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FIGURE 21.5 Deterministic versus stochastic trend.

Source: Charemza et al., op. cit., p. 91.

14The following discussion is based on Wojciech W. Charemza et al., op. cit., pp. 89–91.

Deterministic trend with stationary AR(1) component: If in (21.5.1)
β1  = 0, β2  = 0, β3 < 1, then we get

Yt = β1 + β2t + β3Yt−1 + ut (21.5.6)

which is stationary around the deterministic trend.

To see the difference between stochastic and deterministic trends, con-
sider Figure 21.5.14 The series named stochastic in this figure is generated by
an RWM: Yt = 0.5 + Yt−1 + ut , where 500 values of ut were generated from a
standard normal distribution and where the initial value of Y was set at 1.
The series named deterministic is generated as follows: Yt = 0.5t + ut , where
ut were generated as above and where t is time measured chronologically.

As you can see from Figure 21.5, in the case of the deterministic trend,
the deviations from the trend line (which represents nonstationary mean)
are purely random and they die out quickly; they do not contribute to the
long-run development of the time series, which is determined by the trend
component 0.5t. In the case of the stochastic trend, on the other hand, the
random component ut affects the long-run course of the series Yt.

21.6 INTEGRATED STOCHASTIC PROCESSES

The random walk model is but a specific case of a more general class of sto-
chastic processes known as integrated processes. Recall that the RWM
without drift is nonstationary, but its first difference, as shown in (21.3.8), is
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15For example if Yt is I(2), then ##Yt = #(Yt − Yt−1) = #Yt − #Yt−1 = Yt − 2Yt−1 + Yt−2 will
become stationary. But note that ##Yt = #2Yt  = Yt − Yt−2.

stationary. Therefore, we call the RWMwithout drift integrated of order 1,
denoted as I(1). Similarly, if a time series has to be differenced twice (i.e.,
take the first difference of the first differences) to make it stationary, we call
such a time series integrated of order 2.15 In general, if a (nonstationary)
time series has to be differenced d times to make it stationary, that time se-
ries is said to be integrated of order d. A time series Yt integrated of order d
is denoted as Yt ∼ I(d). If a time series Yt is stationary to begin with (i.e., it
does not require any differencing), it is said to be integrated of order zero,
denoted byYt ∼ I(0). Thus, wewill use the terms “stationary time series” and
“time series integrated of order zero” to mean the same thing.

Most economic time series are generally I(1); that is, they generally be-
come stationary only after taking their first differences. Are the time series
shown in Figures 21.1 and 21.2 I(1) or of higher order? We will examine
them in Sections 21.8 and 21.9.

Properties of Integrated Series

The following properties of integrated time series may be noted: Let Xt , Yt ,
and Zt be three time series.

1. If Xt ∼ I(0) and Yt ∼ I(1), then Zt = (Xt + Yt) = I(1); that is, a linear com-
bination or sum of stationary and nonstationary time series is
nonstationary.

2. If Xt ∼ I(d), then Zt = (a+ bXt) = I(d), where a and b are constants.
That is, a linear combination of an I(d) series is also I(d). Thus, if Xt ∼ I(0),
then Zt = (a+ bXt) ∼ I(0).

3. If Xt ∼ I(d1) and Yt ∼ I(d2), then Zt = (aXt + bYt) ∼ I(d2), where
d1 < d2.

4. If Xt ∼ I(d) and Yt ∼ I(d), then Zt = (aXt + bYt) ∼ I(d*); d* is gener-
ally equal to d, but in some cases d* < d (see the topic of cointegration in
Section 21.11).

As you can see from the preceding statements, one has to pay careful atten-
tion in combining two or more time series that are integrated of different
order.

To see why this is important, consider the two-variable regression model
discussed in Chapter 3, namely, Yt = β1 + β2Xt + ut. Under the classical OLS
assumptions, we know that

β̂2 =
∑

xtyt∑
x2t

(21.6.1)

where the small letters, as usual, indicate deviation from mean values. Sup-
pose Yt is I(0), but Xt is I(1); that is, the former is stationary and the latter is
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16This point is due to Maddala et al., op. cit., p. 26.
17Yule, G. U., “Why Do We Sometimes Get Nonsense Correlations Between Time Series? A

Study in Sampling and the Nature of Time Series,” Journal of the Royal Statistical Society,
vol. 89, 1926, pp. 1–64. For extensive Monte Carlo simulations on spurious regression see
C. W. J. Granger and P. Newbold, “Spurious Regressions in Econometrics,” Journal of Econo-
metrics, vol. 2, 1974, pp. 111–120.

not. Since Xt is nonstationary, its variance will increase indefinitely, thus
dominating the numerator term in (21.6.1) with the result that β̂2 will con-
verge to zero asymptotically (i.e., in large samples) and it will not even have
an asymptotic distribution.16

21.7 THE PHENOMENON OF SPURIOUS REGRESSION

To seewhy stationary time series are so important, consider the following two
random walk models:

Yt = Yt−1 + ut (21.7.1)

Xt = Xt−1 + vt (21.7.2)

where we generated 500 observations of ut from ut ∼ N(0, 1) and 500 obser-
vations of vt from vt ∼ N(0, 1) and assumed that the initial values of both Y
and X were zero. We also assumed that ut and vt are serially uncorrelated as
well as mutually uncorrelated. As you know by now, both these time series
are nonstationary; that is, they are I(1) or exhibit stochastic trends.

Suppose we regress Yt on Xt. Since Yt and Xt are uncorrelated I(1)
processes, the R2 from the regression of Y on X should tend to zero; that is,
there should not be any relationship between the two variables. But wait till
you see the regression results:

Variable Coefficient Std. error t statistic

C -13.2556 0.6203 -21.36856

X 0.3376 0.0443 7.61223

R
2
= 0.1044 d = 0.0121

As you can see, the coefficient of X is highly statistically significant, and,
although the R2 value is low, it is statistically significantly different from
zero. From these results, you may be tempted to conclude that there is a
significant statistical relationship between Y and X, whereas a priori there
should be none. This is in a nutshell the phenomenon of spurious or non-
sense regression, first discovered by Yule.17 Yule showed that (spurious)
correlation could persist in nonstationary time series even if the sample is
very large. That there is something wrong in the preceding regression is sug-
gested by the extremely low Durbin–Watson d value, which suggests very
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strong first-order autocorrelation. According to Granger and Newbold, an
R2 > d is a good rule of thumb to suspect that the estimated regression is spu-
rious, as in the example above.

That the regression results presented above are meaningless can be easily
seen from regressing the first differences of Yt (= #Yt) on the first differ-
ences of Xt (= #Xt); remember that although Yt and Xt are nonstationary,
their first differences are stationary. In such a regression you will find that
R2 is practically zero, as it should be, and the Durbin–Watson d is about 2.
In Exercise 21.24 you are asked to run this regression and verify the state-
ment just made.

