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We noted in Chapter 1 that one of the important types of data used in
empirical analysis is time series data. In this and the following chapter we
take a closer look at such data not only because of the frequency with which
they are used in practice but also because they pose several challenges to
econometricians and practitioners.

First, empirical work based on time series data assumes that the underly-
ing time series is stationary. Although we have discussed the concept of sta-
tionarity intuitively in Chapter 1, we discuss it more fully in this chapter.
More specifically, we will try to find out what stationarity means and why
one should worry about it.

Second, in Chapter 12, on autocorrelation, we discussed several causes of
autocorrelation. Sometimes autocorrelation results because the underlying
time series is nonstationary.

Third, in regressing a time series variable on another time series vari-
able(s), one often obtains a very high R2 (in excess of 0.9) even though there
is no meaningful relationship between the two variables. Sometimes we
expect no relationship between two variables, yet a regression of one on the
other variable often shows a significant relationship. This situation exem-
plifies the problem of spurious, or nonsense, regression, whose nature
will be explored shortly. It is therefore very important to find out if the rela-
tionship between economic variables is spurious or nonsensical. We will see
in this chapter how spurious regressions can arise if time series are not
stationary.

Fourth, some financial time series, such as stock prices, exhibit what is
known as the random walk phenomenon. This means the best prediction
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1At the introductory level, these references may be helpful: Gary Koop, Analysis of Eco-
nomic Data, John Wiley & Sons, New York, 2000; Jeff B. Cromwell, Walter C. Labys, and Michel
Terraza, Univariate Tests for Time Series Models, Sage Publications, California, Ansbury Park,
1994; Jeff B. Cromwell, Michael H. Hannan, Walter C. Labys, and Michel Terraza, Multivariate
Tests for Time Series Models, Sage Publications, California, Ansbury Park, 1994; H. R. Seddighi,
K. A. Lawler, and A. V. Katos, Econometrics: A Practical Approach, Routledge, New York, 2000.
At the intermediate level, see Walter Enders, Applied Econometric Time Series, John Wiley &
Sons, New York, 1995; Kerry Patterson, An Introduction to Applied Econometrics: A Time Series
Approach, St. Martin’s Press, New York, 2000; T. C. Mills, The Econometric Modelling of Finan-
cial Time Series, 2d ed., Cambridge University Press, New York, 1999; Marno Verbeek, A Guide
to Modern Econometrics, John Wiley & Sons, New York, 2000; Wojciech W. Charemza and
Derek F. Deadman, New Directions in Econometric Practice: General to Specific Modelling and
Vector Autoregression, 2d ed., Edward Elgar Publisher, New York, 1997. At the advanced level,
see Hamilton, J. D., Time Series Analysis, Princeton University Press, Princeton, N.J., 1994, and
G. S. Maddala and In-Moo Kim, Unit Roots, Cointegration, and Structural Change, Cambridge
University Press, 1998. At the applied level, see B. Bhaskara Rao, ed., Cointegration for the Ap-
plied Economist, St. Martin’s Press, New York, 1994, and Chandan Mukherjee, Howard White,
and Marc Wuyts, Econometrics and Data Analysis for Developing Countries, Routledge, New
York, 1998.

of the price of a stock, say IBM, tomorrow is equal to its price today plus a
purely random shock (or error term). If this were in fact the case, forecast-
ing asset prices would be a futile exercise.

Fifth, regression models involving time series data are often used for fore-
casting. In view of the preceding discussion, we would like to know if such
forecasting is valid if the underlying time series are not stationary.

Finally, causality tests of Granger and Sims that we discussed in Chapter 17
assume that the time series involved in analysis are stationary. Therefore,
tests of stationarity should precede tests of causality.

