the
parameter λ enters in a highly nonlinear form: Strictly speaking, the method
of linear (in the parameters) regression analysis cannot be applied to such a
model. But now Koyck suggests an ingenious way out. He lags (17.4.3) by
one period to obtain

Yt−1 = α + β0Xt−1 + β0λXt−2 + β0λ
2Xt−3 + · · · + ut−1 (17.4.4)

He then multiplies (17.4.4) by λ to obtain

λYt−1 = λα + λβ0Xt−1 + β0λ
2Xt−2 + β0λ

3Xt−3 + · · · + λut−1 (17.4.5)

12This is because

∑
βk = β0(1 + λ+ λ2 + λ3 + · · ·) = β0

(
1

1 − λ

)

since the expression in the parentheses on the right side is an infinite geometric series whose
sum is 1/(1 − λ) provided 0 < λ < 1. In passing, note that if βk is as defined in footnote 11,∑

βk = β0(1 − λ)/(1 − λ) = β0 thus ensuring that the weights (1 − λ)λk sum to one.
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Subtracting (17.4.5) from (17.4.3), he gets

Yt − λYt−1 = α(1 − λ) + β0Xt + (ut − λut−1) (17.4.6)

or, rearranging,

where vt = (ut − λut−1), a moving average of ut and ut−1.
The procedure just described is known as the Koyck transformation.

Comparing (17.4.7) with (17.3.1), we see the tremendous simplification
accomplished by Koyck. Whereas before we had to estimate α and an
infinite number of β ’s, we now have to estimate only three unknowns: α,
β0, and λ. Now there is no reason to expect multicollinearity. In a sense
multicollinearity is resolved by replacing Xt−1, Xt−2, . . . , by a single vari-
able, namely, Yt−1. But note the following features of the Koyck trans-
formation:

1. We started with a distributed-lag model but ended up with an autore-
gressive model because Yt−1 appears as one of the explanatory variables.
This transformation shows how one can “convert’’ a distributed-lag model
into an autoregressive model.

2. The appearance of Yt−1 is likely to create some statistical problems.
Yt−1, like Yt, is stochastic, which means that we have a stochastic explana-
tory variable in the model. Recall that the classical least-squares theory is
predicated on the assumption that the explanatory variables either are non-
stochastic or, if stochastic, are distributed independently of the stochastic
disturbance term. Hence, we must find out if Yt−1 satisfies this assumption.
(We shall return to this point in Section 17.8.)

3. In the original model (17.3.1) the disturbance term was ut, whereas in
the transformed model it is vt = (ut − λut−1). The statistical properties of vt
depend on what is assumed about the statistical properties of ut, for, as
shown later, if the original ut ’s are serially uncorrelated, the vt ’s are serially
correlated. Therefore, we may have to face up to the serial correlation prob-
lem in addition to the stochastic explanatory variable Yt−1. We shall do that
in Section 17.8.

4. The presence of lagged Y violates one of the assumptions underlying
the Durbin–Watson d test. Therefore, we will have to develop an alternative
to test for serial correlation in the presence of lagged Y. One alternative is
the Durbin h test, which is discussed in Section 17.10.

As we saw in (17.1.4), the partial sums of the standardized βi tell us the
proportion of the long-run, or total, impact felt by a certain time period. In

(17.4.7)Yt = α(1 − λ) + β0Xt + λYt−1 + vt
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practice, though, the mean or median lag is often used to characterize the
nature of the lag structure of a distributed lag model.

The Median Lag

The median lag is the time required for the first half, or 50 percent, of the
total change in Y following a unit sustained change in X. For the Koyck
model, the median lag is as follows (see exercise 17.6):

Thus, if λ = 0.2 the median lag is 0.4306, but if λ = 0.8 the median lag is
3.1067. Verbally, in the former case 50 percent of the total change in Y is
accomplished in less than half a period, whereas in the latter case it takes
more than 3 periods to accomplish the 50 percent change. But this contrast
should not be surprising, for as we know, the higher the value of λ the lower
the speed of adjustment, and the lower the value of λ the greater the speed
of adjustment.

The Mean Lag

Provided all βk are positive, the mean, or average, lag is defined as

which is simply the weighted average of all the lags involved, with the re-
spective β coefficients serving as weights. In short, it is a lag-weighted
average of time. For the Koyck model the mean lag is (see exercise 17.7)

Thus, if λ = 1
2
, the mean lag is 1.

From the preceding discussion it is clear that the median and mean lags
serve as a summary measure of the speed with which Y responds to X. In the
example given in Table 17.1 the mean lag is about 11 quarters, showing that
it takes quite some time, on the average, for the effect of changes in the
money supply to be felt on price changes.

(17.4.10)Koyck model: Mean lag =
λ

1 − λ

(17.4.9)Mean lag =

∑∞
0 kβk∑∞
0 βk

(17.4.8)Koyck model: Median lag = −
log 2

log λ
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EXAMPLE 17.7

PER CAPITA PERSONAL CONSUMPTION

This example examines per capita personal consumption expenditure (PPCE) in relation to

per capita disposable income (PPDI) in the United States for the period 1970–1999, all data

in chained 1996 dollars. As an illustration of the Koyck model, consider the data given in

Table 17.2. Regression of PPCE on PPDI and lagged PPCE gave the following results:

P̂PCEt = −1242.169 + 0.6033PPDIt + 0.4106PPCEt−1

se = (402.5784) (0.1502) (0.1546)
(17.4.11)

t = (−3.0855) (4.0155) (2.6561)

R 2 = 0.9926 d = 1.0056 Durbin h = 5.119

Note: The calculation of Durbin h is discussed in Section 17.10.

If we assume that this model resulted from a Koyck-type transformation, λ is 0.4106. The

median lag is:

−
log (2)

logλ
= −

log (2)

log (0.4106)
= 0.7786

and the mean lag is:

λ

1− λ
=

0.4106

0.5894
= 0.6966

In words, it seems that PPCE adjusts to PPDI within a relatively short time.

TABLE 17.2 PPCE AND PPDI, 1970–1999

Observation PPCE PPDI Observation PPCE PPDI

1970 11,300 12,823 1985 16,020 18,229

1971 11,581 13,218 1986 16,541 18,641

1972 12,149 13,692 1987 16,398 18,870

1973 12,626 14,496 1988 17,463 19,522

1974 12,407 14,268 1989 17,760 19,833

1975 12,551 14,393 1990 17,899 20,058

1976 13,155 14,873 1991 17,677 19,919

1977 13,583 15,256 1992 17,989 20,318

1978 14,035 15,845 1993 18,399 20,384

1979 14,230 16,120 1994 18,910 20,709

1980 14,021 16,063 1995 19,294 21,055

1981 14,069 16,265 1996 19,727 21,385

1982 14,105 16,328 1997 20,232 21,838

1983 14,741 16,673 1998 20,989 22,672

1984 15,401 17,799 1999 21,901 23,191

Notes: PPCE = per capita personal consumption expenditure, in 1996 dollars.
PPDI = per capita personal disposable income, in 1996 dollars.

Source: Economic Report of the President, 2001, Table B-31, p. 311.
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17.5 RATIONALIZATION OF THE KOYCK MODEL:

THE ADAPTIVE EXPECTATIONS MODEL

Although very neat, the Koyck model (17.4.7) is ad hoc since it was obtained
by a purely algebraic process; it is devoid of any theoretical underpinning.
But this gap can be filled if we start from a different perspective. Suppose
we postulate the following model:

(17.5.1)

where Y = demand for money (real cash balances)
X* = equilibrium, optimum, expected long-run or normal rate of 

interest
u = error term

Equation (17.5.1) postulates that the demand for money is a function of
expected (in the sense of anticipation) rate of interest.

Since the expectational variable X* is not directly observable, let us pro-
pose the following hypothesis about how expectations are formed:

(17.5.2)13

where γ, such that 0 < γ ≤ 1, is known as the coefficient of expectation.
Hypothesis (17.5.2) is known as the adaptive expectation, progressive
expectation, or error learning hypothesis, popularized by Cagan14 and
Friedman.15

What (17.5.2) implies is that “economic agents will adapt their expecta-
tions in the light of past experience and that in particular they will learn
from their mistakes.’’16 More specifically, (17.5.2) states that expectations
are revised each period by a fraction γ of the gap between the current value
of the variable and its previous expected value. Thus, for our model this
would mean that expectations about interest rates are revised each period
by a fraction γ of the discrepancy between the rate of interest observed in
the current period and what its anticipated value had been in the previous
period. Another way of stating this would be to write (17.5.2) as

X*
t = γ Xt + (1 − γ )X*

t−1 (17.5.3)

X*
t − X*

t−1 = γ (Xt − X*
t−1)

Yt = β0 + β1X
*
t + ut

13Sometimes the model is expressed as

X*
t − X*

t−1 = γ (Xt−1 − X*
t−1)

14P. Cagan, “The Monetary Dynamics of Hyperinflations,’’ in M. Friedman (ed.), Studies in
the Quantity Theory of Money, University of Chicago Press, Chicago, 1956.

15Milton Friedman, A Theory of the Consumption Function, National Bureau of Economic
Research, Princeton University Press, Princeton, N.J., 1957.