Although dramatic, this example is a strong reminder that one should be
extremely wary of conducting regression analysis based on time series that
exhibit stochastic trends. And one should therefore be extremely cautious in
reading too much in the regression results based on I(1) variables. For an
example, see exercise 21.26. To some extent, this is true of time series sub-
ject to deterministic trends, an example of which is given in exercise 21.25.

21.8 TESTS OF STATIONARITY

By now the reader probably has a good idea about the nature of stationary
stochastic processes and their importance. In practice we face two impor-
tant questions: (1) How do we find out if a given time series is stationary?
(2) If we find that a given time series is not stationary, is there a way that it
can be made stationary? We take up the first question in this section and
discuss the second question in Section 21.10.

Before we proceed, keep in mind that we are primarily concerned with
weak, or covariance, stationarity.

Although there are several tests of stationarity, we discuss only those that
are prominently discussed in the literature. In this section we discuss two
tests: (1) graphical analysis and (2) the correlogram test. Because of the
importance attached to it in the recent past, we discuss the unit root test in
the next section. We illustrate these tests with appropriate examples.

1. Graphical Analysis

As noted earlier, before one pursues formal tests, it is always advisable to
plot the time series under study, as we have done in Figures 21.1 and 21.2
for the data given in Table 21.1. Such a plot gives an initial clue about the
likely nature of the time series. Take, for instance, the GDP time series
shown in Figure 21.1. You will see that over the period of study GDP has
been increasing, that is, showing an upward trend, suggesting perhaps that
the mean of the GDP has been changing. This perhaps suggests that the
GDP series is not stationary. This is also more or less true of the other U.S.
economic time series shown in Figure 21.2. Such an intuitive feel is the
starting point of more formal tests of stationarity.
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18Strictly speaking, we should divide the sample covariance at lag k by (n − k) and the sam-
ple variance by (n − 1) rather than by n (why?) where n is the sample size.

2. Autocorrelation Function (ACF) and Correlogram

One simple test of stationarity is based on the so-called autocorrelation
function (ACF). The ACF at lag k, denoted by ρk, is defined as

ρk = γk

γ0
(21.8.1)

= covariance at lag k

variance

where covariance at lag k and variance are as defined before. Note that if
k = 0, ρ0 = 1 (why?)

Since both covariance and variance are measured in the same units of
measurement, ρk is a unitless, or pure, number. It lies between −1 and +1, as
any correlation coefficient does. If we plot ρk against k, the graph we obtain
is known as the population correlogram.

Since in practice we only have a realization (i.e., sample) of a stochastic
process,we canonly compute the sample autocorrelation function (SAFC),
ρ̂k. To compute this, wemust first compute the sample covariance at lag k, γ̂k,
and the sample variance, γ̂0, which are defined as18

γ̂k =
∑

(Yt − Ȳ)(Yt+k − Ȳ)

n
(21.8.2)

γ̂0 =
∑

(Yt − Ȳ)2

n
(21.8.3)

where n is the sample size and Ȳ is the sample mean.
Therefore, the sample autocorrelation function at lag k is

ρ̂k = γ̂k

γ̂0
(21.8.4)

which is simply the ratio of sample covariance (at lag k) to sample variance.
A plot of ρ̂k against k is known as the sample correlogram.

How does a sample correlogram enable us to find out if a particular time
series is stationary? For this purpose, let us first present the sample correlo-
grams of a purely white noise randomprocess and of a randomwalk process.
Return to the driftless RWM (21.3.13). There we generated a sample of 500
error terms, the u’s, from the standard normal distribution. The correlogram
of these 500 purely random error terms is as shown in Figure 21.6; we have
shown this correlogram up to 30 lags. We will comment shortly on how one
chooses the lag length.

For the time being, just look at the column labeled AC, which is the
sample autocorrelation function, and the first diagram on the left, labeled
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autocorrelation. The solid vertical line in this diagram represents the zero
axis; observations above the line are positive values and those below the line
are negative values. As is very clear from this diagram, for a purely white
noise process the autocorrelations at various lags hover around zero. This is
the picture of a correlogram of a stationary time series. Thus, if the correlo-
gram of an actual (economic) time series resembles the correlogram of a
white noise time series, we can say that time series is probably stationary.
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FIGURE 21.6 Correlogram of white noise error term u. AC = autocorrelation, PAC = partial autocorrelation (see
Chapter 22), Q-Stat = Q statistic, Prob = probability.

Sample: 2 500
Included observations: 499
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Autocorrelation Partial Correlation AC
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FIGURE 21.7 Correlogram of a random walk time series. See Figure 21.6 for definitions.

Now look at the correlogram of a randomwalk series, as generated, say, by
(21.3.13). The picture is as shown in Figure 21.7. Themost striking feature of
this correlogram is that the autocorrelation coefficients at various lags are
very high even up to a lag of 33 quarters. As a matter of fact, if we consider
lags of up to 60 quarters, the autocorrelation coefficients are quite high; the

Sample: 2 500
Included observations: 499
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FIGURE 21.8 Correlogram of U.S. GDP, 1970–I to 1991–IV. See Figure 21.6 for definitions.

coefficient is about 0.7 at lag 60. Figure 21.7 is the typical correlogram of a
nonstationary time series: The autocorrelation coefficient starts at a very
high value and declines very slowly toward zero as the lag lengthens.

Now let us take a concrete economic example. Let us examine the correlo-
gram of the GDP time series given in Table 21.1. The correlogram up to 25
lags is shown in Figure 21.8. The GDP correlogram up to 25 lags also shows a
pattern similar to the correlogram of the random walk model in Figure 21.7.
The autocorrelation coefficient starts at a very high value at lag 1 (0.969) and
declines very slowly. Thus it seems that the GDP time series is nonstationary.
If you plot the correlograms of the other U.S. economic time series shown in
Figures 21.1 and 21.2, you will also see a similar pattern, leading to the con-
clusion that all these time series are nonstationary; they may be nonstation-
ary in mean or variance or both.

Sample: 1970–1 1991–4
Included observations: 88
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Two practical questions may be posed here. First, how do we choose the
lag length to compute the ACF? Second, how do you decide whether a
correlation coefficient at a certain lag is statistically significant? The answer
follows.

The Choice of Lag Length. This is basically an empirical question. A
rule of thumb is to compute ACF up to one-third to one-quarter the length
of the time series. Since for our economic data we have 88 quarterly obser-
vations, by this rule lags of 22 to 29 quarters will do. The best practical
advice is to start with sufficiently large lags and then reduce them by some
statistical criterion, such as the Akaike or Schwarz information criterion that
we discussed in Chapter 13. Alternatively, one can use the following statisti-
cal tests.