At the outset a disclaimer is in order. The topic of time series analysis is
so vast and evolving and some of the mathematics underlying the various
techniques of time series analysis is so involved that the best we hope to
achieve in an introductory text like this is to give the reader a glimpse of
some of the fundamental concepts of time series analysis. For those who
want to pursue this topic further, we provide references.1

21.1 A LOOK AT SELECTED U.S. ECONOMIC TIME SERIES

To set the stage, and to give the reader a feel for the somewhat esoteric
concepts of time series analysis to be developed in this chapter, it might be
useful to consider several U.S. economic time series of general interest. The
time series we consider are: (1) GDP (gross domestic product), (2) PDI (per-
sonal disposable income), (3) PCE (personal consumption expenditure),
(4) profits (corporate profits after tax), and (5) dividends (net corporate div-
idend); all data are in billions of 1987 dollars and are for the quarterly peri-
ods of 1970–1991, for a total of 88 quarterly observations. The raw data are
given in Table 21.1.
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TABLE 21.1 MACROECONOMICS DATA, UNITED STATES, 1970–I TO 1991–IV

Quarter GDP PDI PCE Profits Dividend Quarter GDP PDI PCE Profits Dividend

1970–I 2872.8 1990.6 1800.5 44.7 24.5 1981–I 3860.5 2783.7 2475.5 159.5 64.0
1970–II 2860.3 2020.1 1807.5 44.4 23.9 1981–Il 3844.4 2776.7 2476.1 143.7 68.4
1970–III 2896.6 2045.3 1824.7 44.9 23.3 1981–III 3864.5 2814.1 2487.4 147.6 71.9
1970–IV 2873.7 2045.2 1821.2 42.1 23.1 1981–IV 3803.1 2808.8 2468.6 140.3 72.4

1971–I 2942.9 2073.9 1849.9 48.8 23.8 1982–I 3756.1 2795.0 2484.0 114.4 70.0
1971–II 2947.4 2098.0 1863.5 50.7 23.7 1982–Il 3771.1 2824.8 2488.9 114.0 68.4
1971–III 2966.0 2106.6 1876.9 54.2 23.8 1982–III 3754.4 2829.0 2502.5 114.6 69.2
1971–IV 2980.8 2121.1 1904.6 55.7 23.7 1982–IV 3759.6 2832.6 2539.3 109.9 72.5

1972–I 3037.3 2129.7 1929.3 59.4 25.0 1983–I 3783.5 2843.6 2556.5 113.6 77.0
1972–II 3089.7 2149.1 1963.3 60.1 25.5 1983–Il 3886.5 2867.0 2604.0 133.0 80.5
1972–III 3125.8 2193.9 1989.1 62.8 26.1 1983–III 3944.4 2903.0 2639.0 145.7 83.1
1972–IV 3175.5 2272.0 2032.1 68.3 26.5 1983–IV 4012.1 2960.6 2678.2 141.6 84.2

1973–I 3253.3 2300.7 2063.9 79.1 27.0 1984–I 4089.5 3033.2 2703.8 155.1 83.3
1973–II 3267.6 2315.2 2062.0 81.2 27.8 1984–Il 4144.0 3065.9 2741.1 152.6 82.2
1973–III 3264.3 2337.9 2073.7 81.3 28.3 1984–III 4166.4 3102.7 2754.6 141.8 81.7
1973–IV 3289.1 2382.7 2067.4 85.0 29.4 1984–IV 4194.2 3118.5 2784.8 136.3 83.4

1974–I 3259.4 2334.7 2050.8 89.0 29.8 1985–I 4221.8 3123.6 2824.9 125.2 87.2
1974–II 3267.6 2304.5 2059.0 91.2 30.4 1985–Il 4254.8 3189.6 2849.7 124.8 90.8
1974–III 3239.1 2315.0 2065.5 97.1 30.9 1985–III 4309.0 3156.5 2893.3 129.8 94.1
1974–IV 3226.4 2313.7 2039.9 86.8 30.5 1985–IV 4333.5 3178.7 2895.3 134.2 97.4

1975–I 3154.0 2282.5 2051.8 75.8 30.0 1986–I 4390.5 3227.5 2922.4 109.2 105.1
1975–II 3190.4 2390.3 2086.9 81.0 29.7 1986–Il 4387.7 3281.4 2947.9 106.0 110.7
1975–III 3249.9 2354.4 2114.4 97.8 30.1 1986–III 4412.6 3272.6 2993.7 111.0 112.3
1975–IV 3292.5 2389.4 2137.0 103.4 30.6 1986–IV 4427.1 3266.2 3012.5 119.2 111.0

1976–I 3356.7 2424.5 2179.3 108.4 32.6 1987–I 4460.0 3295.2 3011.5 140.2 108.0
1976–II 3369.2 2434.9 2194.7 109.2 35.0 1987–Il 4515.3 3241.7 3046.8 157.9 105.5
1976–III 3381.0 2444.7 2213.0 110.0 36.6 1987–III 4559.3 3285.7 3075.8 169.1 105.1
1976–IV 3416.3 2459.5 2242.0 110.3 38.3 1987–IV 4625.5 3335.8 3074.6 176.0 106.3