16G. K. Shaw, Rational Expectations: An Elementary Exposition, St. Martin’s Press, New
York, 1984, p. 25.
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which shows that the expected value of the rate of interest at time t is a
weighted average of the actual value of the interest rate at time t and its
value expected in the previous period, with weights of γ and 1 − γ, respec-
tively. If γ = 1, X*

t = Xt, meaning that expectations are realized immediately
and fully, that is, in the same time period. If, on the other hand, γ = 0, X*

t =

X*
t−1, meaning that expectations are static, that is, “conditions prevailing

today will be maintained in all subsequent periods. Expected future values
then become identified with current values.’’17

Substituting (17.5.3) into (17.5.1), we obtain

Yt = β0 + β1[γ Xt + (1 − γ )X*
t−1] + ut

= β0 + β1γ Xt + β1(1 − γ )X*
t−1 + ut

(17.5.4)

Now lag (17.5.1) one period, multiply it by 1 − γ, and subtract the product
from (17.5.4). After simple algebraic manipulations, we obtain

(17.5.5)

where vt = ut − (1 − γ)ut−1.
Before proceeding any further, let us note the difference between (17.5.1)

and (17.5.5). In the former, β1 measures the average response of Y to a unit
change in X*, the equilibrium or long-run value of X. In (17.5.5), on the
other hand, γβ1 measures the average response of Y to a unit change in the
actual or observed value of X. These responses will not be the same unless,
of course, γ = 1, that is, the current and long-run values of X are the same.
In practice, we first estimate (17.5.5). Once an estimate of γ is obtained from
the coefficient of lagged Y, we can easily compute β1 by simply dividing the
coefficient of Xt ( = γβ1) by γ.

The similarity between the adaptive expectation model (17.5.5) and the
Koyck model (17.4.7) should be readily apparent although the interpreta-
tions of the coefficients in the two models are different. Note that like the
Koyck model, the adaptive expectations model is autoregressive and its
error term is similar to the Koyck error term. We shall return to the estima-
tion of the adaptive expectations model in Section 17.8 and to some exam-
ples in Section 17.12. Now that we have sketched the adaptive expectations
(AE) model, how realistic is it? It is true that it is more appealing than the
purely algebraic Koyck approach, but is the AE hypothesis reasonable? In
favor of the AE hypothesis one can say the following:

It provides a fairly simple means of modelling expectations in economic theory
whilst postulating a mode of behaviour upon the part of economic agents which

Yt = γβ0 + γβ1Xt + (1 − γ )Yt−1 + ut − (1 − γ )ut−1

= γβ0 + γβ1Xt + (1 − γ )Yt−1 + vt

17Ibid., pp. 19–20.
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seems eminently sensible. The belief that people learn from experience is obvi-
ously a more sensible starting point than the implicit assumption that they are
totally devoid of memory, characteristic of static expectations thesis. Moreover,
the assertion that more distant experiences exert a lesser effect than more recent
experience would accord with common sense and would appear to be amply con-
firmed by simple observation.18

Until the advent of the rational expectations (RE) hypothesis, initially
put forward by J. Muth and later propagated by Robert Lucas and Thomas
Sargent, the AE hypothesis was quite popular in empirical economics. The
proponents of the RE hypothesis contend that the AE hypothesis is inade-
quate because it relies solely on the past values of a variable in formulating
expectations,19 whereas the RE hypothesis assumes, “that individual eco-
nomic agents use current available and relevant information in forming their
expectations and do not rely purely upon past experience.’’20 In short, the
RE hypothesis contends that “expectations are ‘rational’ in the sense that
they efficiently incorporate all information available at the time the expec-
tation is formulated’’21 and not just the past information.

The criticism directed by the RE proponents against the AE hypothesis is
well-taken, although there are many critics of the RE hypothesis itself.22

This is not the place to get bogged down with this rather heady material.
Perhaps one could agree with Stephen McNees that, “At best, the adaptive
expectations assumption can be defended only as a ‘working hypothesis’
proxying for a more complex, perhaps changing expectations formulation
mechanism.’’23

EXAMPLE 17.8 

EXAMPLE 17.7 REVISITED

If we consider the model given in Eq. (17.4.11), as generated by the adaptive expectations

mechanism (i.e., PPCE as a function of expected PPDI), then γ, the expectations coefficient

can be obtained from (17.5.5) as: γ = 1 − 0.4106 = 0.5894. Then, following the preceding

discussion about the AE model, we can say that about 59 percent of the discrepancy be-

tween actual and expected PPCE is eliminated within a year.

18Ibid., p. 27.
19Like the Koyck model, it can be shown that, under AE, expectations of a variable are an

exponentially weighted average of past values of that variable.
20G. K. Shaw, op. cit., p. 47. For additional details of the RE hypothesis, see Steven M.

Sheffrin, Rational Expectations, Cambridge University Press, New York, 1983.
21Stephen K. McNees, “The Phillips Curve: Forward- or Backward-Looking?’’ New England

Economic Review, July–August 1979, p. 50.
22For a recent critical appraisal of the RE hypothesis, see Michael C. Lovell, “Test of the

Rational Expectations Hypothesis,’’ American Economic Review, March 1966, pp. 110–124.
23Stephen K. McNees, op. cit., p. 50.
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17.6 ANOTHER RATIONALIZATION OF THE KOYCK MODEL: 

THE STOCK ADJUSTMENT, OR PARTIAL ADJUSTMENT, MODEL

The adaptive expectation model is one way of rationalizing the Koyck
model. Another rationalization is provided by Marc Nerlove in the so-called
stock adjustment or partial adjustment model (PAM).24 To illustrate this
model, consider the flexible accelerator model of economic theory, which
assumes that there is an equilibrium, optimal, desired, or long-run amount of
capital stock needed to produce a given output under the given state of
technology, rate of interest, etc. For simplicity assume that this desired level
of capital Y*

t is a linear function of output X as follows:

(17.6.1)

Since the desired level of capital is not directly observable, Nerlove postu-
lates the following hypothesis, known as the partial adjustment, or stock
adjustment,  hypothesis:

(17.6.2)25

where δ, such that 0 < δ ≤ 1, is known as the coefficient of adjustment and
where Yt − Yt−1 = actual change and (Y*

t − Yt−1) = desired change.
Since Yt − Yt−1, the change in capital stock between two periods, is noth-

ing but investment, (17.6.2) can alternatively be written as

It = δ(Y*
t − Yt−1) (17.6.3)

where It = investment in time period t.
Equation (17.6.2) postulates that the actual change in capital stock

(investment) in any given time period t is some fraction δ of the desired
change for that period. If δ = 1, it means that the actual stock of capital is
equal to the desired stock; that is, actual stock adjusts to the desired stock
instantaneously (in the same time period). However, if δ = 0, it means that
nothing changes since actual stock at time t is the same as that observed
in the previous time period. Typically, δ is expected to lie between these
extremes since adjustment to the desired stock of capital is likely to be

Yt − Yt−1 = δ(Y*
t − Yt−1)

Y*
t = β0 + β1Xt + ut

24Marc Nerlove, Distributed Lags and Demand Analysis for Agricultural and Other Commodi-
ties, op. cit.

25Some authors do not add the stochastic disturbance term ut to the relation (17.6.1) but
add it to this relation, believing that if the former is truly an equilibrium relation, there is no
scope for the error term, whereas the adjustment mechanism can be imperfect and may re-
quire the disturbance term. In passing, note that (17.6.2) is sometimes also written as

Yt − Yt−1 = δ(Y*
t−1 − Yt−1 )
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FIGURE 17.6 The gradual adjustment of the
capital stock.

incomplete because of rigidity, inertia, contractual obligations, etc.—hence
the name partial adjustment model. Note that the adjustment mechanism
(17.6.2) alternatively can be written as

Yt = δY*
t + (1 − δ)Yt−1 (17.6.4)

showing that the observed capital stock at time t is a weighted average of the
desired capital stock at that time and the capital stock existing in the previ-
ous time period, δ and (1 − δ) being the weights. Now substitution of (17.6.1)
into (17.6.4) gives

(17.6.5)

This model is called the partial adjustment model (PAM).
Since (17.6.1) represents the long-run, or equilibrium, demand for capital

stock, (17.6.5) can be called the short-run demand function for capital stock
since in the short run the existing capital stock may not necessarily be equal
to its long-run level. Once we estimate the short-run function (17.6.5) and
obtain the estimate of the adjustment coefficient δ (from the coefficient of
Yt−1), we can easily derive the long-run function by simply dividing δβ0 and
δβ1 by δ and omitting the lagged Y term, which will then give (17.6.1).

Geometrically, the partial adjustment model can be shown as in Fig-
ure 17.6.26 In this figure Y* is the desired capital stock and Y1 the current
actual capital stock. For illustrative purposes assume that δ = 0.5. This
implies that the firm plans to close half the gap between the actual and the

Yt = δ(β0 + β1Xt + ut) + (1 − δ)Yt−1

= δβ0 + δβ1Xt + (1 − δ)Yt−1 + δut

26This is adapted from Figure 7.4 from Rudiger Dornbusch and Stanley Fischer, Macroeco-
nomics, 3d ed., McGraw-Hill, New York, 1984, p. 216.
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desired stock of capital each period. Thus, in the first period it moves to Y2,
with investment equal to (Y2 − Y1), which in turn is equal to half of (Y* −

Y1). In each subsequent period it closes half the gap between the capital
stock at the beginning of the period and the desired capital stock Y*.