Statistical Significance of Autocorrelation Coefficients

Consider, for instance, the correlogram of the GDP time series given in
Figure 21.8. How do we decide whether the correlation coefficient of 0.638
at lag 10 (quarters) is statistically significant? The statistical significance of
any ρ̂k can be judged by its standard error. Bartlett has shown that if a time
series is purely random, that is, it exhibits white noise (see Figure 21.6), the
sample autocorrelation coefficients ρ̂k are approximately

19

ρ̂k ∼ N(0, 1/n) (21.8.5)

that is, in large samples the sample autocorrelation coefficients are nor-
mally distributed with zero mean and variance equal to one over the sample
size. Since we have 88 observations, the variance is 1/88 = 0.01136 and the
standard error is 

√
0.01136 = 0.1066. Then following the properties of the

standard normal distribution, the 95% confidence interval for any (popula-
tion) ρk is:

ρ̂k ± 1.96(0.1066) (21.8.6)

In other words,

Prob (ρ̂k − 0.2089 ≤ ρk ≤ ρ̂k + 0.2089) = 0.95 (21.8.7)

If the preceding interval includes the value of zero, we do not reject the hy-
pothesis that the true ρk is zero, but if this interval does not include 0, we
reject the hypothesis that the true ρk is zero. Applying this to the estimated
value of ρ̂10 = 0.638, the reader can verify that the 95% confidence interval
for true ρ10 is (0.638 ± 0.2089) or (0.4291, 0.8469).20 Obviously, this inter-

19M. S. Bartlett, “On the Theoretical Specification of Sampling Properties of Autocorrelated
Time Series,” Journal of the Royal Statistical Society, Series B, vol. 27, 1946, pp. 27–41.



Gujarati: Basic 

Econometrics, Fourth 

Edition

IV. Simultaneous−Equation 

Models

21. Time Series 

Econometrics: Some Basic 

Concepts

© The McGraw−Hill 

Companies, 2004

CHAPTER TWENTY-ONE: TIME SERIES ECONOMETRICS: SOME BASIC CONCEPTS 813

20Our sample size of 88 observations, although not very large, is reasonably large to use the
normal approximation.

21Alternatively, if you divide the estimated value of any ρk by the standard error of (
√
1/n),

for sufficiently large n, you will obtain the standard Z value, whose probability can be easily ob-
tained from the standard normal table. Thus for the estimated ρ10 = 0.638, the Z value is
0.638/0.1066 = 5.98 (approx.). If the true ρ10 were in fact zero, the probability of obtaining a Z
value of as much as 5.98 or greater is very small, thus rejecting the hypothesis that the true ρ10
is zero.

22 G. E. P. Box and D. A. Pierce, “Distribution of Residual Autocorrelations in Autoregres-
sive Integrated Moving Average Time Series Models,” Journal of the American Statistical Asso-
ciation, vol. 65, 1970, pp. 1509–1526.

23G. M. Ljung and G. P. E. Box, “On a Measure of Lack of Fit in Time Series Models,” Bio-
metrika, vol. 66, 1978, pp. 66–72.

24The Q and LB statistics may not be appropriate in every case. For a critique, see Maddala
et. al., op. cit., p. 19.

val does not include the value of zero, suggesting that we are 95% confident
that the true ρ10 is significantly different from zero.21 As you can check, even
at lag 20 the estimated ρ20 is statistically significant at the 5% level.

Instead of testing the statistical significance of any individual autocorre-
lation coefficient, we can test the joint hypothesis that all the ρk up to cer-
tain lags are simultaneously equal to zero. This can be done by using the
Q statistic developed by Box and Pierce, which is defined as22

Q = n
m∑

k=1

ρ̂2
k (21.8.8)

where n = sample size andm = lag length. The Q statistic is often used as a
test of whether a time series is white noise. In large samples, it is approxi-
mately distributed as the chi-square distributionwithm df. In an application,
if the computed Q exceeds the critical Q value from the chi-square distribu-
tion at the chosen level of significance, one can reject the null hypothesis that
all the (true) ρk are zero; at least some of themmust be nonzero.

A variant of the Box–Pierce Q statistic is the Ljung–Box (LB) statistic,
which is defined as23

LB = n(n+ 2)
m∑

k=1

(
ρ̂2
k

n− k

)
∼ χ2m (21.8.9)

Although in large samples bothQ and LB statistics follow the chi-square dis-
tributionwithm df, the LB statistic has been found to have better (more pow-
erful, in the statistical sense) small-sample properties than the Q statistic.24

Returning to the GDP example given in Figure 21.8, the value of the LB
statistic up to lag 25 is about 891.25. The probability of obtaining such an
LB value under the null hypothesis that the sum of 25 squared estimated au-
tocorrelation coefficients is zero is practically zero, as the last column of
that figures shows. Therefore, the conclusion is that the GDP time series is
nonstationary, therefore reinforcing our hunch from Figure 21.1 that the
GDP series may be nonstationary. In exercise 21.16 you are asked to confirm
that the other four U.S. economic time series are also nonstationary.
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25Since δ = (ρ − 1), for stationarity ρ must be less than one. For this to happen δ must be
negative.

21.9 THE UNIT ROOT TEST

A test of stationarity (or nonstationarity) that has become widely popular
over the past several years is the unit root test.We will first explain it, then
illustrate it and then consider some limitations of this test.

The starting point is the unit root (stochastic) process that we discussed
in Section 21.4. We start with

Yt = ρYt−1 + ut − 1 ≤ ρ ≤ 1 (21.4.1)

where ut is a white noise error term.
We know that if ρ = 1, that is, in the case of the unit root, (21.4.1) be-

comes a random walk model without drift, which we know is a nonstation-
ary stochastic process. Therefore, why not simply regress Yt on its (one-
period) lagged value Yt−1 and find out if the estimated ρ is statistically equal
to 1? If it is, then Yt is nonstationary. This is the general idea behind the unit
root test of stationarity.

For theoretical reasons, we manipulate (21.4.1) as follows: Subtract Yt−1

from both sides of (21.4.1) to obtain:

Yt − Yt−1 = ρYt−1 − Yt−1 + ut
(21.9.1)

= (ρ − 1)Yt−1 + ut

which can be alternatively written as:

#Yt = δYt−1 + ut (21.9.2)

where δ = (ρ − 1) and #, as usual, is the first-difference operator.
In practice, therefore, instead of estimating (21.4.1), we estimate (21.9.2)

and test the (null) hypothesis that δ = 0. If δ = 0, then ρ = 1, that is we have
a unit root, meaning the time series under consideration is nonstationary.