1977–I 3466.4 2463.0 2271.3 121.5 39.2 1988–I 4655.3 3380.1 3128.2 195.5 109.6
1977–II 3525.0 2490.3 2280.8 129.7 40.0 1988–Il 4704.8 3386.3 3147.8 207.2 113.3
1977–III 3574.4 2541.0 2302.6 135.1 41.4 1988–III 4734.5 3407.5 3170.6 213.4 117.5
1977–IV 3567.2 2556.2 2331.6 134.8 42.4 1988–IV 4779.7 3443.1 3202.9 226.0 121.0

1978–I 3591.8 2587.3 2347.1 137.5 43.5 1989–I 4809.8 3473.9 3200.9 221.3 124.6
1978–II 3707.0 2631.9 2394.0 154.0 44.5 1989–Il 4832.4 3450.9 3208.6 206.2 127.1
1978–III 3735.6 2653.2 2404.5 158.0 46.6 1989–III 4845.6 3466.9 3241.1 195.7 129.1
1978–IV 3779.6 2680.9 2421.6 167.8 48.9 1989–IV 4859.7 3493.0 3241.6 203.0 130.7

1979–I 3780.8 2699.2 2437.9 168.2 50.5 1990–1 4880.8 3531.4 3258.8 199.1 132.3
1979–II 3784.3 2697.6 2435.4 174.1 51.8 1990–Il 4900.3 3545.3 3258.6 193.7 132.5
1979–III 3807.5 2715.3 2454.7 178.1 52.7 1990–III 4903.3 3547.0 3281.2 196.3 133.8
1979–IV 3814.6 2728.1 2465.4 173.4 54.5 1990–IV 4855.1 3529.5 3251.8 199.0 136.2

1980–I 3830.8 2742.9 2464.6 174.3 57.6 1991–I 4824.0 3514.8 3241.1 189.7 137.8
1980–II 3732.6 2692.0 2414.2 144.5 58.7 1991–Il 4840.7 3537.4 3252.4 182.7 136.7
1980–III 3733.5 2722.5 2440.3 151.0 59.3 1991–III 4862.7 3539.9 3271.2 189.6 138.1

1980–IV 3808.5 2777.0 2469.2 154.6 60.5 1991–IV 4868.0 3547.5 3271.1 190.3 138.5

Notes: GDP (Gross Domestic Product), billions of 1987 dollars, p. A-96. PDI (Personal disposable income), billions of 1987 dollars,
p. A-112. PCE (Personal consumption expenditure), billions of 1987 dollars, p. A-96. Profits (corporate profits after tax), billions of dollars,
p. A-110. Dividends (net corporate dividend payments), billions of dollars, p. A-110.

Source: U.S. Department of Commerce, Bureau of Economic Analysis, Business Statistics, 1963–1991, June 1992.
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FIGURE 21.1 GDP, PDI, and PCE, United States, 1970–1991 (quarterly).
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FIGURE 21.2 Profits and dividends, United States, 1970–1991 (quarterly).

Figure 21.1 is a plot of the data for GDP, PDI, and PCE, and Figure 21.2
presents the other two time series. A visual plot of the data is usually the first
step in the analysis of any time series. The first impression that we get from
these graphs is that all the time series shown in Figures 21.1 and 21.2 seem
to be “trending” upward, albeit with fluctuations. Suppose we wanted to
speculate on the shape of these curves over the quarterly period, say, from
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2Of course, we have the actual data for this period now and could compare it with the data
that is “predicted” on the basis of the earlier period.

3The following discussion is based on Maddala et al., op. cit., and Charemza et al., op. cit. 
4The term “stochastic” comes from the Greek word “stokhos,” which means a target or

bull’s-eye. If you have ever thrown darts on a dart board with the aim of hitting the bull’s-eye,
how often did you hit the bull’s-eye? Out of a hundred darts you may be lucky to hit the
bull’s-eye only a few times; at other times the darts will be spread randomly around the
bull’s-eye.