The partial adjustment model resembles both the Koyck and adaptive ex-
pectation models in that it is autoregressive. But it has a much simpler dis-
turbance term: the original disturbance term ut multiplied by a constant δ.
But bear in mind that although similar in appearance, the adaptive expec-
tation and partial adjustment models are conceptually very different. The
former is based on uncertainty (about the future course of prices, interest
rates, etc.), whereas the latter is due to technical or institutional rigidities,
inertia, cost of change, etc. However, both of these models are theoretically
much sounder than the Koyck model.

Since in appearance the adaptive expectations and partial adjustment
models are indistinguishable, the γ coefficient of 0.5894 of the adaptive
expectations model can also be interpreted as the δ coefficient of the stock
adjustment model if we assume that the latter model is operative in the pre-
sent case (i.e., it is the desired or expected PPCE that is linearly related to
the current PDPI).

The important point to keep in mind is that since Koyck, adaptive expec-
tations, and stock adjustment models—apart from the difference in the ap-
pearance of the error term—yield the same final estimating model, one must
be extremely careful in telling the reader which model the researcher is
using and why. Thus, researchers must specify the theoretical underpinning
of their model.

*17.7 COMBINATION OF ADAPTIVE EXPECTATIONS

AND PARTIAL ADJUSTMENT MODELS

Consider the following model:

Y*
t = β0 + β1X

*
t + ut (17.7.1)

where Y*
t = desired stock of capital and X*

t = expected level of output.
Since both Y*

t and X*
t are not directly observable, one could use the par-

tial adjustment mechanism for Y*
t and the adaptive expectations model for

X*
t to arrive at the following estimating equation (see exercise 17.2):

(17.7.2)

Yt = β0δγ + β1δγ Xt + [(1 − γ ) + (1 − δ)]Yt−1

− (1 − δ)(1 − γ )Yt−2 + [δut − δ(1 − γ )ut−1]

= α0 + α1Xt + α2Yt−1 + α3Yt−2 + vt

*Optional.
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where vt = δ[ut − (1 − γ )ut−1]. This model too is autoregressive, the only dif-
ference from the purely adaptive expectations model being that Yt−2 appears
along with Yt−1 as an explanatory variable. Like Koyck and the AE models,
the error term in (17.7.2) follows a moving average process. Another feature
of this model is that although the model is linear in the α’s, it is nonlinear in
the original parameters.

A celebrated application of (17.7.1) has been Friedman’s permanent in-
come hypothesis, which states that “permanent’’ or long-run consumption is
a function of “permanent’’ or long-run income.27

The estimation of (17.7.2) presents the same estimation problems as the
Koyck’s or the AE model in that all these models are autoregressive with
similar error structures. In addition, (17.7.2) involves some nonlinear esti-
mation problems that we consider briefly in exercise 17.10, but do not delve
into in this book.

17.8 ESTIMATION OF AUTOREGRESSIVE MODELS

From our discussion thus far we have the following three models:

Koyck

Yt = α(1 − λ) + β0Xt + λYt−1 + (ut − λut−1) (17.4.7)

Adaptive expectation

Yt = γβ0 + γβ1Xt + (1 − γ)Yt−1 + [ut − (1 − γ)ut−1] (17.5.5)

Partial adjustment

Yt = δβ0 + δβ1Xt + (1 − δ)Yt−1 + δut (17.6.5)

All these models have the following common form:

Yt = α0 + α1Xt + α2Yt−1 + vt (17.8.1)

that is, they are all autoregressive in nature. Therefore, we must now look at
the estimation problem of such models, because the classical least-squares
may not be directly applicable to them. The reason is twofold: the pres-
ence of stochastic explanatory variables and the possibility of serial
correlation.

Now, as noted previously, for the application of the classical least-squares
theory, it must be shown that the stochastic explanatory variable Yt−1 is

27Milton Friedman, A Theory of Consumption Function, Princeton University Press,
Princeton, N.J., 1957.
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distributed independently of the disturbance term vt. To determine whether
this is so, it is essential to know the properties of vt. If we assume that
the original disturbance term ut satisfies all the classical assumptions, such
as E(ut) = 0, var (ut) = σ2 (the assumption of homoscedasticity), and
cov (ut, ut+s) = 0 for s += 0 (the assumption of no autocorrelation), vt may not
inherit all these properties. Consider, for example, the error term in the
Koyck model, which is vt = (ut − λut−1). Given the assumptions about ut, we
can easily show that vt is serially correlated because

E(vtvt−1) = −λσ 2 (17.8.2)28

which is nonzero (unless λ happens to be zero). And since Yt−1 appears in the
Koyck model as an explanatory variable, it is bound to be correlated with vt
(via the presence of ut−1 in it). As a matter of fact, it can be shown that

cov [Yt−1, (ut − λut−1)] = −λσ 2 (17.8.3)

which is the same as (17.8.2). The reader can verify that the same holds true
of the adaptive expectations model.

What is the implication of the finding that in the Koyck model as well as
the adaptive expectations model the stochastic explanatory variable Yt−1 is
correlated with the error term vt? As noted previously, if an explanatory
variable in a regression model is correlated with the stochastic distur-
bance term, the OLS estimators are not only biased but also not even
consistent; that is, even if the sample size is increased indefinitely, the
estimators do not approximate their true population values.29 There-
fore, estimation of the Koyck and adaptive expectation models by the
usual OLS procedure may yield seriously misleading results.

The partial adjustment model is different, however. In this model vt = δut,
where 0 < δ ≤ 1. Therefore, if ut satisfies the assumptions of the classical
linear regression model given previously, so will δut. Thus, OLS estimation
of the partial adjustment model will yield consistent estimates although
the estimates tend to be biased (in finite or small samples).30 Intuitively, the
reason for consistency is this: Although Yt−1 depends on ut−1 and all the

28E(vtvt−1) = E(ut − λut−1)(ut−1 − λut−2)

= −λE(ut−1)
2 since covariances between u’s are zero by assumption

= −λσ 2

29The proof is beyond the scope of this book and may be found in Griliches, op. cit.,
pp. 36–38. However, see Chap. 18 for an outline of the proof in another context. See also
Asatoshi Maeshiro, “Teaching Regressions with a Lagged Dependent Variable and Autocorre-
lated Disturbances,” The Journal of Economic Education,Winter 1996, vol. 27, no. 1, pp. 72–84.

30For proof, see J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984,
pp. 360–362. See also H. E. Doran and J. W. B. Guise, Single Equation Methods in Economet-
rics: Applied Regression Analysis, University of New England Teaching Monograph Series 3,
Armidale, NSW, Australia, 1984, pp. 236–244.
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31Also, as J. Johnston notes (op. cit., p. 350), “[the] pattern of adjustment [suggested by the
partial adjustment model] . . . may sometimes be implausible.’’

32N. Liviatan, “Consistent Estimation of Distributed Lags,’’ International Economic Review,
vol. 4, January 1963, pp. 44–52.

33Such instrumental variables are used frequently in simultaneous equation models (see
Chap. 20).

previous disturbance terms, it is not related to the current error term ut.
Therefore, as long as ut is serially independent, Yt−1 will also be independent
or at least uncorrelated with ut, thereby satisfying an important assumption
of OLS, namely, noncorrelation between the explanatory variable(s) and the
stochastic disturbance term.

Although OLS estimation of the stock, or partial, adjustment model pro-
vides consistent estimation because of the simple structure of the error term
in such a model, one should not assume that it applies rather than the Koyck
or adaptive expectations model.31 The reader is strongly advised against
doing so. A model should be chosen on the basis of strong theoretical con-
siderations, not simply because it leads to easy statistical estimation. Every
model should be considered on its own merit, paying due attention to the
stochastic disturbances appearing therein. If in models such as the Koyck or
adaptive expectations model OLS cannot be straightforwardly applied,
methods need to be devised to resolve the estimation problem. Several alter-
native estimation methods are available although some of them may be com-
putationally tedious. In the following section we consider one such method.

17.9 THE METHOD OF INSTRUMENTAL VARIABLES (IV)

The reason why OLS cannot be applied to the Koyck or adaptive expecta-
tions model is that the explanatory variable Yt−1 tends to be correlated with
the error term vt. If somehow this correlation can be removed, one can
apply OLS to obtain consistent estimates, as noted previously. (Note: There
will be some small sample bias.) How can this be accomplished? Liviatan
has proposed the following solution.32

Let us suppose that we find a proxy for Yt−1 that is highly correlated with
Yt−1 but is uncorrelated with vt, where vt is the error term appearing in the
Koyck or adaptive expectations model. Such a proxy is called an instru-
mental variable (IV).33 Liviatan suggests Xt−1 as the instrumental variable
for Yt−1 and further suggests that the parameters of the regression (17.8.1)
can be obtained by solving the following normal equations:

∑
Yt = nα̂0 + α̂1

∑
Xt + α̂2

∑
Yt−1

∑
YtXt = α̂0

∑
Xt + α̂1

∑
X2
t + α̂2

∑
Yt−1Xt (17.9.1)

∑
YtXt−1 = α̂0

∑
Xt−1 + α̂1

∑
XtXt−1 + α̂2

∑
Yt−1Xt−1
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34To see how the efficiency of the estimators can be improved, consult Lawrence R. Klien,
A Textbook of Econometrics, 2d ed., Prentice-Hall, Englewood Cliffs, N.J., 1974, p. 99. See also
William H. Greene, Econometric Analysis, Macmillan, 2d ed., New York, 1993, pp. 535–538.