Before we proceed to estimate (21.9.2), it may be noted that if δ = 0,
(21.9.2) will become

#Yt = (Yt − Yt−1) = ut (21.9.3)

Since ut is a white noise error term, it is stationary, which means that the
first differences of a random walk time series are stationary, a point we have
already made before.

Now let us turn to the estimation of (21.9.2). This is simple enough; all we
have to do is to take the first differences of Yt and regress them on Yt−1 and
see if the estimated slope coefficient in this regression (= δ̂) is zero or not.
If it is zero, we conclude that Yt is nonstationary. But if it is negative, we
conclude that Yt is stationary.

25 The only question is which test we use to
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26D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autoregressive Time
Series with a Unit Root,” Journal of the American Statistical Association, vol. 74, 1979,
pp. 427–431. See also W. A. Fuller, Introduction to Statistical Time Series, John Wiley & Sons,
New York, 1976.

27J. G. MacKinnon, “Critical Values of Cointegration Tests,” in R. E. Engle and C. W. J.
Granger, eds., Long-Run Economic Relationships: Readings in Cointegration, Chap. 13, Oxford
University Press, New York, 1991.

28We rule out the possibility that δ > 0, because in that case ρ > 1, in which case the under-
lying time series will be explosive.

find out if the estimated coefficient of Yt−1 in (21.9.2) is zero or not. You
might be tempted to say, why not use the usual t test? Unfortunately, under
the null hypothesis that δ = 0 (i.e., ρ = 1), the t value of the estimated coef-
ficient of Yt−1 does not follow the t distribution even in large samples; that
is, it does not have an asymptotic normal distribution.

What is the alternative? Dickey and Fuller have shown that under the null
hypothesis that δ = 0, the estimated t value of the coefficient of Yt−1 in
(21.9.2) follows the τ (tau) statistic.26 These authors have computed the
critical values of the tau statistic on the basis of Monte Carlo simulations.
A sample of these critical values is given in Appendix D, Table D.7. The
table is limited, but MacKinnon has prepared more extensive tables, which
are now incorporated in several econometric packages.27 In the literature
the tau statistic or test is known as the Dickey–Fuller (DF) test, in honor
of its discoverers. Interestingly, if the hypothesis that δ = 0 is rejected (i.e.,
the time series is stationary), we can use the usual (Student’s) t test.

The actual procedure of implementing the DF test involves several deci-
sions. In discussing the nature of the unit root process in Sections 21.4 and
21.5, we noted that a random walk process may have no drift, or it may have
drift or it may have both deterministic and stochastic trends. To allow for
the various possibilities, the DF test is estimated in three different forms,
that is, under three different null hypotheses.

Yt is a random walk: #Yt = δYt−1 + ut (21.9.2)

Yt is a random walk with drift: #Yt = β1 + δYt−1 + ut (21.9.4)

Yt is a random walk with drift 
around a stochastic trend: #Yt = β1 + β2t + δYt−1 + ut (21.9.5)

where t is the time or trend variable. In each case, the null hypothesis is that
δ = 0; that is, there is a unit root—the time series is nonstationary. The
alternative hypothesis is that δ is less than zero; that is, the time series is sta-
tionary.28 If the null hypothesis is rejected, it means that Yt is a stationary
time series with zero mean in the case of (21.9.2), that Yt is stationary with
a nonzero mean [= β1/(1 − ρ)] in the case of (21.9.4), and that Yt is station-
ary around a deterministic trend in (21.9.5).
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It is extremely important to note that the critical values of the tau test to test
the hypothesis that δ = 0, are different for each of the preceding three specifi-
cations of the DF test, which can be seen clearly from Appendix D, Table
D.7. Moreover, if, say, specification (21.9.4) is correct, but we estimate
(21.9.2), we will be committing a specification error, whose consequences
we already know from Chapter 13. The same is true if we estimate (21.9.4)
rather than the true (21.9.5). Of course, there is no way of knowing which
specification is correct to begin with. Some trial and error is inevitable, data
mining notwithstanding.

The actual estimation procedure is as follows: Estimate (21.9.2), or
(21.9.3), or (21.9.4) by OLS; divide the estimated coefficient of Yt−1 in each
case by its standard error to compute the (τ) tau statistic; and refer to the DF
tables (or any statistical package). If the computed absolute value of the tau
statistic (|τ |) exceeds the DF or MacKinnon critical tau values, we reject the
hypothesis that δ = 0, in which case the time series is stationary. On the
other hand, if the computed |τ | does not exceed the critical tau value, we do
not reject the null hypothesis, in which case the time series is nonstationary.
Make sure that you use the appropriate critical τ values.

Let us return to the U.S. GDP time series. For this series, the results of the
three regressions (21.9.2), (21.9.4), and (21.9.5) are as follows: The depen-
dent variable in each case is #Yt = #GDPt

#̂GDPt = 0.00576GDPt−1
(21.9.6)

t = (5.7980) R2 = −0.0152 d = 1.34

#̂GDPt = 28.2054 − 0.00136GDPt−1
(21.9.7)

t = (1.1576) (−0.2191) R2 = 0.00056 d = 1.35

#̂GDPt = 190.3857 + 1.4776t − 0.0603GDPt−1

t = (1.8389) (1.6109) (−1.6252) (21.9.8)

R2 = 0.0305 d = 1.31

Our primary interest here is in the t ( = τ) value of the GDPt−1 coefficient.
The critical 1, 5, and 10 percent τ values for model (21.9.6) are −2.5897,
−1.9439, and −1.6177, respectively, and are −3.5064, −2.8947, and −2.5842
for model (21.9.7) and −4.0661, −3.4614, and −3.1567 for model (21.3.8).
As noted before, these critical values are different for the three models.

Before we examine the results, we have to decide which of the three mod-
els may be appropriate. We should rule out model (21.9.6) because the coef-
ficient of GDPt−1, which is equal to δ is positive. But since δ = (ρ − 1), a pos-
itive δ would imply that ρ > 1. Although a theoretical possibility, we rule this
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29More technically, since (21.9.2) is a first-order difference equation, the so-called stability
condition requires that |ρ| < 1.

30Another way of stating this is that the computed τ value should be more negative than the
critical τ value, which is not the case here. Hence the conclusion stays. Since in general δ is ex-
pected to be negative, the estimated τ statistic will have a negative sign. Therefore, a large neg-
ative τ value is generally an indication of stationarity.

case out because in this case the GDP time series would be explosive.29 That
leaves us with models (21.9.7) and (21.9.8). In both cases the estimated δ
coefficient is negative, implying that the estimated ρ is less than 1. For these
two models, the estimated ρ values are 0.9986 and 0.9397, respectively. The
only question now is if these values are statistically significantly below 1 for
us to declare that the GDP time series is stationary.