1992–I to 1996–IV.2 Can we simply mentally extend the curves shown in the
above figures? Perhaps we can if we know the statistical, or stochastic,
mechanism, or the data generating process (DGP), that generated these
curves? But what is that mechanism? To answer this and related questions,
we need to study some “new” vocabulary that has been developed by time
series analysts, to which we now turn.

21.2 KEY CONCEPTS3

What is this vocabulary? It consists of concepts such as these:

1. Stochastic processes
2. Stationarity processes
3. Purely random processes
4. Nonstationary processes
5. Integrated variables
6. Random walk models
7. Cointegration
8. Deterministic and stochastic trends
9. Unit root tests

In what follows we will discuss each of these concepts. Our discussion will
often be heuristic. Wherever possible and helpful, we will provide appropri-
ate examples.

21.3 STOCHASTIC PROCESSES

A random or stochastic process is a collection of random variables ordered in
time.4 If we let Y denote a random variable, and if it is continuous, we
denote it as Y(t), but if it is discrete, we denoted it as Yt . An example of the
former is an electrocardiogram, and an example of the latter is GDP, PDI,
etc. Since most economic data are collected at discrete points in time, for
our purpose we will use the notation Yt rather than Y(t). If we let Y represent
GDP, for our data we have Y1, Y2, Y3, . . . , Y86, Y87, Y88 , where the subscript 1
denotes the first observation (i.e., GDP for the first quarter of 1970) and the
subscript 88 denotes the last observation (i.e., GDP for the fourth quarter of
1991). Keep in mind that each of these Y’s is a random variable.

In what sense can we regard GDP as a stochastic process? Consider for
instance the GDP of $2872.8 billion for 1970–I. In theory, the GDP figure for
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5You can think of the value of $2872.8 billion as the mean value of all possible values of GDP
for the first quarter of 1970.

6A time series is strictly stationary if all the moments of its probability distribution and not
just the first two (i.e., mean and variance) are invariant over time. If, however, the stationary
process is normal, the weakly stationary stochastic process is also strictly stationary, for the
normal stochastic process is fully specified by its two moments, the mean and the variance.

the first quarter of 1970 could have been any number, depending on the eco-
nomic and political climate then prevailing. The figure of 2872.8 is a partic-
ular realization of all such possibilities.5 Therefore, we can say that GDP is
a stochastic process and the actual values we observed for the period 1970–I
to 1991–IV are a particular realization of that process (i.e., sample). The dis-
tinction between the stochastic process and its realization is akin to the dis-
tinction between population and sample in cross-sectional data. Just as we
use sample data to draw inferences about a population, in time series we
use the realization to draw inferences about the underlying stochastic
process.

Stationary Stochastic Processes

A type of stochastic process that has received a great deal of attention and
scrutiny by time series analysts is the so-called stationary stochastic
process. Broadly speaking, a stochastic process is said to be stationary if its
mean and variance are constant over time and the value of the covariance
between the two time periods depends only on the distance or gap or lag between
the two time periods and not the actual time at which the covariance is com-
puted. In the time series literature, such a stochastic process is known as a
weakly stationary, or covariance stationary, or second-order stationary,
or wide sense, stochastic process. For the purpose of this chapter, and in
most practical situations, this type of stationarity often suffices.6

To explain weak stationarity, let Yt be a stochastic time series with these
properties:

Mean: E(Yt) = µ (21.3.1)

Variance: var (Yt) = E(Yt − µ)2 = σ 2 (21.3.2)

Covariance: γk = E[(Yt − µ)(Yt+k − µ)] (21.3.3)

where γk, the covariance (or autocovariance) at lag k, is the covariance
between the values of Yt and Yt+k, that is, between two Y values k periods
apart. If k = 0, we obtain γ0, which is simply the variance of Y (= σ 2); if
k = 1, γ1 is the covariance between two adjacent values of Y, the type of co-
variance we encountered in Chapter 12 (recall the Markov first-order au-
toregressive scheme).

Suppose we shift the origin of Y from Yt to Yt+m (say, from the first quar-
ter of 1970 to the first quarter of 1975 for our GDP data). Now if Yt is to be
stationary, the mean, variance, and autocovariances of Yt+m must be the
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7This point has been made by Keith Cuthbertson, Stephen G. Hall, and Mark P. Taylor,
Applied Econometric Techniques, The University of Michigan Press, 1995, p. 130.