35For a condensed discussion of the ML methods, see J. Johnston, op. cit., pp. 366–371, as
well as App. 4A and App. 15A.

Notice that if we were to apply OLS directly to (17.8.1), the usual OLS nor-
mal equations would be (see Section 7.4)

∑
Yt = nα̂0 + α̂1

∑
Xt + α̂2

∑
Yt−1

∑
YtXt = α̂0

∑
Xt + α̂1

∑
X2
t + α̂2

∑
Yt−1Xt (17.9.2)

∑
YtYt−1 = α̂0

∑
Yt−1 + α̂1

∑
XtYt−1 + α̂2

∑
Y2
t−1

The difference between the two sets of normal equations should be readily
apparent. Liviatan has shown that the α’s estimated from (17.9.1) are consis-
tent, whereas those estimated from (17.9.2) may not be consistent because
Yt−1 and vt [= ut − λut−1 or ut − (1 − γ )ut−1] may be correlated whereas Xt
and Xt−1 are uncorrelated with vt. (Why?)

Although easy to apply in practice once a suitable proxy is found, the
Liviatan technique is likely to suffer from the multicollinearity problem be-
cause Xt and Xt−1, which enter in the normal equations of (17.9.1), are likely
to be highly correlated (as noted in Chapter 12, most economic time series
typically exhibit a high degree of correlation between successive values).
The implication, then, is that although the Liviatan procedure yields consis-
tent estimates, the estimators are likely to be inefficient.34

Before we move on, the obvious question is: How does one find a “good’’
proxy for Yt−1 in such a way that, although highly correlated with Yt−1, it is
uncorrelated with vt? There are some suggestions in the literature, which we
take up by way of an exercise (see exercise 17.5). But it must be stated that
finding good proxies is not always easy, in which case the IV method is of lit-
tle practical use and one may have to resort to maximum likelihood estima-
tion techniques, which are beyond the scope of this book.35

Is there a test one can use to find out if the chosen instrument(s) is valid?
Dennis Sargan has developed a test, dubbed the SARG test, for this pur-
pose. The test is described in Appendix 17A, Section 17A.1.

17.10 DETECTING AUTOCORRELATION

IN AUTOREGRESSIVE MODELS: DURBIN h TEST

As we have seen, the likely serial correlation in the errors vt make the esti-
mation problem in the autoregressive model rather complex: In the stock
adjustment model the error term vt did not have (first-order) serial correla-
tion if the error term ut in the original model was serially uncorrelated,
whereas in the Koyck and adaptive expectation models vt was serially
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36J. Durbin, “Testing for Serial Correlation in Least-Squares Regression When Some of the
Regressors Are Lagged Dependent Variables,’’ Econometrica, vol. 38, 1970, pp. 410–421.

correlated even if ut was serially independent. The question, then, is: How
does one know if there is serial correlation in the error term appearing in
the autoregressive models?

As noted in Chapter 12, the Durbin–Watson d statistic may not be used to
detect (first-order) serial correlation in autoregressive models, because the
computed d value in such models generally tends toward 2, which is the
value of d expected in a truly random sequence. In other words, if we rou-
tinely compute the d statistic for such models, there is a built-in bias against
discovering (first-order) serial correlation. Despite this, many researchers
compute the d value for want of anything better. Recently, however, Durbin
himself has proposed a large-sample test of first-order serial correlation in
autoregressive models.36 This test is called the h statistic.

We have already discussed the Durbin h test in exercise 12.36. For conve-
nience, we reproduce the h statistic (with a slight change in notation):

h= ρ̂

√
n

1 − n[var (α̂2)]
(17.10.1)

where n is the sample size, var (α̂2) is the variance of the lagged Yt (= Yt−1)
coefficient in (17.8.1), and ρ̂ is an estimate of the first-order serial correla-
tion ρ , first discussed in Chapter 12.

As noted in exercise 12.36, for large sample, Durbin has shown that,
under the null hypothesis that ρ = 0, the h statistic of (17.10.1) follows the
standard normal distribution. That is,

hasy ∼ N(0, 1) (17.10.2)

where asy means asymptotically.
In practice, as noted in Chapter 12, one can estimate ρ as

ρ̂ ≈ 1 −
d

2
(17.10.3)

It is interesting to observe that although we cannot use the Durbin d to test
for autocorrelation in autoregressive models, we can use it as an input in
computing the h statistic.

Let us illustrate the use of the h statistic with our Example 17.7. In this
example, n= 30, ρ̂ ≈ (1 − d/2) = 0.4972 (note: d = 1.0056), and var (α̂2) =

var (PPCEt−1) = (0.1546)2 = 0.0239. Putting these values in (17.10.1), we
obtain:

h= 0.4972

√
30

1 − 30(0.0239)
= 5.1191 (17.10.4)
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37B. Inder, “An Approximation to the Null Distribution of the Durbin–Watson Statistic in Mod-
els Containing Lagged Dependent Variables,’’Econometric Theory, vol. 2, no. 3, 1986, pp. 413–428.

38J. F. Kiviet, “On the Vigour of Some Misspecification Tests for Modelling Dynamic Rela-
tionships,’’ Review of Economic Studies, vol. 53, no. 173, 1986, pp. 241–262.

39Gabor Korosi, Laszlo Matyas, and Istvan P. Szekely, Practical Econometrics, Ashgate Pub-
lishing Company, Brookfield, Vermont, 1992, p. 92.

40For a similar model, see Gregory C. Chow, “On the Long-Run and Short-Run Demand for
Money,’’ Journal of Political Economy, vol. 74, no. 2, 1966, pp. 111–131. Note that one advantage
of the multiplicative function is that the exponents of the variables give direct estimates of
elasticities (see Chap. 6).

Since this h value has the standard normal distribution under the null
hypothesis, the probability of obtaining such a high h value is very small.
Recall that the probability that a standard normal variate exceeds the value
of ±3 is extremely small. In the present example our conclusion, then, is
that there is (positive) autocorrelation. Of course, bear in mind that h
follows the standard normal distribution asymptotically. Our sample of 30
observations may not be necessarily large.

Note these features of the h statistic.

1. It does not matter how many X variables or how many lagged values
of Y are included in the regression model. To compute h, we need consider
only the variance of the coefficient of lagged Yt−1.

2. The test is not applicable if [n var (α̂2)] exceeds 1. (Why?) In practice,
though, this does not usually happen.

3. Since the test is a large-sample test, its application in small samples
is not strictly justified, as shown by Inder37 and Kiviet.38 It has been sug-
gested that the Breusch–Godfrey (BG) test, also known as the Lagrange
multiplier test, discussed in Chapter 12 is statistically more powerful not
only in the large samples but also in finite, or small, samples and is therefore
preferable to the h test.39

17.11 A NUMERICAL EXAMPLE: THE DEMAND FOR MONEY

IN CANADA, 1979–I TO 1988–IV

To illustrate the use of the models we have discussed thus far, consider one
of the earlier empirical applications, namely, the demand for money (or real
cash balances). In particular, consider the following model.40

M*
t = β0R

β1
t Y

β2
t e

ut (17.11.1)

where M*
t = desired, or long-run, demand for money (real cash balances)

Rt = long-term interest rate, %

Yt = aggregate real national income

For statistical estimation, (17.11.1) may be expressed conveniently in log
form as

lnM*
t = lnβ0 + β1 ln Rt + β2 lnYt + ut (17.11.2)
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41In passing, note that this model is essentially nonlinear in the parameters. Therefore, al-
though OLS may give an unbiased estimate of, say, β1δ taken together, it may not give unbiased
estimates of β1 and δ individually, especially if the sample is small.

42These data are obtained from B. Bhaskar Rao, ed., Cointegration for the Applied Economist,
St. Martin’s Press, New York, 1994, pp. 210–213. The original data is from 1956-I to 1988-IV, but
for illustration purposes we begin our analysis from the first quarter of 1979.

43Note this feature of the estimated standard errors. The standard error of, say, the coeffi-
cient of ln Rt refers to the standard error of β̂1δ, an estimator of β1δ. There is no simple way to
obtain the standard errors of β̂1 and δ̂ individually from the standard error of β̂1δ, especially if
the sample is relatively small. For large samples, however, individual standard errors of β̂1 and
δ̂ can be obtained approximately, but the computations are involved. See Jan Kmenta, Elements
of Econometrics, Macmillan, New York, 1971, p. 444.

