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We noted in Chapter 1 that one of the important types of data used in
empirical analysis is time series data. In this and the following chapter we
take a closer look at such data not only because of the frequency with which
they are used in practice but also because they pose several challenges to
econometricians and practitioners.

First, empirical work based on time series data assumes that the underly-
ing time series is stationary. Although we have discussed the concept of sta-
tionarity intuitively in Chapter 1, we discuss it more fully in this chapter.
More specifically, we will try to find out what stationarity means and why
one should worry about it.

Second, in Chapter 12, on autocorrelation, we discussed several causes of
autocorrelation. Sometimes autocorrelation results because the underlying
time series is nonstationary.

Third, in regressing a time series variable on another time series vari-
able(s), one often obtains a very high R? (in excess of 0.9) even though there
is no meaningful relationship between the two variables. Sometimes we
expect no relationship between two variables, yet a regression of one on the
other variable often shows a significant relationship. This situation exem-
plifies the problem of spurious, or nonsense, regression, whose nature
will be explored shortly. It is therefore very important to find out if the rela-
tionship between economic variables is spurious or nonsensical. We will see
in this chapter how spurious regressions can arise if time series are not
stationary.

Fourth, some financial time series, such as stock prices, exhibit what is
known as the random walk phenomenon. This means the best prediction
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of the price of a stock, say IBM, tomorrow is equal to its price today plus a
purely random shock (or error term). If this were in fact the case, forecast-
ing asset prices would be a futile exercise.

Fifth, regression models involving time series data are often used for fore-
casting. In view of the preceding discussion, we would like to know if such
forecasting is valid if the underlying time series are not stationary.

Finally, causality tests of Granger and Sims that we discussed in Chapter 17
assume that the time series involved in analysis are stationary. Therefore,
tests of stationarity should precede tests of causality.

At the outset a disclaimer is in order. The topic of time series analysis is
so vast and evolving and some of the mathematics underlying the various
techniques of time series analysis is so involved that the best we hope to
achieve in an introductory text like this is to give the reader a glimpse of
some of the fundamental concepts of time series analysis. For those who
want to pursue this topic further, we provide references.!

21.1 ALOOK AT SELECTED U.S. ECONOMIC TIME SERIES

To set the stage, and to give the reader a feel for the somewhat esoteric
concepts of time series analysis to be developed in this chapter, it might be
useful to consider several U.S. economic time series of general interest. The
time series we consider are: (1) GDP (gross domestic product), (2) PDI (per-
sonal disposable income), (3) PCE (personal consumption expenditure),
(4) profits (corporate profits after tax), and (5) dividends (net corporate div-
idend); all data are in billions of 1987 dollars and are for the quarterly peri-
ods of 1970-1991, for a total of 88 quarterly observations. The raw data are
given in Table 21.1.