8If it is also independent, such a process is called strictly white noise.
9The term random walk is often compared with a drunkard’s walk. Leaving a bar, the drunk-

ard moves a random distance ut at time t, and, continuing to walk indefinitely, will eventually
drift farther and farther away from the bar. The same is said about stock prices. Today’s stock
price is equal to yesterday’s stock price plus a random shock.

same as those of Yt. In short, if a time series is stationary, its mean, variance,
and autocovariance (at various lags) remain the same no matter at what point
we measure them; that is, they are time invariant. Such a time series will tend
to return to its mean (called mean reversion) and fluctuations around this
mean (measured by its variance) will have a broadly constant amplitude.7

If a time series is not stationary in the sense just defined, it is called a
nonstationary time series (keep in mind we are talking only about weak
stationarity). In other words, a nonstationary time series will have a time-
varying mean or a time-varying variance or both.

Why are stationary time series so important? Because if a time series is
nonstationary, we can study its behavior only for the time period under con-
sideration. Each set of time series data will therefore be for a particular
episode. As a consequence, it is not possible to generalize it to other time
periods. Therefore, for the purpose of forecasting, such (nonstationary) time
series may be of little practical value.

How do we know that a particular time series is stationary? In particular,
are the time series shown in Figures 21.1 and 21.2 stationary? We will take
this important topic up in Sections 21.8 and 21.9, where we will consider
several tests of stationarity. But if we depend on common sense, it would
seem that the time series depicted in Figures 21.1 and 21.2 are nonstation-
ary, at least in the mean values. But more on this later.

Before we move on, we mention a special type of stochastic process (or
time series), namely, a purely random, or white noise, process. We call a
stochastic process purely random if it has zero mean, constant variance σ 2,
and is serially uncorrelated.8 You may recall that the error term ut, entering
the classical normal linear regression model that we discussed in Part I of
this book was assumed to be a white noise process, which we denoted as
ut ∼ IIDN(0, σ 2); that is, ut is independently and identically distributed as a
normal distribution with zero mean and constant variance.

Nonstationary Stochastic Processes

Although our interest is in stationary time series, one often encounters non-
stationary time series, the classic example being the random walk model
(RWM).9 It is often said that asset prices, such as stock prices or exchange
rates, follow a random walk; that is, they are nonstationary. We distinguish
two types of random walks: (1) random walk without drift (i.e., no constant
or intercept term) and (2) random walk with drift (i.e., a constant term is
present).
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10Kerry Patterson, op cit., Chap. 6.

Random Walk without Drift. Suppose ut is a white noise error term
with mean 0 and variance σ 2. Then the series Yt is said to be a random walk if

Yt = Yt−1 + ut (21.3.4)

In the random walk model, as (21.3.4) shows, the value of Y at time t is equal
to its value at time (t − 1) plus a random shock; thus it is an AR(1) model in
the language of Chapters 12 and 17. We can think of (21.3.4) as a regression
of Y at time t on its value lagged one period. Believers in the efficient capi-
tal market hypothesis argue that stock prices are essentially random and
therefore there is no scope for profitable speculation in the stock market: If
one could predict tomorrow’s price on the basis of today’s price, we would
all be millionaires.

Now from (21.3.4) we can write

Y1 = Y0 + u1

Y2 = Y1 + u2 = Y0 + u1 + u2

Y3 = Y2 + u3 = Y0 + u1 + u2 + u3

In general, if the process started at some time 0 with a value of Y0, we have

Yt = Y0 +
∑

ut (21.3.5)

Therefore,

E(Yt) = E
(

Y0 +
∑

ut

)

= Y0 (why?) (21.3.6)

In like fashion, it can be shown that

var (Yt) = tσ 2 (21.3.7)

As the preceding expression shows, the mean of Y is equal to its initial, or
starting, value, which is constant, but as t increases, its variance increases
indefinitely, thus violating a condition of stationarity. In short, the RWM
without drift is a nonstationary stochastic process. In practice Y0 is often set
at zero, in which case E(Yt) = 0.