Since the desired demand variable is not directly observable, let us as-
sume the stock adjustment hypothesis, namely,

Mt

Mt−1
=

(
M*
t

Mt−1

)δ
0 < δ ≤ 1 (17.11.3)

Equation (17.11.3) states that a constant percentage (why?) of the discrep-
ancy between the actual and desired real cash balances is eliminated within
a single period (year). In log form, Eq. (17.11.3) may be expressed as

lnMt − lnMt−1 = δ(lnM*
t − lnMt−1) (17.11.4)

Substituting lnM*
t from (17.11.2) into Eq. (17.11.4) and rearranging, we

obtain

lnMt = δ lnβ0 + β1δ ln Rt + β2δ lnYt + (1 − δ) lnMt−1 + δut (17.11.5)41

which may be called the short-run demand function for money. (Why?)
As an illustration of the short-term and long-term demand for real cash

balances, consider the data given in Table 17.3. These quarterly data pertain
to Canada for the period 1979 to 1988. The variables are defined as follows:
M [as defined by M1 money supply, Canadian dollars (C$), millions], P (im-
plicit price deflator, 1981 = 100), GDP at constant 1981 prices (C$, millions)
and R (90-day prime corporate rate of interest, %).42 M1 was deflated by P
to obtain figures for real cash balances. A priori, real money demand is ex-
pected to be positively related to GDP (positive income effect) and nega-
tively related to R (the higher the interest rate, the higher the opportunity
cost of holding money, as M1 money pays very little interest, if any).

The regression results were as follows43:

l̂nMt = 0.8561 − 0.0634 ln Rt − 0.0237 ln GDPt + 0.9607 lnMt−1

se = (0.5101) (0.0131) (0.0366) (0.0414)

t = (1.6782) (−4.8134) (−0.6466) (23.1972)

R2 = 0.9482 d = 2.4582 F = 213.7234 (17.11.6)43
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TABLE 17.3 MONEY, INTEREST RATE, PRICE INDEX, AND GDP, CANADA

Observation M1 R P GDP

1979–1 22,175.00 11.13333 0.77947 334,800

1979–2 22,841.00 11.16667 0.80861 336,708

1979–3 23,461.00 11.80000 0.82649 340,096

1979–4 23,427.00 14.18333 0.84863 341,844

1980–1 23,811.00 14.38333 0.86693 342,776

1980–2 23,612.33 12.98333 0.88950 342,264

1980–3 24,543.00 10.71667 0.91553 340,716

1980–4 25,638.66 14.53333 0.93743 347,780

1981–1 25,316.00 17.13333 0.96523 354,836

1981–2 25,501.33 18.56667 0.98774 359,352

1981–3 25,382.33 21.01666 1.01314 356,152

1981–4 24,753.00 16.61665 1.03410 353,636

1982–1 25,094.33 15.35000 1.05743 349,568

1982–2 25,253.66 16.04999 1.07748 345,284

1982–3 24,936.66 14.31667 1.09666 343,028

1982–4 25,553.00 10.88333 1.11641 340,292

1983–1 26,755.33 9.616670 1.12303 346,072

1983–2 27,412.00 9.316670 1.13395 353,860

1983–3 28,403.33 9.333330 1.14721 359,544

1983–4 28,402.33 9.550000 1.16059 362,304

1984–1 28,715.66 10.08333 1.17117 368,280

1984–2 28,996.33 11.45000 1.17406 376,768

1984–3 28,479.33 12.45000 1.17795 381,016

1984–4 28,669.00 10.76667 1.18438 385,396

1985–1 29,018.66 10.51667 1.18990 390,240

1985–2 29,398.66 9.666670 1.20625 391,580

1985–3 30,203.66 9.033330 1.21492 396,384

1985–4 31,059.33 9.016670 1.21805 405,308

1986–1 30,745.33 11.03333 1.22408 405,680

1986–2 30,477.66 8.733330 1.22856 408,116

1986–3 31,563.66 8.466670 1.23916 409,160

1986–4 32,800.66 8.400000 1.25368 409,616

1987–1 33,958.33 7.250000 1.27117 416,484

1987–2 35,795.66 8.300000 1.28429 422,916

1987–3 35,878.66 9.300000 1.29599 429,980

1987–4 36,336.00 8.700000 1.31001 436,264

1988–1 36,480.33 8.616670 1.32325 440,592

1988–2 37,108.66 9.133330 1.33219 446,680

1988–3 38,423.00 10.05000 1.35065 450,328

1988–4 38,480.66 10.83333 1.36648 453,516

Notes: M1 = C$, millions
P = implicit price deflator (1981 = 100)
R = 90-day prime corporate interest rate, %

GDP = C$, millions (1981 prices)
Source: Rao, op. cit., pp. 210–213.
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The estimated short-run demand function shows that the short-run inter-
est elasticity has the correct sign and that it is statistically quite significant,
as its p value is almost zero. The short-run income elasticity is surprisingly
negative, although statistically it is not different from zero. The coefficient
of adjustment is δ = (1 − 0.9607) = 0.0393, implying that only about 4 per-
cent of the discrepancy between the desired and actual real cash balances is
eliminated in a quarter, a rather slow adjustment.

To get back to the long-run demand function (17.11.2), all that needs to
be done is to divide the short-run demand function through by δ (why?) and
drop the lnMt−1 term. The results are:

l̂nM*
t = 21.7888 − 1.6132 ln Rt − 0.6030 lnGDP (17.11.7)44

As can be seen, the long-run interest elasticity of demand for money is sub-
stantially greater (in absolute terms) than the corresponding short-run elas-
ticity, which is also true of the income elasticity, although in the present in-
stance its economic and statistical significance is dubious.

Note that the estimated Durbin–Watson d is 2.4582, which is close to 2.
This substantiates our previous remark that in the autoregressive models
the computed d is generally close to 2. Therefore, we should not trust the
computed d to find out whether there was serial correlation in our data. The
sample size in our case is 40 observations, which may be reasonably large to
apply the h test. In the present case, the reader can verify that the estimated
h value is −1.5008, which is not significant at the 5 percent level, perhaps
suggesting that there is no first-order autocorrelation in the error term.

17.12 ILLUSTRATIVE EXAMPLES

In this section we present a few examples of distributed lag models to show
how researchers have used them in empirical studies. 

44Note that we have not presented the standard errors of the estimated coefficients for
reasons discussed in footnote 43.

45“The Fed and the Real Rate of Interest,’’ Review, Federal Reserve Bank of St. Louis,
December 1982, pp. 8–18.

(Continued)

EXAMPLE 17.9

THE FED AND THE REAL RATE OF INTEREST

To assess the effect of M1 (currency + checkable de-

posits) growth on Aaa bond real interest rate measure,

G. J. Santoni and Courtenay C. Stone45 estimated, using

monthly data, the following distributed lag model for the

United States.

r t = constant+
11∑

i=0

ai Ṁ t−i + ui (17.12.1)

where r t = Moody’s Index of Aaa bond yield minus the

average annual rate of change in the seasonally ad-

justed consumer price index over the prior 36 months,

which is used as the measure of real interest rate, and

Ṁ t = monthly M1 growth.

According to the “neutrality of money doctrine,’’ which

states that real economic variables—such as output,

employment, economic growth and the real rate of

interest—are not influenced permanently by money

growth and, therefore, are essentially unaffected by

monetary policy. . . . Given this argument, the Federal
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46“The Fed and the Real Rate of Interest,’’ Review, Federal Reserve Bank of St. Louis,
December 1982, p. 15.

EXAMPLE 17.9 (Continued)

Reserve has no permanent influence over the real rate

of interest whatsoever.46

If this doctrine is valid, then one should expect the

distributed lag coefficients ai as well as their sum to be

statistically indifferent from zero. To find out whether this

is the case, the authors estimated (17.12.1) for two dif-

ferent time periods, February 1951 to September 1979

and October 1979 to November 1982, the latter to take

into account the change in the Fed’s monetary policy,

which since October 1979 has paid more attention to the

rate of growth of the money supply than to the rate of

interest, which was the policy in the earlier period. Their

regression results are presented in Table 17.4. The re-

sults seem to support the “neutrality of money doctrine,’’

since for the period February 1951 to September 1979

the current as well as lagged money growth had no sta-

tistically significant effect on the real interest rate mea-

sure. For the latter period, too, the neutrality doctrine

seems to hold since 
∑
ai is not statistically different from

zero; only the coefficient a1 is significant, but it has the

wrong sign. (Why?)

TABLE 17.4

INFLUENCE OF MONTHLY M1 GROWTH ON AN AAA BOND REAL INTEREST RATE MEASURE:

FEBRUARY 1951 TO NOVEMBER 1982

r = constant +
11∑
i=0

a i Ṁ1t−1

February 1951 to October 1979 to
September 1979 November 1982

Coefficient |t |* Coefficient |t |

Constant 1.4885† 2.068 1.0360 0.801

a0 −0.00088 0.388 0.00840 1.014

a1 0.00171 0.510 0.03960† 3.419

a2 0.00170 0.423 0.03112 2.003

a3 0.00233 0.542 0.02719 1.502

a4 −0.00249 0.553 0.00901 0.423

a5 −0.00160 0.348 0.01940 0.863

a6 0.00292 0.631 0.02411 1.056

a7 0.00253 0.556 0.01446 0.666

a8 0.00000 0.001 −0.00036 0.019

a9 0.00074 0.181 −0.00499 0.301

a10 0.00016 0.045 −0.01126 0.888

a11 0.00025 0.107 −0.00178 0.211∑
a i 0.00737 0.221 0.1549 0.926

R̄2 0.9826 0.8662

D-W 2.07 2.04

RH01 1.27† 24.536 1.40† 9.838

RH02 −0.28† 5.410 −0.48† 3.373

NOB 344. 38.