At the introductory level, these references may be helpful: Gary Koop, Analysis of Eco-
nomic Data, John Wiley & Sons, New York, 2000; Jeff B. Cromwell, Walter C. Labys, and Michel
Terraza, Univariate Tests for Time Series Models, Sage Publications, California, Ansbury Park,
1994; Jeff B. Cromwell, Michael H. Hannan, Walter C. Labys, and Michel Terraza, Multivariate
Tests for Time Series Models, Sage Publications, California, Ansbury Park, 1994; H. R. Seddighi,
K. A. Lawler, and A. V. Katos, Econometrics: A Practical Approach, Routledge, New York, 2000.
At the intermediate level, see Walter Enders, Applied Econometric Time Series, John Wiley &
Sons, New York, 1995; Kerry Patterson, An Introduction to Applied Econometrics: A Time Series
Approach, St. Martin’s Press, New York, 2000; T. C. Mills, The Econometric Modelling of Finan-
cial Time Series, 2d ed., Cambridge University Press, New York, 1999; Marno Verbeek, A Guide
to Modern Econometrics, John Wiley & Sons, New York, 2000; Wojciech W. Charemza and
Derek F. Deadman, New Directions in Econometric Practice: General to Specific Modelling and
Vector Autoregression, 2d ed., Edward Elgar Publisher, New York, 1997. At the advanced level,
see Hamilton, J. D., Time Series Analysis, Princeton University Press, Princeton, N.J., 1994, and
G. S. Maddala and In-Moo Kim, Unit Roots, Cointegration, and Structural Change, Cambridge
University Press, 1998. At the applied level, see B. Bhaskara Rao, ed., Cointegration for the Ap-
plied Economist, St. Martin’s Press, New York, 1994, and Chandan Mukherjee, Howard White,
and Marc Wuyts, Econometrics and Data Analysis for Developing Countries, Routledge, New
York, 1998.
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TABLE 21.1 MACROECONOMICS DATA, UNITED STATES, 1970-I TO 1991-IV
Quarter GDP  PDI  PCE Profits Dividend  Quarter GDP  PDI  PCE  Profits Dividend
1970-1 28728 1990.6 18005 447 245 19811 38605 27837 24755 1595  64.0
1970-11  2860.3 2020.1 1807.5 444 239 1981-Il  3844.4 27767 24761 1437 684
1970-1ll  2896.6 20453 18247 449 233 1981-Ill 38645 28141 24874 1476 719
1970-IV 28737 20452 18212 421 231 1981-IV  3803.1 2808.8 2468.6 1403 724
1971-1 29429 2073.9 18499 488 238 1982-1 37561 27950 24840 1144  70.0
1971-1l  2947.4 2098.0 18635 507 237 1982-Il 37711 2824.8 24889 1140 684
1971-Il  2966.0 2106.6 18769 542 2338 1982-1ll 37544 2829.0 25025 1146  69.2
1971-IV  2980.8 2121.1 19046 557 237 1982-IV  3759.6 28326 2539.3 109.9 725
1972-1  3037.3 2129.7 1929.3 594 250 1983-1 37835 28436 25565 1136  77.0
1972-1l  3089.7 21491 19633 60.1 255 1983-Il 38865 2867.0 26040 1330 805
1972-1l 31258 2193.9 1989.1 628  26.1 1983-I1ll 39444 2903.0 2639.0 1457  83.1
1972-IV 31755 22720 20321 683 265 1983-IV 40121 2960.6 26782 1416 842
1973-1 32533 23007 20639 791  27.0 1984-1 40895 30332 27038 155.1 83.3
1973-1l  3267.6 23152 20620 812 2738 1984-Il 41440 30659 27411 1526 822
1973-1l  3264.3 2337.9 20737 813 283 1984-Ill 41664 31027 27546 1418 817
1973-IV 32891 23827 20674 850 294 1984-IV 41942 31185 27848 1363 834
1974-1 32594 23347 20508 89.0  29.8 1985-1 42218 31236 28249 1252 872
1974-11  3267.6 23045 20590 912 304 1985-1 42548 3189.6 28497 1248 908
1974-IIl 32391 23150 20655 97.1 309 1985-1Il  4309.0 31565 2893.3 1298  94.1
1974-IV  3226.4 23137 20399 868 305 1985-IV 43335 31787 28953 1342  97.4
1975-1 31540 22825 20518 758  30.0 1986-1 43905 3227.5 29224 109.2  105.1
1975-1l  3190.4 2390.3 20869 81.0  29.7 1986-I 43877 3281.4 29479 1060 1107
1975-1ll 32499 23544 21144 978  30.1 1986-Ill 44126 32726 29937 111.0 1123
1975-IV 32925 23894 2137.0 1034 306 1986-IV 44271 32662 30125 1192  111.0
1976-1 33567 24245 2179.3 1084 326 1987-1  4460.0 32952 3011.5 1402  108.0
1976-1l 33692 24349 21947 1092 350 1987-Il 45153 32417 30468 157.9 1055
1976-1ll  3381.0 24447 22130 1100 366 1987-Ill  4559.3 32857 30758 169.1  105.1
1976-IV 34163 24595 22420 1103 383 1987-IV 46255 33358 30746 1760 1063
1977-1  3466.4 24630 22713 1215 392 1988-I 46553 33801 31282 1955  109.6
1977-1l 35250 24903 22808 129.7  40.0 1988-Il 4704.8 33863 31478 207.2 1133
1977-1l  3574.4 2541.0 23026 1351 414 1988-Ill 47345 34075 31706 2134 1175
1977-IV  3567.2 25562 23316 1348 424 1988-IV 47797 34431 32029 2260 1210
19781  3591.8 2587.3 23471 1375 435 19891  4809.8 34739 32009 2213 1246
1978-1l  3707.0 2631.9 23940 1540 445 1989-1 48324 3450.9 3208.6 2062  127.1
1978-Ill 37356 26532 24045 1580  46.6 1989-Ill 48456 34669 32411 1957  129.1
1978-IV  3779.6 2680.9 24216 167.8  48.9 1989-IV 48597 34930 32416 203.0  130.7
1979-1  3780.8 26992 24379 1682 505 1990-1 4880.8 35314 32588 199.1 1323
1979-1l 37843 2697.6 24354 1741 5138 1990-Il  4900.3 35453 32586 193.7 1325
1979-1ll 38075 27153 24547 1781 527 1990-Ill 49033 3547.0 32812 1963 13338
1979-IV  3814.6 2728.1 24654 1734 545 1990-IV 48551 35295 32518 199.0 1362
19801  3830.8 2742.9 24646 1743 576 19911 48240 3514.8 32411 1897 13738
1980-Il 37326 26920 24142 1445 587 1991-Il 48407 3537.4 32524 1827 1367
1980-Ill 37335 27225 24403 1510 593 1991-Ill 48627 3539.9 3271.2 189.6  138.1
1980-IV 38085 2777.0 24692 1546 605 1991-IV  4868.0 35475 32711 190.3 1385