An interesting feature of RWM is the persistence of random shocks (i.e.,
random errors), which is clear from (21.3.5): Yt is the sum of initial Y0 plus
the sum of random shocks. As a result, the impact of a particular shock does
not die away. For example, if u2 = 2 rather than u2 = 0, then all Yt ’s from Y2

onward will be 2 units higher and the effect of this shock never dies out.
That is why random walk is said to have an infinite memory. As Kerry
Patterson notes, random walk remembers the shock forever10; that is, it has
infinite memory.
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Interestingly, if you write (21.3.4) as

(Yt − Yt−1) = $Yt = ut (21.3.8)

where $ is the first difference operator that we discussed in Chapter 12. It is
easy to show that, while Yt is nonstationary, its first difference is stationary.
In other words, the first differences of a random walk time series are sta-
tionary. But we will have more to say about this later.

Random Walk with Drift. Let us modify (21.3.4) as follows:

Yt = δ + Yt−1 + ut (21.3.9)

where δ is known as the drift parameter. The name drift comes from the
fact that if we write the preceding equation as

Yt − Yt−1 = $Yt = δ + ut (21.3.10)

it shows that Yt drifts upward or downward, depending on δ being positive
or negative. Note that model (21.3.9) is also an AR(1) model.

Following the procedure discussed for random walk without drift, it can
be shown that for the random walk with drift model (21.3.9),

E(Yt) = Y0 + t · δ (21.3.11)

var (Yt) = tσ 2 (21.3.12)

As you can see, for RWM with drift the mean as well as the variance
increases over time, again violating the conditions of (weak) stationarity. In
short, RWM, with or without drift, is a nonstationary stochastic process.

To give a glimpse of the random walk with and without drift, we con-
ducted two simulations as follows:

Yt = Y0 + ut (21.3.13)

where ut are white noise error terms such that each ut ∼ N(0, 1); that is,
each ut follows the standard normal distribution. From a random number
generator, we obtained 500 values of u and generated Yt as shown in
(21.3.13). We assumed Y0 = 0. Thus, (21.3.13) is an RWM without drift.

Now consider

Yt = δ + Y0 + ut (21.3.14)

which is RWM with drift. We assumed ut and Y0 as in (21.3.13) and assumed
that δ = 2.
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FIGURE 21.3 A random walk without drift.
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FIGURE 21.4 A random walk with drift.

The graphs of models (21.3.13) and (21.3.14), respectively, are in Fig-
ures 21.3 and 21.4. The reader can compare these two diagrams in light of
our discussion of the RWM with and without drift.

The random walk model is an example of what is known in the literature
as a unit root process. Since this term has gained tremendous currency in
the time series literature, we next explain what a unit root process is.
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11A technical point: If ρ = 1, we can write (21.4.1) as Yt − Yt−1 = ut. Now using the lag
operator L so that LYt = Yt−1, L2Yt = Yt−2, and so on, we can write (21.4.1) as (1 − L)Yt = ut.
The term unit root refers to the root of the polynomial in the lag operator. If you set (1 − L) = 0,
we obtain, L = 1, hence the name unit root.

12If in (21.4.1) it is assumed that the initial value of Y ( = Y0) is zero, |ρ| ≤ 1, and ut is white
noise and distributed normally with zero mean and unit variance, then it follows that E(Yt) = 0
and var (Yt) = 1/(1 − ρ2). Since both these are constants, by the definition of weak stationarity,
Yt is stationary. On the other hand, as we saw before, if ρ = 1, Yt is a random walk or non-
stationary.

13A time series may contain more than one unit root. But we will discuss this situation later
in the chapter.

21.4 UNIT ROOT STOCHASTIC PROCESS

Let us write the RWM (21.3.4) as:

Yt = ρYt−1 + ut − 1 ≤ ρ ≤ 1 (21.4.1)

This model resembles the Markov first-order autoregressive model that we
discussed in the chapter on autocorrelation. If ρ = 1, (21.4.1) becomes a
RWM (without drift). If ρ is in fact 1, we face what is known as the unit root
problem, that is, a situation of nonstationarity; we already know that in this
case the variance of Yt is not stationary. The name unit root is due to the fact
that ρ = 1.11 Thus the terms nonstationarity, random walk, and unit root can
be treated as synonymous.

If, however, |ρ| ≤ 1, that is if the absolute value of ρ is less than one, then
it can be shown that the time series Yt is stationary in the sense we have
defined it.12

In practice, then, it is important to find out if a time series possesses a
unit root.13 In Section 21.9 we will discuss several tests of unit root, that is,
several tests of stationarity. In that section we will also determine whether
the time series depicted in Figures 21.1 and 21.2 are stationary. Perhaps the
reader might suspect that they are not. But we shall see.