SER ( = RSS) 0.1548 0.3899

*|t | = absolute t value.
†Significantly different from zero at the 0.05 level.
Source: G. J. Santoni and Courtenay C. Stone, “The Fed and the Real Rate of Interest,” Review, Federal

Reserve Bank of St. Louis, December 1982, p. 16.



Gujarati: Basic 

Econometrics, Fourth 

Edition

III. Topics in Econometrics 17. Dynamic Econometric 

Models: Autoregressive 

and Distributed−Lag 

Models

© The McGraw−Hill 

Companies, 2004

686 PART THREE: TOPICS IN ECONOMETRICS

EXAMPLE 17.10

THE SHORT- AND LONG-RUN AGGREGATE
CONSUMPTION FOR SRI LANKA, 1967–1993

Suppose consumption C is linearly related to permanent

income X *:

Ct = β1 + β2Xt* + ut (17.12.2)

Since Xt* is not directly observable, we need to specify

the mechanism that generates permanent income. Sup-

pose we adopt the adaptive expectations hypothesis

specified in (17.5.2). Using (17.5.2) and simplifying, we

obtain the following estimating equation (cf. 17.5.5):

Ct = α1 + α2Xt + α3Ct−1 + vt (17.12.3)

where α1 = γβ1
α2 = γβ2
α3 = (1− γ )

vt = [ut − (1− γ )ut−1]

As we know, β2 gives the mean response of con-

sumption to, say, a $1 increase in permanent income,

whereas α2 gives the mean response of consumption to

a $1 increase in current income.

47The data are obtained from the data disk in Chandan Mukherjee, Howard White, and
Marc Wuyts, Econometrics and Data Analysis for Developing Countries, Routledge, New York,
1998. The original data is from World Bank’s World Tables.

From annual data for Sri Lanka for the period

1967–1993 given in Table 17.5, the following regression

results were obtained47:

Ĉ = 1038.403 + 0.4043Xt + 0.5009Ct−1

se = (2501.455) (0.0919) (0.1213) (17.12.4)

t = (0.4151) (4.3979) (4.1293)

R2 = 0.9912 d = 1.4162 F = 1298.466

where C = private consumption expenditure, and X =

GDP, both at constant prices. We also introduced real

interest rate in the model, but it was not statistically

significant.

The results show that the short-run marginal propen-

sity to consume (MPC) is 0.4043, suggesting that a

1 rupee increase in the current or observed real income

(as measured by real GDP) would increase mean con-

sumption by about 0.40 rupee. But if the increase in

income is sustained, then eventually the MPC out of

the permanent income will be β2 = γβ2/γ = 0.4043/

0.4991 = 0.8100 or about 0.81 rupee. In other words,

when consumers have had time to adjust to the 1 rupee

change in income, they will increase their consumption

ultimately by about 0.81 rupee.

TABLE 17.5 PRIVATE CONSUMPTION EXPENDITURE AND GDP, SRI LANKA

Observation PCON GDP Observation PCON GDP

1967 61,284 78,221 1981 120,477 152,846

1968 68,814 83,326 1982 133,868 164,318

1969 76,766 90,490 1983 148,004 172,414

1970 73,576 92,692 1984 149,735 178,433

1971 73,256 94,814 1985 155,200 185,753

1972 67,502 92,590 1986 154,165 192,059

1973 78,832 101,419 1987 155,445 191,288

1974 80,240 105,267 1988 157,199 196,055

1975 84,477 112,149 1989 158,576 202,477

1976 86,038 116,078 1990 169,238 223,225

1977 96,275 122,040 1991 179,001 233,231

1978 101,292 128,578 1992 183,687 242,762

1979 105,448 136,851 1993 198,273 259,555

1980 114,570 144,734

Notes: PCON = private consumption expenditure.
GDP = gross domestic product.

Source: See footnote 47.

(Continued )
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48Shirley Almon, “The Distributed Lag between Capital Appropriations and Expenditures,’’
Econometrica, vol. 33, January 1965, pp. 178–196.

17.13 THE ALMON APPROACH TO DISTRIBUTED-LAG MODELS:

THE ALMON OR POLYNOMIAL DISTRIBUTED LAG (PDL)48

Although used extensively in practice, the Koyck distributed-lag model is
based on the assumption that the β coefficients decline geometrically as the
lag lengthens (see Figure 17.5). This assumption may be too restrictive in
some situations. Consider, for example, Figure 17.7.

In Figure 17.7a it is assumed that the β’s increase at first and then de-
crease, whereas in Figure 17.7c it is assumed that they follow a cyclical
pattern. Obviously, the Koyck scheme of distributed-lag models will not
work in these cases. However, after looking at Figure 17.7a and c, it seems
that one can express βi as a function of i, the length of the lag (time), and fit
suitable curves to reflect the functional relationship between the two, as in-
dicated in Figure 17.7b and d. This approach is precisely the one suggested
by Shirley Almon. To illustrate her technique, let us revert to the finite
distributed-lag model considered previously, namely,

Yt = α + β0Xt + β1Xt−1 + β2Xt−2 + · · · + βkXt−k + ut (17.1.2)

EXAMPLE 17.10 (Continued)

Now suppose that our consumption function were

Ct* = β1 + β2Xt + ut (17.12.5)

In this formulation permanent or long-run consumption

Ct is a linear function of the current or observed income.

Since Ct* is not directly observable, let us invoke the par-

tial adjustment model (17.6.2). Using this model, and

after algebraic manipulations, we obtain

Ct = δβ1 + δβ2Xt + (1− δ)Ct−1 + δut

= α1 + α2Xt + α3Ct−1 + vt
(17.12.6)

In appearance, this model is indistinguishable from the

adaptive expectations model (17.12.3). Therefore, the re-

gression results given in (17.12.4) are equally applicable

here. However, there is a major difference in the interpre-

tation of the two models, not to mention the estimation

problem associated with the autoregressive and possibly

serially correlated model (17.12.3). The model (17.12.5)

is the long-run, or equilibrium, consumption function,

whereas (17.12.6) is the short-run consumption function.

β2measures the long-runMPC, whereas α2 ( = δβ2) gives

the short-run MPC; the former can be obtained from the

latter by dividing it by δ, the coefficient of adjustment.

Returning to (17.12.4), we can now interpret 0.4043

as the short-run MPC. Since δ = 0.4991, the long-run

MPC is 0.81. Note that the adjustment coefficient of

about 0.50 suggests that in any given time period con-

sumers only adjust their consumption one-half of the

way toward its desired or long-run level.

This example brings out the crucial point that in

appearance the adaptive expectations and the partial

adjustment models, or the Koyck model for that matter,

are so similar that by just looking at the estimated re-

gression, such as (17.12.4), one cannot tell which is the

correct specification. That is why it is so vital that one

specify the theoretical underpinning of the model chosen

for empirical analysis and then proceed appropriately.

If habit or inertia characterizes consumption behavior,

then the partial adjustment model is appropriate. On the

other hand, if consumption behavior is forward-looking in

the sense that it is based on expected future income,

then the adaptive expectations model is appropriate. If

it is the latter, then, one will have to pay close attention

to the estimation problem to obtain consistent estima-

tors. In the former case, the OLS will provide consistent

estimators, provided the usual OLS assumptions are

fulfilled.
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FIGURE 17.7 Almon polynomial-lag scheme.

which may be written more compactly as

Yt = α +
k∑

i=0

βiXt−i + ut (17.13.1)

Following a theorem in mathematics known as Weierstrass’ theorem,
Almon assumes that βi can be approximated by a suitable-degree polyno-
mial in i, the length of the lag.49 For instance, if the lag scheme shown in

49Broadly speaking, the theorem states that on a finite closed interval any continuous func-
tion may be approximated uniformly by a polynomial of a suitable degree.
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Figure 17.7a applies, we can write

βi = a0 + a1i + a2i
2 (17.13.2)

which is a quadratic, or second-degree, polynomial in i (see Figure 17.7b).
However, if the β’s follow the pattern of Figure 17.7c, we can write

βi = a0 + a1i + a2i
2 + a3i

3 (17.13.3)

which is a third-degree polynomial in i (see Figure 17.7d). More generally,
we may write

βi = a0 + a1i + a2i
2 + · · · + ami

m (17.13.4)

which is an mth-degree polynomial in i. It is assumed that m (the degree of
the polynomial) is less than k (the maximum length of the lag).