Notes: GDP (Gross Domestic Product), billions of 1987 dollars, p. A-96. PDI (Personal disposable income), billions of 1987 dollars,
p. A-112. PCE (Personal consumption expenditure), billions of 1987 dollars, p. A-96. Profits (corporate profits after tax), billions of dollars,
p. A-110. Dividends (net corporate dividend payments), billions of dollars, p. A-110.

Source: U.S. Department of Commerce, Bureau of Economic Analysis, Business Statistics, 1963—1991, June 1992.
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Figure 21.1 is a plot of the data for GDP, PDI, and PCE, and Figure 21.2
presents the other two time series. A visual plot of the data is usually the first
step in the analysis of any time series. The first impression that we get from
these graphs is that all the time series shown in Figures 21.1 and 21.2 seem
to be “trending” upward, albeit with fluctuations. Suppose we wanted to
speculate on the shape of these curves over the quarterly period, say, from
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1992-1 to 1996-IV.2 Can we simply mentally extend the curves shown in the
above figures? Perhaps we can if we know the statistical, or stochastic,
mechanism, or the data generating process (DGP), that generated these
curves? But what is that mechanism? To answer this and related questions,
we need to study some “new” vocabulary that has been developed by time
series analysts, to which we now turn.

21.2 KEY CONCEPTS?

What is this vocabulary? It consists of concepts such as these:

1. Stochastic processes

2. Stationarity processes

3. Purely random processes

4. Nonstationary processes

5. Integrated variables

6. Random walk models

7. Cointegration

8. Deterministic and stochastic trends
9. Unit root tests

In what follows we will discuss each of these concepts. Our discussion will
often be heuristic. Wherever possible and helpful, we will provide appropri-
ate examples.

21.3 STOCHASTIC PROCESSES

A random or stochastic process is a collection of random variables ordered in
time.* If we let Y denote a random variable, and if it is continuous, we
denote it as Y(¢), but if it is discrete, we denoted it as Y;. An example of the
former is an electrocardiogram, and an example of the latter is GDP, PDI,
etc. Since most economic data are collected at discrete points in time, for
our purpose we will use the notation Y; rather than Y(¢). If we let Y represent
GDP, for our data we have Y, Y>, Y3, ..., Ys¢, Y37, Yss, where the subscript 1
denotes the first observation (i.e., GDP for the first quarter of 1970) and the
subscript 88 denotes the last observation (i.e., GDP for the fourth quarter of
1991). Keep in mind that each of these Y's is a random variable.