For model (21.9.7) the estimated τ value is −0.2191, which in absolute
value is below even the 10 percent critical value of −2.5842. Since, in
absolute terms, the former is smaller than the latter, our conclusion is that
the GDP time series is not stationary.30

The story is the same for model (21.9.8). The computed τ value of
−1.6252 is less than even the 10 percent critical τ value of −3.1567 in ab-
solute terms.

Therefore, on the basis of graphical analysis, the correlogram, and the
Dickey–Fuller test, the conclusion is that for the quarterly periods of 1970 to
1991, the U.S. GDP time series was nonstationary; i.e., it contained a unit
root.

The Augmented Dickey–Fuller (ADF) Test

In conducting the DF test as in (21.9.2), (21.9.4), or (21.9.5), it was assumed
that the error term ut was uncorrelated. But in case the ut are correlated,
Dickey and Fuller have developed a test, known as the augmented
Dickey–Fuller (ADF) test. This test is conducted by “augmenting” the pre-
ceding three equations by adding the lagged values of the dependent vari-
able #Yt. To be specific, suppose we use (21.9.5). The ADF test here consists
of estimating the following regression:

#Yt = β1 + β2t + δYt−1 +
m∑

i=1

αi#Yt−i + εt (21.9.9)

where εt is a pure white noise error term and where #Yt−1 = (Yt−1 − Yt−2),
#Yt−2 = (Yt−2 − Yt−3), etc. The number of lagged difference terms to include
is often determined empirically, the idea being to include enough terms so
that the error term in (21.9.9) is serially uncorrelated. In ADF we still test
whether δ = 0 and the ADF test follows the same asymptotic distribution as
the DF statistic, so the same critical values can be used.
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31Higher-order lagged differences were considered but they were insignificant.
32P. C. B. Phillips and P. Perron, “Testing for a Unit Root in Time Series Regression,” Bio-

metrika, vol. 75, 1988, pp. 335–346. The PP test is now included in several software packages.
33For detailed discussion, see Terrence C. Mills, op. cit., pp. 87–88.

To give a glimpse of this procedure, we estimated (21.9.9) for the GDP
series using one lagged difference of GDP; the results were as follows31:

#̂GDPt = 234.9729 + 1.8921t − 0.0786GDPt−1 + 0.3557#GDPt−1

t = (2.3833) (2.1522) (−2.2152) (3.4647)

R2 = 0.1526 d = 2.0858

(21.9.10)

The t ( = τ) value of the GDPt−1 coefficient ( = δ) is −2.2152, but this value
in absolute terms is much less than even the 10 percent critical τ value of
−3.1570, again suggesting that even after taking care of possible autocorre-
lation in the error term, the GDP series is nonstationary.

Testing the Significance of More Than One Coefficient: The F Test

Suppose we estimatemodel (21.9.5) and test the hypothesis that β1 = β2 = 0,
that is, the model is RWM without drift and trend. To test this joint hypoth-
esis, we can use the restricted F test discussed in Chapter 8. That is, we esti-
mate (21.9.5) (the unrestricted regression) and estimate (21.9.5), dropping
the intercept and trend. Then we use the restricted F test as shown in
Eq. (8.7.9), except that we cannot use the conventional F table to get the
critical F values. As they did with the τ statistic, Dickey and Fuller have de-
veloped critical F values for this situation, a sample of which is given in
Appendix D, Table D.7. An example is presented in exercise 21.27.

The Phillips–Perron (PP) Unit Root Tests32

An important assumption of the DF test is that the error terms ut are inde-
pendently and identically distributed. The ADF test adjusts the DF test to
take care of possible serial correlation in the error terms by adding the
lagged difference terms of the regressand. Phillips and Perron use nonpara-
metric statistical methods to take care of the serial correlation in the error
terms without adding lagged difference terms. Since the asymptotic distrib-
ution of the PP test is the same as the ADF test statistic, we will not pursue
this topic here.

A Critique of the Unit Root Tests33

We have discussed several unit root tests and there are several more. The
question is: Why are there so many unit root tests? The answer lies in the
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34For a Monte Carlo experiment about this, see Charemza et al., op. cit., p. 114.
35D. A. Dickey and S. Pantula, “Determining the Order of Differencing in Autoregressive

Processes,” Journal of Business and Economic Statistics, vol. 5, 1987, pp. 455–461.
36A discussion of these tests can be found in Maddala et al., op. cit., Chap. 4.

size and power of these tests. By size of a test we mean the level of signifi-
cance (i.e., the probability of committing a Type I error) and by power of a
test we mean the probability of rejecting the null hypothesis when it is false.
The power of a test is calculated by subtracting the probability of a Type II
error from 1; Type II error is the probability of accepting a false null hy-
pothesis. The maximum power is 1. Most unit root tests are based on the
null hypothesis that the time series under consideration has a unit root; that
is, it is nonstationary. The alternative hypothesis is that the time series is
stationary.

Size of Test. You will recall from Chapter 13 the distinction we made
between the nominal and the true levels of significance. The DF test is sen-
sitive to the way it is conducted. Remember that we discussed three vari-
eties of the DF test: (1) a pure random walk, (2) a random walk with drift,
and (3) a random walk with drift and trend. If, for example, the true model
is (1) but we estimate (2), and conclude that, say, on the 5 percent level that
the time series is stationary, this conclusion may be wrong because the true
level of significance in this case is much larger than 5 percent.34 The size dis-
tortion could also result from excluding moving average (MA) components
from the model (on moving average, see Chapter 22).

Power of Test. Most tests of the DF type have low power; that is, they
tend to accept the null of unit root more frequently than is warranted. That
is, these tests may find a unit root even when none exists. There are several
reasons for this. First, the power depends on the (time) span of the data
more than mere size of the sample. For a given sample size n, the power is
greater when the span is large. Thus, unit root test(s) based on 30 observa-
tions over a span of 30 years may have more power than that based on, say,
100 observations over a span of 100 days. Second, if ρ ≈ 1 but not exactly 1,
the unit root test may declare such a time series nonstationary. Third, these
types of tests assume a single unit root; that is, they assume that the given
time series is I(1). But if a time series is integrated of order higher than 1,
say, I(2), there will be more than one unit root. In the latter case one may
use the Dickey–Pantula test.35 Fourth, if there are structural breaks in a
time series (see the chapter on dummy variables) due to, say, the OPEC oil
embargoes, the unit root tests may not catch them.

In applying the unit root tests one should therefore keep in mind the lim-
itations of the tests. Of course, there have been modifications of these tests
by Perron and Ng, Elliot, Rothenberg and Stock, Fuller, and Leybounre.36

Because of this, Maddala and Kim advocate that the traditional DF, ADF,
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37If a time series is I(2), it will contain two unit roots, in which case we will have to differ-
ence it twice. If it is I(d), it has to be differenced d times, where d is any integer.

and PP tests should be discarded. As econometric software packages incor-
porate the new tests, that may very well happen. But it should be added that
as yet there is no uniformly powerful test of the unit root hypothesis.