To explain how the Almon scheme works, let us assume that the β’s follow
the pattern shown in Figure 17.7a and, therefore, the second-degree poly-
nomial approximation is appropriate. Substituting (17.13.2) into (17.13.1),
we obtain

Yt = α +
k∑

i=0

(a0 + a1i + a2i
2)Xt−i + ut

= α + a0

k∑

i=0

Xt−i + a1

k∑

i=0

iXt−i + a2

k∑

i=0

i2Xt−i + ut

(17.13.5)

Defining

Z0t =
k∑

i=0

Xt−i

Z1t =
k∑

i=0

iXt−i (17.13.6)

Z2t =
k∑

i=0

i2Xt−i

we may write (17.13.5) as

Yt = α + a0Z0t + a1Z1t + a2Z2t + ut (17.13.7)

In the Almon scheme Y is regressed on the constructed variables Z, not
the original X variables. Note that (17.13.7) can be estimated by the usual
OLS procedure. The estimates of α and ai thus obtained will have all the de-
sirable statistical properties provided the stochastic disturbance term u sat-
isfies the assumptions of the classical linear regression model. In this re-
spect, the Almon technique has a distinct advantage over the Koyck method
because, as we have seen, the latter has some serious estimation problems
that result from the presence of the stochastic explanatory variable Yt−1 and
its likely correlation with the disturbance term.
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50Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics,
Oxford University Press, New York, 1993, pp. 675–676.

Once the a’s are estimated from (17.13.7), the original β’s can be esti-
mated from (17.13.2) [or more generally from (17.13.4)] as follows:

β̂0 = â0

β̂1 = â0 + â1 + â2

β̂2 = â0 + 2â1 + 4â2 (17.13.8)

β̂3 = â0 + 3â1 + 9â2
. . . . . . . . . . . . . . . . .

β̂k = â0 + kâ1 + k2â2

Before we apply the Almon technique, we must resolve the following
practical problems.

1. The maximum length of the lag k must be specified in advance. Here
perhaps one can follow the advice of Davidson and MacKinnon:

The best approach is probably to settle the question of lag length first, by starting
with a very large value of q [the lag length] and then seeing whether the fit of the
model deteriorates significantly when it is reduced without imposing any restric-
tions on the shape of the distributed lag.50

This advice is in the spirit of Hendry’s top-down approach discussed in Chap-
ter 13. Remember that if there is some “true’’ lag length, choosing fewer lags
will lead to the “omission of relevant variable bias,’’ whose consequences, as
we saw in Chapter 13, can be very serious. On the other hand, choosing more
lags than necessary will lead to the “inclusion of irrelevant variable bias,’’
whose consequences are less serious; the coefficients can be consistently
estimated by OLS, although their variances may be less efficient.

One can use the Akaike or Schwarz information criterion discussed in
Chapter 13 to choose the appropriate lag length. These criteria can also be
used to discuss the appropriate degree of the polynomial in addition to the
discussion in point 2.

2. Having specified k, we must also specify the degree of the polynomial
m. Generally, the degree of the polynomial should be at least one more than
the number of turning points in the curve relating βi to i. Thus, in Fig-
ure 17.7a there is only one turning point; hence a second-degree polynomial
will be a good approximation. In Figure 17.7c there are two turning points;
hence a third-degree polynomial will provide a good approximation. A
priori, however, one may not know the number of turning points, and there-
fore, the choice of m is largely subjective. However, theory may suggest a
particular shape in some cases. In practice, one hopes that a fairly low-
degree polynomial (say, m = 2 or 3) will give good results. Having chosen a
particular value of m, if we want to find out whether a higher-degree poly-
nomial will give a better fit, we can proceed as follows.
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Suppose we must decide between the second- and third-degree polyno-
mials. For the second-degree polynomial the estimating equation is as given
by (17.13.7). For the third-degree polynomial the corresponding equation is

Yt = α + a0Z0t + a1Z1t + a2Z2t + a3Z3t + ut (17.13.9)

where Z3t =
∑k

i=0 i
3Xt−i . After running regression (17.13.9), if we find that

a2 is statistically significant but a3 is not, we may assume that the second-
degree polynomial provides a reasonably good approximation.

Alternatively, as Davidson and MacKinnon suggest, “After q [the lag
length] is determined, one can then attempt to determine d [the degree of
the polynomial] once again starting with a large value and then reducing it.’’

However, we must beware of the problem of multicollinearity, which is
likely to arise because of the way the Z’s are constructed from the X’s, as
shown in (17.13.6) [see also (17.13.10)]. As shown in Chapter 10, in cases of
serious multicollinearity, â3 may turn out to be statistically insignificant, not
because the true a3 is zero, but simply because the sample at hand does not
allow us to assess the separate impact of Z3 on Y. Therefore, in our illustra-
tion, before we accept the conclusion that the third-degree polynomial is
not the correct choice, we must make sure that the multicollinearity prob-
lem is not serious enough, which can be done by applying the techniques
discussed in Chapter 10.

3. Oncem and k are specified, the Z’s can be readily constructed. For in-
stance, if m = 2 and k = 5, the Z’s are

Z0t =
5∑

i=0

Xt−i = (Xt + Xt−1 + Xt−2 + Xt−3 + Xt−4 + Xt−5)

Z1t =
5∑

i=0

iXt−i = (Xt−1 + 2Xt−2 + 3Xt−3 + 4Xt−4 + 5Xt−5) (17.13.10)

Z2t =
5∑

i=0

i2Xt−i = (Xt−1 + 4Xt−2 + 9Xt−3 + 16Xt−4 + 25Xt−5)

Notice that the Z’s are linear combinations of the original X’s. Also notice
why the Z’s are likely to exhibit multicollinearity.

Before proceeding to a numerical example, note the advantages of the
Almon method. First, it provides a flexible method of incorporating a vari-
ety of lag structures (see exercise 17.17). The Koyck technique, on the other
hand, is quite rigid in that it assumes that the β’s decline geometrically.
Second, unlike the Koyck technique, in the Almon method we do not have
to worry about the presence of the lagged dependent variable as an ex-
planatory variable in the model and the problems it creates for estimation.
Finally, if a sufficiently low-degree polynomial can be fitted, the number of
coefficients to be estimated (the a’s) is considerably smaller than the origi-
nal number of coefficients (the β’s).
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But let us re-emphasize the problems with the Almon technique. First,
the degree of the polynomial as well as the maximum value of the lag is
largely a subjective decision. Second, for reasons noted previously, the Z
variables are likely to exhibit multicollinearity. Therefore, in models like
(17.13.9) the estimated a’s are likely to show large standard errors (relative
to the values of these coefficients), thereby rendering one or more such co-
efficients statistically insignificant on the basis of the conventional t test.
But this does not necessarily mean that one or more of the original β̂ coeffi-
cients will also be statistically insignificant. (The proof of this statement is
slightly involved but is suggested in exercise 17.18.) As a result, the multi-
collinearity problem may not be as serious as one might think. Besides, as
we know, in cases of multicollinearity even if we cannot estimate an indi-
vidual coefficient precisely, a linear combination of such coefficients (the
estimable function) can be estimated more precisely.

EXAMPLE 17.11

ILLUSTRATION OF THE ALMON DISTRIBUTED-LAG MODEL

To illustrate the Almon technique, Table 17.6 gives data on inventories Y and sales X for the

United States for the period 1954–1999.

For illustrative purposes, assume that inventories depend on sales in the current year and

in the preceding 3 years as follows:

Yt = α + β0Xt + β1Xt−1 + β2Xt−2 + β3Xt−3 + ut (17.13.11)

Furthermore, assume that βi can be approximated by a second-degree polynomial as shown

in (17.13.2). Then, following (17.13.5), we may write

Yt = α + a0Z0t + a1Z1t + a2Z2t + ut (17.13.12)

where

Z0t =
3∑

i=0

Xt−i = (Xt + Xt−1 + Xt−2 + Xt−3)

Z1t =
3∑

i=0

i Xt−i = (Xt−1 + 2Xt−2 + 3Xt−3) (17.13.13)

Z2t =
3∑

i=0

i 2Xt−i = (Xt−1 + 4Xt−2 + 9Xt−3)

The Z variables thus constructed are shown in Table 17.6. Using the data on Y and the Z ’s,

we obtain the following regression:

Ŷt = 25,845.06 + 1.1149Z0t − 0.3713Z1t − 0.0600Z2t

se = (6596.998) (0.5381) (1.3743) (0.4549)

t = (3.9177) (2.0718) (−0.2702) (−0.1319)
(17.13.14)

R2 = 0.9755 d = 0.1643 F = 517.7656

Note: Since we are using a 3-year lag, the total number of observations has been reduced

from 46 to 43.