In what sense can we regard GDP as a stochastic process? Consider for
instance the GDP of $2872.8 billion for 1970-1. In theory, the GDP figure for

20f course, we have the actual data for this period now and could compare it with the data
that is “predicted” on the basis of the earlier period.

3The following discussion is based on Maddala et al., op. cit., and Charemza et al., op. cit.

4The term “stochastic” comes from the Greek word “stokhos,” which means a target or
bull’s-eye. If you have ever thrown darts on a dart board with the aim of hitting the bull’s-eye,
how often did you hit the bull's-eye? Out of a hundred darts you may be lucky to hit the
bull’s-eye only a few times; at other times the darts will be spread randomly around the
bull’s-eye.
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the first quarter of 1970 could have been any number, depending on the eco-
nomic and political climate then prevailing. The figure of 2872.8 is a partic-
ular realization of all such possibilities.> Therefore, we can say that GDP is
a stochastic process and the actual values we observed for the period 1970-1
to 1991-1V are a particular realization of that process (i.e., sample). The dis-
tinction between the stochastic process and its realization is akin to the dis-
tinction between population and sample in cross-sectional data. Just as we
use sample data to draw inferences about a population, in time series we
use the realization to draw inferences about the underlying stochastic
process.

Stationary Stochastic Processes

A type of stochastic process that has received a great deal of attention and
scrutiny by time series analysts is the so-called stationary stochastic
process. Broadly speaking, a stochastic process is said to be stationary if its
mean and variance are constant over time and the value of the covariance
between the two time periods depends only on the distance or gap or lag between
the two time periods and not the actual time at which the covariance is com-
puted. In the time series literature, such a stochastic process is known as a
weakly stationary, or covariance stationary, or second-order stationary,
or wide sense, stochastic process. For the purpose of this chapter, and in
most practical situations, this type of stationarity often suffices.®

To explain weak stationarity, let ¥; be a stochastic time series with these
properties:

Mean: EY)=nu (21.3.1)
Variance: var(Y;) = E(Y; — n)? = o2 (21.3.2)
Covariance: i = E[(Y; — )Yy — )] (21.3.3)

where y;, the covariance (or autocovariance) at lag k, is the covariance
between the values of Y; and Y, 4, that is, between two Y values k periods
apart. If k = 0, we obtain yy, which is simply the variance of Y (= o?); if
k =1, y is the covariance between two adjacent values of Y, the type of co-
variance we encountered in Chapter 12 (recall the Markov first-order au-
toregressive scheme).

Suppose we shift the origin of Y from Y; to Y;,,, (say, from the first quar-
ter of 1970 to the first quarter of 1975 for our GDP data). Now if Y; is to be
stationary, the mean, variance, and autocovariances of Y;.,, must be the

>You can think of the value of $2872.8 billion as the mean value of all possible values of GDP
for the first quarter of 1970.

A time series is strictly stationary if all the moments of its probability distribution and not
just the first two (i.e., mean and variance) are invariant over time. If, however, the stationary
process is normal, the weakly stationary stochastic process is also strictly stationary, for the
normal stochastic process is fully specified by its two moments, the mean and the variance.
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same as those of Y;. In short, if a time series is stationary, its mean, variance,
and autocovariance (at various lags) remain the same no matter at what point
we measure them;, that is, they are time invariant. Such a time series will tend
to return to its mean (called mean reversion) and fluctuations around this
mean (measured by its variance) will have a broadly constant amplitude.’

If a time series is not stationary in the sense just defined, it is called a
nonstationary time series (keep in mind we are talking only about weak
stationarity). In other words, a nonstationary time series will have a time-
varying mean or a time-varying variance or both.

Why are stationary time series so important? Because if a time series is
nonstationary, we can study its behavior only for the time period under con-
sideration. Each set of time series data will therefore be for a particular
episode. As a consequence, it is not possible to generalize it to other time
periods. Therefore, for the purpose of forecasting, such (nonstationary) time
series may be of little practical value.