21.10 TRANSFORMING NONSTATIONARY TIME SERIES

Now that we know the problems associated with nonstationary time series,
the practical question is what to do. To avoid the spurious regression prob-
lem that may arise from regressing a nonstationary time series on one or
more nonstationary time series, we have to transform nonstationary time
series to make them stationary. The transformation method depends on
whether the time series are difference stationary (DSP) or trend stationary
(TSP). We consider each of these methods in turn.

Difference-Stationary Processes

If a time series has a unit root, the first differences of such time series are
stationary.37 Therefore, the solution here is to take the first differences of the
time series.

Returning to our U.S. GDP time series, we have already seen that it has a
unit root. Let us now see what happens if we take the first differences of the
GDP series.

Let #GDPt = (GDPt − GDPt−1). For convenience, let Dt = #GDPt. Now
consider the following regression:

#̂Dt = 16.0049 − 0.06827Dt−1

t = (3.6402) (−6.6303) (21.10.1)

R2 = 0.3435 d = 2.0344

The 1 percent critical DF τ value is −3.5073. Since the computed τ (= t) is
more negative than the critical value, we conclude that the first-differenced
GDP is stationary; that is, it is I(0). It is as shown in Figure 21.9. If you com-
pare Figure 21.9 with Figure 21.1, you will see the obvious difference
between the two.

Trend-Stationary Process

As we have seen in Figure 21.5, a TSP is stationary around the trend line.
Hence, the simplest way to make such a time series stationary is to regress
it on time and the residuals from this regression will then be stationary.
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FIGURE 21.9 First differences of U.S. GDP, 1970–1991 (quarterly).

38For a detailed discussion of this, see Maddala et al., op. cit., Sec. 2.7.

In other words, run the following regression:

Yt = β + β2t + ut (21.10.2)

where Yt is the time series under study and where t is the trend variable
measured chronologically.

Now

ût = (Yt − β̂1 − β̂2t) (21.10.3)

will be stationary. ût is known as a (linearly) detrended time series.
It is important to note that the trend may be nonlinear. For example, it

could be

Yt = β1 + β2t + β3t
2 + ut (21.10.4)

which is a quadratic trend series. If that is the case, the residuals from
(21.10.4) will now be (quadratically) detrended time series.

It should be pointed out that if a time series is DSP but we treat it as TSP,
this is called underdifferencing. On the other hand, if a time series is TSP
but we treat it as DSP, this is called overdifferencing. The consequences of
these types of specification errors can be serious, depending on how one
handles the serial correlation properties of the resulting error terms.38

In passing it may be noted that most macroeconomic time series are DSP
rather than TSP. 



Gujarati: Basic 

Econometrics, Fourth 

Edition

IV. Simultaneous−Equation 

Models

21. Time Series 

Econometrics: Some Basic 

Concepts

© The McGraw−Hill 

Companies, 2004

822 PART FOUR: SIMULTANEOUS-EQUATION MODELS

39C. W. J. Granger, “Developments in the Study of Co-Integrated Economic Variables,”
Oxford Bulletin of Economics and Statistics, vol. 48, 1986, p. 226.

21.11 COINTEGRATION: REGRESSION OF A UNIT ROOT

TIME SERIES ON ANOTHER UNIT ROOT TIME SERIES

We have warned that the regression of a nonstationary time series on an-
other nonstationary time series may produce a spurious regression. Let us
suppose that we consider the PCE and PDI time series given in Table 21.1.
Subjecting these time series individually to unit root analysis, you will find
that they both are I(1); that is, they contain a unit root. Suppose, then, that
we regress PCE on PDI as follows:

PCEt = β1 + β2PDIt + ut (21.11.1)

Let us write this as:

ut = PCEt − β1 − β2PDIt (21.11.2)

Suppose we now subject ut to unit root analysis and find that it is stationary;
that is, it is I(0). This is an interesting situation, for although PCEt and PDIt
are individually I(1), that is, they have stochastic trends, their linear combi-
nation (21.11.2) is I(0). So to speak, the linear combination cancels out the
stochastic trends in the two series. If you take consumption and income as
two I(1) variables, savings defined as (income − consumption) could be I(0).
As a result, a regression of consumption on income as in (21.11.1) would be
meaningful (i.e., not spurious). In this case we say that the two variables are
cointegrated. Economically speaking, two variables will be cointegrated if
they have a long-term, or equilibrium, relationship between them. Economic
theory is often expressed in equilibrium terms, such as Fisher’s quantity the-
ory of money or the theory of purchasing parity (PPP), just to name a few.

In short, provided we check that the residuals from regressions like
(21.11.1) are I(0) or stationary, the traditional regression methodology (in-
cluding the t and F tests) that we have considered extensively is applicable to
data involving (nonstationary) time series. The valuable contribution of the
concepts of unit root, cointegration, etc. is to force us to find out if the re-
gression residuals are stationary. As Granger notes, “A test for cointegration
can be thought of as a pre-test to avoid ‘spurious regression’ situations.”39

In the language of cointegration theory, a regression such as (21.11.1) is
known as a cointegrating regression and the slope parameter β2 is known
as the cointegrating parameter. The concept of cointegration can be ex-
tended to a regression model containing k regressors. In this case we will
have k cointegrating parameters.

Testing for Cointegration

A number of methods for testing cointegration have been proposed in the
literature. We consider here two comparatively simple methods: (1) the DF
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40There is this difference between tests for unit roots and tests for cointegration. As David
A. Dickey, Dennis W. Jansen, and Daniel I. Thornton observe, “Tests for unit roots are per-
formed on univariate [i.e., single] time series. In contrast, cointegration deals with the rela-
tionship among a group of variables, where (unconditionally) each has a unit root.” See their
article, “A Primer on Cointegration with an Application to Money and Income,” Economic
Review, Federal Reserve Bank of St. Louis, March-April 1991, p. 59. As the name suggests, this
article is an excellent introduction to cointegration testing.

41If PCE and PDI are not cointegrated, any linear combination of them will be nonstation-
ary and, therefore, the ut will also be nonstationary.