(Continued)
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TABLE 17.6

INVENTORIES Y AND SALES X, U.S. MANUFACTURING, AND CONSTRUCTED Z ’S

Observation Inventory Sales Z0 Z1 Z2

1954 41,612 23,355 NA NA NA

1955 45,069 26,480 NA NA NA

1956 50,642 27,740 NA NA NA

1957 51,871 28,736 106,311 150,765 343,855

1958 50,203 27,248 110,204 163,656 378,016

1959 52,913 30,286 114,010 167,940 391,852

1960 53,786 30,878 117,148 170,990 397,902

1961 54,871 30,922 119,334 173,194 397,254

1962 58,172 33,358 125,444 183,536 427,008

1963 60,029 35,058 130,216 187,836 434,948

1964 63,410 37,331 136,669 194,540 446,788

1965 68,207 40,995 146,742 207,521 477,785

1966 77,986 44,870 158,254 220,831 505,841

1967 84,646 46,486 169,682 238,853 544,829

1968 90,560 50,229 182,580 259,211 594,921

1969 98,145 53,501 195,086 277,811 640,003

1970 101,599 52,805 203,021 293,417 672,791

1971 102,567 55,906 212,441 310,494 718,870

1972 108,121 63,027 225,239 322,019 748,635

1973 124,499 72,931 244,669 333,254 761,896

1974 157,625 84,790 276,654 366,703 828,193

1975 159,708 86,589 307,337 419,733 943,757

1976 174,636 98,797 343,107 474,962 1,082,128

1977 188,378 113,201 383,377 526,345 1,208,263

1978 211,691 126,905 425,492 570,562 1,287,690

1979 242,157 143,936 482,839 649,698 1,468,882

1980 265,215 154,391 538,433 737,349 1,670,365

1981 283,413 168,129 593,361 822,978 1,872,280

1982 311,852 163,351 629,807 908,719 2,081,117

1983 312,379 172,547 658,418 962,782 2,225,386

1984 339,516 190,682 694,709 1,003,636 2,339,112

1985 334,749 194,538 721,118 1,025,829 2,351,029

1986 322,654 194,657 752,424 1,093,543 2,510,189

1987 338,109 206,326 786,203 1,155,779 2,688,947

1988 369,374 224,619 820,140 1,179,254 2,735,796

1989 391,212 236,698 862,300 1,221,242 2,801,836

1990 405,073 242,686 910,329 1,304,914 2,992,108

1991 390,905 239,847 943,850 1,389,939 3,211,049

1992 382,510 250,394 969,625 1,435,313 3,340,873

1993 384,039 260,635 993,562 1,458,146 3,393,956

1994 404,877 279,002 1,029,878 1,480,964 3,420,834

1995 430,985 299,555 1,089,586 1,551,454 3,575,088

1996 436,729 309,622 1,148,814 1,639,464 3,761,278

1997 456,133 327,452 1,215,631 1,745,738 4,018,860

1998 466,798 337,687 1,274,316 1,845,361 4,261,935

1999 470,377 354,961 1,329,722 1,921,457 4,434,093

Note: Y and X are in millions of dollars, seasonally adjusted.
Source: Economic Report of the President, 2001, Table B-57, p. 340. The Z ’s are as shown in

(17.13.13).

(Continued)

EXAMPLE 17.11 (Continued)
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EXAMPLE 17.11 (Continued)

Our illustrative example may be used to point out a few additional fea-
tures of the Almon lag procedure:

1. The standard errors of the a coefficients are directly obtainable from
the OLS regression (17.13.14), but the standard errors of some of the β̂

FIGURE 17.8 Lag structure of the illustrative example.
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A brief comment on the preceding results. Of the three Z variables, only Z0 is individually

statistical significant at the 5 percent level, but the others are not, yet the F value is so high

that we can reject the null hypothesis that collectively the Z ’s have no effect on Y.As you can

suspect, this might very well be due to multicollinearity. Also, note that the computed d value

is very low. This does not necessarily mean that the residuals suffer from autocorrelation.

More likely, the low d value suggests that the model we have used is probably mis-specified.

We will comment on this shortly.

From the estimated a’s given in (17.13.3), we can easily estimate the original β’s easily,

as shown in (17.13.8). In the present example, the results are as follows:

β̂0 = â0 = 1.1149

β̂1 = (â0 + â1 + â2) = 0.6836

β̂2 = (â0 + 2â1 + 4â2) = 0.1321
(17.13.15)

β̂3 = (â0 + 3â1 + 9â2) = −0.5394

Thus, the estimated distributed-lag model corresponding to (17.13.11) is:

Ŷt = 25,845.0 + 1.1150X0 + 0.6836Xt−1 + 0.1321Xt−2 − 0.5394Xt−3

se = (6596.99) (0.5381) (0.4672) (0.4656) (0.5656) (17.13.16)

t = (3.9177) (2.0718) (1.4630) (0.2837) (−0.9537)

Geometrically, the estimated βi is as shown in Figure 17.8.
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51For a concrete application, see D. B. Batten and Daniel Thornton, “Polynomial Distrib-
uted Lags and the Estimation of the St. Louis Equation,” Review, Federal Reserve Bank of
St. Louis, April 1983, pp. 13–25.

coefficients, the objective of primary interest, cannot be so obtained. But they
can be obtained from the standard errors of the estimated a coefficients by
using a well-known formula from statistics, which is given in exercise 17.18.
Of course, there is no need to do this manually, for most statistical packages
can do this routinely. The standard errors given in (17.13.15) were obtained
from Eviews 4.

2. The β̂ ’s obtained in (17.13.16) are called unrestricted estimates in the
sense that no a priori restrictions are placed on them. In some situations,
however, one may want to impose the so-called endpoint restrictions on
the β’s by assuming that β0 and βk (the current and kth lagged coefficient)
are zero. Because of psychological, institutional, or technical reasons, the
value of the explanatory variable in the current period may not have any im-
pact on the current value of the regressand, thereby justifying the zero value
for β0. By the same token, beyond a certain time the kth lagged coefficient
may not have any impact on the regressand, thus supporting the assump-
tion that βk is zero. In our inventory example, the coefficient of Xt−3 had a
negative sign, which may not make economic sense. Hence, one may want
to constrain that coefficient to zero.51 Of course, you do not have to con-
strain both ends; you could put restriction only on the first coefficient, called
near-end restriction or on the last coefficient, called far-end restriction. For
our inventory example, this is illustrated in exercise 17.28. Sometimes the
β’s are estimated with the restriction that their sum is one. But one should
not put such restrictions mindlessly because such restrictions also affect the
values of the other (unconstrained) lagged coefficients.

3. Since the choice of the number of lagged coefficients as well as the
degree of the polynomial is at the discretion of the modeler, some trial and
error is inevitable, the charge of data mining notwithstanding. Here is where
the Akaike and Schwarz information criteria discussed in Chapter 13
may come in handy.

4. Since we estimated (17.13.16) using three lags and the second-
degree polynomial, it is a restricted least-squaresmodel. Suppose, we decide
to use three lags but do not use the Almon polynomial approach. That is, we
estimate (17.13.11) by OLS. What then? Let us first see the results:

Ŷt = 26,008.60 + 0.9771Xt+ 1.0139Xt−1 − 0.2022 Xt−2 − 0.3935Xt−3

se = (6691.12) (0.6820) (1.0920) (1.1021) (0.7186)

t = (3.8870) (1.4327) (0.9284) (−0.1835) (−0.5476)

R2 = 0.9755 d = 0.1571 F = 379.51 (17.13.17)

If you compare these results with those given in (17.13.16), you will see that
the overall R2 is practically the same, although the lagged pattern in
(17.13.17) shows more of a humped shape than that exhibited by (17.13.16). 
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52There is another test of causality that is sometimes used, the so-called Sims test of
causality. We discuss it by way of an exercise.

53Gary Koop, Analysis of Economic Data, John Wiley & Sons, New York, 2000, p. 175.
54C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-

Spectral Methods,” Econometrica, July 1969, pp. 424–438. Although popularly known as the
Granger causality test, it is appropriate to call it the Wiener–Granger causality test, for it was
earlier suggested by Wiener. See N. Wiener, “The Theory of Prediction,” in E. F. Beckenback,
ed., Modern Mathematics for Engineers, McGraw-Hill, New York, 1956, pp. 165–190.

55For an excellent discussion of this topic, see Arnold Zellner, “Causality and Economet-
rics,” Carnegie-Rochester Conference Series, 10, K. Brunner and A. H. Meltzer, eds., North
Holland Publishing Company, Amsterdam, 1979, pp. 9–50.

56Francis X. Diebold,Elements of Forecasting, South Western Publishing, 2d ed., 2001, p. 254.

As this example illustrates, one has to be careful in using the Almon dis-
tributed lag technique, as the results might be sensitive to the choice of the
degree of the polynomial and/or the number of lagged coefficients.

17.14 CAUSALITY IN ECONOMICS: 

THE GRANGER CAUSALITY TEST52

Back in Section 1.4 we noted that, although regression analysis deals with
the dependence of one variable on other variables, it does not necessarily
imply causation. In other words, the existence of a relationship between
variables does not prove causality or the direction of influence. But in re-
gressions involving time series data, the situation may be somewhat differ-
ent because, as one author puts it,

. . . time does not run backward. That is, if event A happens before event B, then
it is possible that A is causing B. However, it is not possible that B is causing A. In
other words, events in the past can cause events to happen today. Future events
cannot.53 (Emphasis added.)

This is roughly the idea behind the so-called Granger causality test.54 But it
should be noted clearly that the question of causality is deeply philosophical
with all kinds of controversies. At one extreme are people who believe that
“everything causes everything,” and at the other extreme are people who
deny the existence of causation whatsoever.55 The econometrician Edward
Leamer prefers the term precedence over causality. Francis Diebold prefers
the term predictive causality. As he writes:

. . . the statement “yi causes yj” is just shorthand for the more precise, but long-
winded, statement, “yi contains useful information for predicting yj (in the linear
least squares sense), over and above the past histories of the other variables in the
system.” To save space, we simply say that yi causes yj.

56

The Granger Test 

To explain the Granger test, we will consider the often asked question in
macroeconomics: Is it GDP that “causes” the money supply M (GDP → M)