How do we know that a particular time series is stationary? In particular,
are the time series shown in Figures 21.1 and 21.2 stationary? We will take
this important topic up in Sections 21.8 and 21.9, where we will consider
several tests of stationarity. But if we depend on common sense, it would
seem that the time series depicted in Figures 21.1 and 21.2 are nonstation-
ary, at least in the mean values. But more on this later.

Before we move on, we mention a special type of stochastic process (or
time series), namely, a purely random, or white noise, process. We call a
stochastic process purely random if it has zero mean, constant variance o2,
and is serially uncorrelated.® You may recall that the error term u,, entering
the classical normal linear regression model that we discussed in Part I of
this book was assumed to be a white noise process, which we denoted as
u; ~ TIDN(0, 02); that is, u, is independently and identically distributed as a
normal distribution with zero mean and constant variance.

Nonstationary Stochastic Processes

Although our interest is in stationary time series, one often encounters non-
stationary time series, the classic example being the random walk model
(RWM).? It is often said that asset prices, such as stock prices or exchange
rates, follow a random walk; that is, they are nonstationary. We distinguish
two types of random walks: (1) random walk without drift (i.e., no constant
or intercept term) and (2) random walk with drift (i.e., a constant term is
present).

"This point has been made by Keith Cuthbertson, Stephen G. Hall, and Mark P. Taylor,
Applied Econometric Techniques, The University of Michigan Press, 1995, p. 130.

81f it is also independent, such a process is called strictly white noise.

°The term random walk is often compared with a drunkard’s walk. Leaving a bar, the drunk-
ard moves a random distance u, at time 7, and, continuing to walk indefinitely, will eventually
drift farther and farther away from the bar. The same is said about stock prices. Today’s stock
price is equal to yesterday’s stock price plus a random shock.
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Random Walk without Drift. Suppose u, is a white noise error term
with mean 0 and variance o2. Then the series Y; is said to be a random walk if

Y=Y 1 +u (21.3.4)

In the random walk model, as (21.3.4) shows, the value of Y at time 7 is equal
to its value at time (¢ — 1) plus a random shock; thus it is an AR(1) model in
the language of Chapters 12 and 17. We can think of (21.3.4) as a regression
of Y at time ¢ on its value lagged one period. Believers in the efficient capi-
tal market hypothesis argue that stock prices are essentially random and
therefore there is no scope for profitable speculation in the stock market: If
one could predict tomorrow’s price on the basis of today’s price, we would
all be millionaires.
Now from (21.3.4) we can write

Yi=Y+u
YLo=Y14+u=Yo+u +u
Ys=Y4+us =Y +u +up +u3

In general, if the process started at some time 0 with a value of Yj, we have

Y, =Yy + Zu, (21.3.5)

Therefore,
EY,)=E (Yo n Zu[) — Y, (why?) (21.3.6)
In like fashion, it can be shown that
var(V;) = to? (21.3.7)

As the preceding expression shows, the mean of Y is equal to its initial, or
starting, value, which is constant, but as 7 increases, its variance increases
indefinitely, thus violating a condition of stationarity. In short, the RWM
without drift is a nonstationary stochastic process. In practice Yj is often set
at zero, in which case E(Y;) = 0.

An interesting feature of RWM is the persistence of random shocks (i.e.,
random errors), which is clear from (21.3.5): ¥; is the sum of initial Yy plus
the sum of random shocks. As a result, the impact of a particular shock does
not die away. For example, if 2, = 2 rather than u; = 0, then all ¥}’s from Y,
onward will be 2 units higher and the effect of this shock never dies out.
That is why random walk is said to have an infinite memory. As Kerry
Patterson notes, random walk remembers the shock forever!?; that is, it has
infinite memory.

19K erry Patterson, op cit., Chap. 6.
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Interestingly, if you write (21.3.4) as
(Y, = Y1) = AY, = w (21.3.8)

where A is the first difference operator that we discussed in Chapter 12. It is
easy to show that, while Y; is nonstationary, its first difference is stationary.
In other words, the first differences of a random walk time series are sta-
tionary. But we will have more to say about this later.