21.5 TREND STATIONARY (TS) AND DIFFERENCE STATIONARY (DS)

STOCHASTIC PROCESSES

The distinction between stationary and nonstationary stochastic processes
(or time series) has a crucial bearing on whether the trend (the slow long-
run evolution of the time series under consideration) observed in the con-
structed time series in Figures 21.3 and 21.4 or in the actual economic time
series of Figures 21.1 and 21.2 is deterministic or stochastic. Broadly
speaking, if the trend in a time series is completely predictable and not vari-
able, we call it a deterministic trend, whereas if it is not predictable, we call
it a stochastic trend. To make the definition more formal, consider the fol-
lowing model of the time series Yt .

Yt = β1 + β2t + β3Yt−1 + ut (21.5.1)
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where ut is a white noise error term and where t is time measured chrono-
logically. Now we have the following possibilities:

Pure random walk: If in (21.5.1) β1 = 0, β2 = 0, β3 = 1, we get

Yt = Yt−1 + ut (21.5.2)

which is nothing but a RWM without drift and is therefore nonstationary.
But note that, if we write (21.5.2) as

$Yt = (Yt − Yt−1) = ut (21.3.8)

it becomes stationary, as noted before. Hence, a RWM without drift is a
difference stationary process (DSP).

Random walk with drift: If in (21.5.1) β1 (= 0, β2 = 0, β3 = 1, we get

Yt = β1 + Yt−1 + ut (21.5.3)

which is a random walk with drift and is therefore nonstationary. If we write
it as

(Yt − Yt−1) = $Yt = β1 + ut (21.5.3a)

this means Yt will exhibit a positive (β1 > 0) or negative (β1 < 0) trend (see
Figure 21.4). Such a trend is called a stochastic trend. Equation (21.5.3a)
is a DSP process because the nonstationarity in Yt can be eliminated by tak-
ing first differences of the time series.

Deterministic trend: If in (21.5.1), β1 (= 0, β2 (= 0, β3 = 0, we obtain

Yt = β1 + β2t + ut (21.5.4)

which is called a trend stationary process (TSP). Although the mean of Yt

is β1 + β2t, which is not constant, its variance (= σ2) is. Once the values of
β1 and β2 are known, the mean can be forecast perfectly. Therefore, if we
subtract the mean of Yt from Yt , the resulting series will be stationary, hence
the name trend stationary. This procedure of removing the (deterministic)
trend is called detrending.

Random walk with drift and deterministic trend: If in (21.5.1), β1 (= 0,
β2 (= 0, β3 = 1, we obtain:

Yt = β1 + β2t + Yt−1 + ut (21.5.5)

we have a random walk with drift and a deterministic trend, which can be
seen if we write this equation as

$Yt = β1 + β2t + ut (21.5.5a)

which means that Yt is nonstationary.
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FIGURE 21.5 Deterministic versus stochastic trend.

Source: Charemza et al., op. cit., p. 91.

14The following discussion is based on Wojciech W. Charemza et al., op. cit., pp. 89–91.

Deterministic trend with stationary AR(1) component: If in (21.5.1)
β1 (= 0, β2 (= 0, β3 < 1, then we get

Yt = β1 + β2t + β3Yt−1 + ut (21.5.6)

which is stationary around the deterministic trend.

To see the difference between stochastic and deterministic trends, con-
sider Figure 21.5.14 The series named stochastic in this figure is generated by
an RWM: Yt = 0.5+ Yt−1 + ut , where 500 values of ut were generated from a
standard normal distribution and where the initial value of Y was set at 1.
The series named deterministic is generated as follows: Yt = 0.5t + ut , where
ut were generated as above and where t is time measured chronologically.

As you can see from Figure 21.5, in the case of the deterministic trend,
the deviations from the trend line (which represents nonstationary mean)
are purely random and they die out quickly; they do not contribute to the
long-run development of the time series, which is determined by the trend
component 0.5t. In the case of the stochastic trend, on the other hand, the
random component ut affects the long-run course of the series Yt.

21.6 INTEGRATED STOCHASTIC PROCESSES

The random walk model is but a specific case of a more general class of sto-
chastic processes known as integrated processes. Recall that the RWM
without drift is nonstationary, but its first difference, as shown in (21.3.8), is