42R. F. Engle and C. W. Granger, “Co-integration and Error Correction: Representation,
Estimation and Testing,” Econometrica, vol. 55, 1987, pp. 251–276.

or ADF unit root test on the residuals estimated from the cointegrating
regression and (2) the cointegrating regression Durbin–Watson (CRDW)
test.40

Engle–Granger (EG) or Augmented Engle–Granger (AEG) Test. We
already know how to apply the DF or ADF unit root tests. All we have to do
is estimate a regression like (21.11.1), obtain the residuals, and use the DF
or ADF tests.41 There is one precaution to exercise, however. Since the esti-
mated ut are based on the estimated cointegrating parameter β2, the DF and
ADF critical significance values are not quite appropriate. Engle and
Granger have calculated these values, which can be found in the refer-
ences.42 Therefore, the DF and ADF tests in the present context are known
as Engle–Granger (EG) and augmented Engle–Granger (AEG) tests.
However, several software packages now present these critical values along
with other outputs.

Let us illustrate these tests. We first regressed PCE on PDI and obtained
the following regression:

P̂CEt = −171.4412 + 0.9672PDIt

t = (−7.4808) (119.8712) (21.11.3)

R2 = 0.9940 d = 0.5316

Since PCE and PDI are individually nonstationary, there is the possibility
that this regression is spurious. But when we performed a unit root test on
the residuals obtained from (21.11.3), we obtained the following results:

#̂ût = −0.2753ût−1

t = (−3.7791) (21.11.4)

R2 = 0.1422 d = 2.2775

The Engle–Granger 1 percent critical τ value is −2.5899. Since the com-
puted τ (= t) value is much more negative than this, our conclusion is that
the residuals from the regression of PCE on PDI are I(0); that is, they are



Gujarati: Basic 

Econometrics, Fourth 

Edition

IV. Simultaneous−Equation 

Models

21. Time Series 

Econometrics: Some Basic 

Concepts

© The McGraw−Hill 

Companies, 2004

824 PART FOUR: SIMULTANEOUS-EQUATION MODELS

43J. D. Sargan and A. S. Bhargava, “Testing Residuals from Least-Squares Regression for
being Generated by the Gaussian Random Walk,” Econometrica, vol. 51, 1983, pp. 153–174.

44There is considerable debate about the superiority of CRDW over DF, which can be found
in the references. The debate revolves around the power of the two statistics, that is, the prob-
ability of not committing a Type II error. Engle and Granger, for example, prefer the ADF to the
CRDW test.

45The EG and CRDW tests are now supplemented (supplanted?) by more powerful tests
developed by Johansen. But the discussion of the Johansen method is beyond the scope of this
book because the mathematics involved is quite complex, although several software packages
now use the Johansen method.

46J. D. Sargan, “Wages and Prices in the United Kingdom: A Study in Econometric Method-
ology,” in K. F. Wallis and D. F. Hendry, eds., Quantitative Economics and Econometric Analy-
sis, Basil Blackwell, Oxford, U.K., 1984.

stationary. Hence, (21.11.3) is a cointegrating regression and this regression
is not spurious, even though individually the two variables are nonstation-
ary. One can call (21.11.3) the static or long run consumption function and
interpret its parameters as long run parameters. Thus, 0.9672 represents the
long-run, or equilibrium, marginal propensity to consumer (MPC). 

Cointegrating Regression Durbin–Watson (CRDW) Test. An alterna-
tive, and quicker, method of finding out whether PCE and PDI are cointe-
grated is the CRDW test, whose critical values were first provided by Sargan
and Bhargava.43 In CRDW we use the Durbin–Watson d obtained from the
cointegrating regression, such as d = 0.5316 given in (21.11.3). But now the
null hypothesis is that d = 0 rather than the standard d = 2. This is because
in Chapter 12 we observed that d ≈ 2(1 − ρ̂), so if there is to be a unit root,
the estimated ρ will be about 1, which implies that d will be about zero. 

On the basis of 10,000 simulations formed from 100 observations each,
the 1, 5, and 10 percent critical values to test the hypothesis that the true
d = 0 are 0.511, 0.386, and 0.322, respectively. Thus, if the computed d value
is smaller than, say, 0.511, we reject the null hypothesis of cointegration at
the 1 percent level. In our example, the value of 0.5316 is above this critical
value, suggesting that PCE and PDI are cointegrated, thus reinforcing the
finding on the basis of the EG test.44

To sum up, our conclusion, based on both the EG and CRDW tests, is that
PCE and PDI are cointegrated.45 Although they individually exhibit random
walks, there seems to be a stable long-run relationship between them; they
will not wander away from each other, which is evident from Figure 21.1.

Cointegration and Error Correction Mechanism (ECM) 

We just showed that PCE and PDI are cointegrated; that is, there is a long-
term, or equilibrium, relationship between the two. Of course, in the short
run there may be disequilibrium. Therefore, one can treat the error term in
(21.11.2) as the “equilibrium error.” And we can use this error term to tie the
short-run behavior of PCE to its long-run value. The error correction
mechanism (ECM) first used by Sargan46 and later popularized by Engle
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47The following discussion is based on Gary Koop, op. cit., pp. 159–160 and Kerry Peterson,
op. cit., Sec. 8.5.

and Granger corrects for disequilibrium. An important theorem, known as
the Granger representation theorem, states that if two variables Y and X
are cointegrated, then the relationship between the two can be expressed as
ECM. To see what this means, let us revert to our PCE–PDI example. Now
consider the following model:

#PCEt = α0 + α1#PDIt + α2ut−1 + εt (21.11.5)

where # as usual denotes the first difference operator, εt is a random error
term, and ut−1 = (PCEt−1 − β1 − β2PDIt−1), that is, the one-period lagged
value of the error from the cointegrating regression (21.11.1).

ECM equation (21.11.5) states that #PCE depends on #PDI and also on
the equilibrium error term.47 If the latter is nonzero, then the model is out of
equilibrium. Suppose#PDI is zero and ut−1 is positive. This means PCEt−1 is
too high to be in equilibrium, that is, PCEt−1 is above its equilibrium value of
(α0 + α1PDIt−1). Since α2 is expected to be negative, the term α2ut−1 is nega-
tive and, therefore,#PCEtwill be negative to restore the equilibrium. That is,
if PCEt is above its equilibrium value, it will start falling in the next period to
correct the equilibrium error; hence the name ECM. By the same token, if
ut−1 is negative (i.e., PCE is below its equilibrium value), α2ut−1 will be posi-
tive, which will cause #CPEt to be positive, leading PCEt to rise in period t.
Thus, the absolute value of α2 decides how quickly the equilibrium is
restored. In practice, we estimate ut−1 by ût−1 = (PCEt − β̂1 − β̂2PDIt).

Returning to our illustrative example, the empirical counterpart of
(21.11.5) is:

#̂PCEt = 11.6918 + 0.2906#PDIt − 0.0867ût−1

t = (5.3249)   (4.1717) (−1.6003) (21.11.6)

R2 = 0.1717 d = 1.9233

Statistically, the equilibrium error term is zero, suggesting that PCE adjusts
to changes in PDI in the same time period. As (21.11.6) shows, short-run
changes in PDI have a positive impact on short-run changes in personal
consumption. One can interpret 0.2906 as the short-run marginal propen-
sity to consume (MPC); the long-run MPC is given by the estimated (static)
equilibrium relation (21.11.3) as 0.9672.