Random Walk with Drift. Let us modify (21.3.4) as follows:
Y, =6+Y_1+u (21.3.9)

where § is known as the drift parameter. The name drift comes from the
fact that if we write the preceding equation as

Y=Y, 1 =AY, =0+u (21.3.10)

it shows that Y, drifts upward or downward, depending on § being positive
or negative. Note that model (21.3.9) is also an AR(1) model.

Following the procedure discussed for random walk without drift, it can
be shown that for the random walk with drift model (21.3.9),

EY)=Yy+t-8 (21.3.11)
var (Y;) = to? (21.3.12)

As you can see, for RWM with drift the mean as well as the variance
increases over time, again violating the conditions of (weak) stationarity. In
short, RWM, with or without drift, is a nonstationary stochastic process.

To give a glimpse of the random walk with and without drift, we con-
ducted two simulations as follows:

Y=Y +u (21.3.13)

where 1, are white noise error terms such that each u; ~ N(0, 1); that is,

each u; follows the standard normal distribution. From a random number

generator, we obtained 500 values of u and generated Y; as shown in

(21.3.13). We assumed Yy = 0. Thus, (21.3.13) is an RWM without drift.
Now consider

Y=+Yo+u, (21.3.14)

which is RWM with drift. We assumed u; and Yj as in (21.3.13) and assumed
that § = 2.
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The graphs of models (21.3.13) and (21.3.14), respectively, are in Fig-
ures 21.3 and 21.4. The reader can compare these two diagrams in light of
our discussion of the RWM with and without drift.

The random walk model is an example of what is known in the literature
as a unit root process. Since this term has gained tremendous currency in
the time series literature, we next explain what a unit root process is.

Y, 10

-10

100 200 300 400 500
Y=Y _ +u, Time

FIGURE 21.3 A random walk without drift.

100 200 300 400 500
Y,=2+Y,  +u, Time

FIGURE 21.4 A random walk with drift.
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21.4 UNIT ROOT STOCHASTIC PROCESS
Let us write the RWM (21.3.4) as:

Y =pY1 +uy —1<p=<i (21.4.1)

This model resembles the Markov first-order autoregressive model that we
discussed in the chapter on autocorrelation. If p=1, (21.4.1) becomes a
RWM (without drift). If p is in fact 1, we face what is known as the unit root
problem, that is, a situation of nonstationarity; we already know that in this
case the variance of Y; is not stationary. The name unit root is due to the fact
that p = 1.!! Thus the terms nonstationarity, random walk, and unit root can
be treated as synonymous.

If, however, |p| < 1, that is if the absolute value of p is less than one, then
it can be shown that the time series Y; is stationary in the sense we have
defined it.!2

In practice, then, it is important to find out if a time series possesses a
unit root.’3 In Section 21.9 we will discuss several tests of unit root, that is,
several tests of stationarity. In that section we will also determine whether
the time series depicted in Figures 21.1 and 21.2 are stationary. Perhaps the
reader might suspect that they are not. But we shall see.

21.5 TREND STATIONARY (TS) AND DIFFERENCE STATIONARY (DS)
STOCHASTIC PROCESSES

The distinction between stationary and nonstationary stochastic processes
(or time series) has a crucial bearing on whether the trend (the slow long-
run evolution of the time series under consideration) observed in the con-
structed time series in Figures 21.3 and 21.4 or in the actual economic time
series of Figures 21.1 and 21.2 is deterministic or stochastic. Broadly
speaking, if the trend in a time series is completely predictable and not vari-
able, we call it a deterministic trend, whereas if it is not predictable, we call
it a stochastic trend. To make the definition more formal, consider the fol-
lowing model of the time series Y;.

Y =p1+ ot + B3Yio1 +uy (21.5.1)

A technical point: If p = 1, we can write (21.4.1) as Y; — Y;_; = u;. Now using the lag
operator L so that LY; =Y,_;, L’Y; = Y;_,, and so on, we can write (21.4.1) as (1 — L)Y; = u,.
The term unit root refers to the root of the polynomial in the lag operator. If you set (1 — L) =0,
we obtain, L = 1, hence the name unit root.

12If in (21.4.1) it is assumed that the initial value of Y ( = Yj) is zero, |p| < 1, and u, is white
noise and distributed normally with zero mean and unit variance, then it follows that E(Y;) =0
and var (Y;) = 1/(1 — p?). Since both these are constants, by the definition of weak stationarity,
Y; is stationary. On the other hand, as we saw before, if p =1, Y; is a random walk or non-
stationary.

13A time series may contain more than one unit root. But we will discuss this situation later
in the chapter.
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where 1, is a white noise error term and where ¢ is time measured chrono-
logically. Now we have the following possibilities:

Pure random walk: If in (21.5.1) 81 =0, 8, =0, 83 = 1, we get
Y=Y 1+u (21.5.2)

which is nothing but a RWM without drift and is therefore nonstationary.
But note that, if we write (21.5.2) as

AY, =Y = Y1) = w (21.3.8)

it becomes stationary, as noted before. Hence, a RWM without drift is a
difference stationary process (DSP).
Random walk with drift: If in (21.5.1) 8; #£0, 8, =0, 83 = 1, we get

Y=H+Y 1+u (21.5.3)

which is a random walk with drift and is therefore nonstationary. If we write
it as

Y, =Y_) =AY, =B +u, (21.5.3a)

this means Y; will exhibit a positive (8; > 0) or negative (8; < 0) trend (see
Figure 21.4). Such a trend is called a stochastic trend. Equation (21.5.3a)
is a DSP process because the nonstationarity in ¥; can be eliminated by tak-
ing first differences of the time series.

Deterministic trend: If in (21.5.1), 81 # 0, 82 # 0, 83 = 0, we obtain

Yi=pB1+ Bt +uy (21.5.4)

which is called a trend stationary process (TSP). Although the mean of ¥,
is B1 + Bat, which is not constant, its variance (= ¢?) is. Once the values of
B1 and B, are known, the mean can be forecast perfectly. Therefore, if we
subtract the mean of Y, from Y;, the resulting series will be stationary, hence
the name trend stationary. This procedure of removing the (deterministic)
trend is called detrending.

Random walk with drift and deterministic trend: If in (21.5.1), 81 # 0,
B2 # 0, B3 = 1, we obtain:

Y=p+pt+Y 1+u (21.5.5)

we have a random walk with drift and a deterministic trend, which can be
seen if we write this equation as

AY; = B+ Bot +uy (21.5.5a)

which means that Y; is nonstationary.
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FIGURE 21.5 Deterministic versus stochastic trend.

Source: Charemza et al., op. cit., p. 91.

Deterministic trend with stationary AR(1) component: If in (21.5.1)

Bi #0, B, #0, B3 < 1, then we get
Y =Bi+ fot + B3Yio1 +uy

which is stationary around the deterministic trend.

To see the difference between stochastic and deterministic trends, con-
sider Figure 21.5.!% The series named stochastic in this figure is generated by
an RWM: Y; = 0.5 + Y, + u;, where 500 values of u; were generated from a
standard normal distribution and where the initial value of Y was set at 1.
The series named deterministic is generated as follows: Y; = 0.5¢ + u«,, where
u, were generated as above and where ¢ is time measured chronologically.

As you can see from Figure 21.5, in the case of the deterministic trend,
the deviations from the trend line (which represents nonstationary mean)
are purely random and they die out quickly; they do not contribute to the
long-run development of the time series, which is determined by the trend
component 0.5¢. In the case of the stochastic trend, on the other hand, the

© The McGraw-Hill
Companies, 2004

(21.5.6)

random component u, affects the long-run course of the series ;.

21.6 INTEGRATED STOCHASTIC PROCESSES

The random walk model is but a specific case of a more general class of sto-
chastic processes known as integrated processes. Recall that the RWM
without drift is nonstationary, but its first difference, as shown in (21.3.8), is

4The following discussion is based on Wojciech W. Charemza et al., op. cit., pp. 89-91.