Before we conclude this section, the caution sounded by S. G. Hall is
worth remembering:

While the concept of cointegration is clearly an important theoretical underpinning
of the error correction model there are still a number of problems surrounding its
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FIGURE 21.10 U.S. money supply over 1951:01 to 1999:09.

48S. G. Hall, “An Application of the Granger and Engle Two-Step Estimation Procedure to
the United Kingdom Aggregate Wage Data,” Oxford Bulletin of Economics and Statistics,
vol. 48, no. 3, August 1986, p. 238. See also John Y. Campbell and Pierre Perron, “Pitfalls and
Opportunities: What Macroeconomists Should Know about Unit Roots,” NBER (National
Bureau of Economic Research) Macroeconomics Annual 1991, pp. 141–219.

practical application; the critical values and small sample performance of many of
these tests are unknown for awide range ofmodels; informed inspection of the cor-
relogrammay still be an important tool.48

21.12 SOME ECONOMIC APPLICATIONS

We conclude this chapter by considering some concrete examples.

EXAMPLE 21.1

M1 MONTHLY MONEY SUPPLY IN THE UNITED STATES, JANUARY 1951 TO 
SEPTEMBER 30, 1999

Figure 21.10 shows the M1 money supply for the United States from January 1951 to Sep-

tember 30, 1999. From our knowledge of stationarity, it seems that the M1 money supply time

series is nonstationary, which can be confirmed by unit root analysis. (Note: to save space,

we have not given the actual data, which can be obtained from the Federal Reserve Board

(Continued)
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FIGURE 21.11 U.S./U.K. exchange rate: January 1973 to October 1996.

or the Federal Reserve Bank of St. Louis.)

#M̂ t = 0.2618 + 0.0159t − 0.0044Mt−1

t = (0.7919) (4.4227)     (−3.0046) (21.12.1)

R2 = 0.0670 d = 0.7172

The 1, 5, and 10 percent critical τ values are −3.9811, −3.4210, and −3.1329. Since the t

value of −3.0046 is less negative than any of these critical values, the conclusion is that the

M1 time series is nonstationary; that is, it contains a unit root or it is I(1). Even when several

lagged values of #Mt (à la ADF) were introduced, the conclusion did not change. On the

other hand, the first differences of the M1 money supply were found to be stationary (check

this out).

EXAMPLE 21.2

THE U.S./U.K. EXCHANGE RATE: JANUARY 1, 1973, TO OCTOBER 10, 1996

Figure 21.11 gives the graph of the ($/£) exchange rate from January 1973 to October 1996,

for a total of 286 observations. By now you should be able to spot this time series as non-

stationary. Carrying out the unit root tests, we obtained the following τ statistics: −1.2749 (no

intercept, no trend), −1.7710 (intercept), and −1.6269 (intercept and trend). Each of these

statistics, in absolute value, was less than its critical τ value from the appropriate DF tables,

thus confirming the graphical impression that the U.S./U.K. exchange rate time series is

nonstationary.

EXAMPLE 21.1 (Continued)
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FIGURE 21.12 U.S. CPI, January 1947 to January 2000.

EXAMPLE 21.3

U.S. CONSUMER PRICE INDEX (CPI), JANUARY 1947 TO JANUARY 2000

Figure 21.12 shows the U.S. CPI from January 1947 to January 2000 for a total of 649

observations. The CPI series, like the M1 series considered previously, shows a sustained

upward trend. The unit root exercise gave the following results:

#̂CPIt = −0.0094 + 0.00051t − 0.00066CPIt−1 + 0.5473#CPIt−1

t = (−0.6538) (4.3431)     (−1.5472) (16.4448) (21.12.2)

R2 = 0.5177 d = 2.1410

The t ( = τ) value of CPIt−1 is −1.5472. The 10 percent critical value is −3.1317. Since, in

absolute terms, the computed τ is less than the critical τ, the conclusion is that CPI is not a

stationary time series. We can characterize it as having a stochastic trend (why?). However,

if you take the first differences of the CPI series, you will find them to be stationary. Hence

CPI is a difference-stationary (DS) time series.

EXAMPLE 21.4

ARE 3-MONTH AND 6-MONTH TREASURY BILL RATES COINTEGRATED?

Figure 21.13 plots (constant maturity) 3-month and 6-month U.S. Treasury bill (T bill) rates

from January 1982 to June 2001, for a total of 234 observations. Does the graph show that

the two rates are cointegrated; that is, is there an equilibrium relationship between the two?

From financial theory, we would expect that to be the case, otherwise arbitrageurs will exploit

any discrepancy between the short and the long rates. First of all, let us see if the two time

series are stationary.

(Continued)
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FIGURE 21.13
Three- and six-month Treasury bill rates (constant maturity).

On the basis of the pure random walk model (i.e., no intercept, no trend), both the rates

were stationary. Including intercept, trend, and one lagged difference, the results suggested

that the two rates might be trend stationary; the trend coefficient in both cases was negative

and significant at about the 7 percent level. So, depending on which results we accept, the

two rates are either stationary or trend stationary.

Regressing the 6-month T bill rate (TB6) on the 3 month T-bill rate, we obtained the fol-

lowing regression.

T̂B6t = −0.0456 + 1.0466TB3t

t = (−1.1207) (171.6239) R2 = 0.9921 d = 0.4055 (21.12.3)

Applying the unit root test to the residuals from the preceding regression, we found that the

residuals were stationary, suggesting that the 3- and 6-month T bill rates were cointegrated.

Using this knowledge, we obtained the following error correction model (ECM):

#T̂B6t = −0.0067 + 0.9360#TB3t − 0.2030ût−1

t = (−0.8662) (41.9592)     (−5.3837) (21.12.4)

R2 = 0.8852 d = 1.5604

where ût−1 is the lagged value of the error correction term from the preceding period. As

these results show, 0.20 of the discrepancy in the two rates in the previous month is elimi-

nated this month.49 Besides, short-run changes in the 3-month T bill rate are quickly reflected

in the 6-month T bill rate, as the slope coefficient between the two is 0.9360. This should not

be a surprising finding in view of the efficiency of the U.S. money markets.

EXAMPLE 20.1 (Continued)

49Since both T bill rates are in percent form, this would suggest that if the 6-month TB rate
was higher than the 3-month TB rate more than expected a priori in the last month, this month
it will be reduced by 0.20 percentage points to restore the long-run relationship between the
two interest rates. For the underlying theory about the relationship between short- and long-
run interest rates, see any money and banking textbook and read up on the term structure of
interest rates.
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