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A casual look at the published empirical work in business and economics
will reveal that many economic relationships are of the single-equation
type. That is why we devoted the first three parts of this book to the discus-
sion of single-equation regression models. In such models, one variable (the
dependent variable Y) is expressed as a linear function of one or more other
variables (the explanatory variables, the X ’s). In such models an implicit as-
sumption is that the cause-and-effect relationship, if any, between Y and the
X ’s is unidirectional: The explanatory variables are the cause and the de-
pendent variable is the effect.
However, there are situations where there is a two-way flow of influence

among economic variables; that is, one economic variable affects another
economic variable(s) and is, in turn, affected by it (them). Thus, in the re-
gression of moneyM on the rate of interest r, the single-equation methodol-
ogy assumes implicitly that the rate of interest is fixed (say, by the Federal
Reserve System) and tries to find out the response of money demanded to
the changes in the level of the interest rate. But what happens if the rate of
interest depends on the demand for money? In this case, the conditional re-
gression analysis made in this book thus far may not be appropriate because
now M depends on r and r depends on M. Thus, we need to consider two
equations, one relatingM to r and another relating r toM. And this leads us
to consider simultaneous-equation models, models in which there is more
than one regression equation, one for each interdependent variable.
In Part IV we present a very elementary and often heuristic introduction

to the complex subject of simultaneous-equationmodels, the details being
left for the references.

PARTFOUR

SIMULTANEOUS-EQUATION

MODELS
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In Chapter 18, we provide several examples of simultaneous-equation
models and show why the method of ordinary least squares considered pre-
viously is generally inapplicable to estimate the parameters of each of the
equations in the model.
In Chapter 19, we consider the so-called identification problem. If in a

system of simultaneous equations containing two or more equations it is
not possible to obtain numerical values of each parameter in each equation
because the equations are observationally indistinguishable, or look too
much like one another, then we have the identification problem. Thus, in the
regression of quantity Q on price P, is the resulting equation a demand func-
tion or a supply function, for Q and P enter into both functions? Therefore,
if we have data on Q and P only and no other information, it will be difficult
if not impossible to identify the regression as the demand or supply func-
tion. It is essential to resolve the identification problem before we proceed
to estimation because if we do not know what we are estimating, estimation
per se is meaningless. In Chapter 19 we offer various methods of solving the
identification problem.
In Chapter 20, we consider several estimation methods that are designed

specifically for estimating the simultaneous-equation models and consider
their merits and limitations.
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18
SIMULTANEOUS-EQUATION
MODELS

In this and the following two chapters we discuss the simultaneous-
equation models. In particular, we discuss their special features, their esti-
mation, and some of the statistical problems associated with them.

18.1 THE NATURE OF SIMULTANEOUS-EQUATION MODELS

In Parts I to III of this text we were concerned exclusively with single-
equation models, i.e., models in which there was a single dependent
variable Y and one or more explanatory variables, the X ’s. In such models
the emphasis was on estimating and/or predicting the average value of Y
conditional upon the fixed values of the X variables. The cause-and-effect
relationship, if any, in such models therefore ran from the X ’s to the Y.

But in many situations, such a one-way or unidirectional cause-and-effect
relationship is not meaningful. This occurs if Y is determined by the X ’s,
and some of the X ’s are, in turn, determined by Y. In short, there is a two-
way, or simultaneous, relationship between Y and (some of) the X ’s, which
makes the distinction between dependent and explanatory variables of dubi-
ous value. It is better to lump together a set of variables that can be deter-
mined simultaneously by the remaining set of variables—precisely what is
done in simultaneous-equation models. In such models there is more
than one equation—one for each of the mutually, or jointly, dependent or
endogenous variables.1 And unlike the single-equation models, in the

1In the context of the simultaneous-equation models, the jointly dependent variables are
called endogenous variables and the variables that are truly nonstochastic or can be so re-
garded are called the exogenous, or predetermined, variables. (More on this in Chap. 19.)
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2These economical but self-explanatory notations will be generalized to more than two
equations in Chap. 19.

simultaneous-equation models one may not estimate the parameters of a
single equation without taking into account information provided by other
equations in the system.

What happens if the parameters of each equation are estimated by apply-
ing, say, the method of OLS, disregarding other equations in the system?
Recall that one of the crucial assumptions of the method of OLS is that the
explanatory X variables are either nonstochastic or, if stochastic (random),
are distributed independently of the stochastic disturbance term. If neither
of these conditions is met, then, as shown later, the least-squares estimators
are not only biased but also inconsistent; that is, as the sample size in-
creases indefinitely, the estimators do not converge to their true (popula-
tion) values. Thus, in the following hypothetical system of equations,2

Y1i = β10 + β12Y2i + γ11X1i + u1i (18.1.1)

Y2i = β20 + β21Y1i + γ21X1i + u2i (18.1.2)

where Y1 and Y2 are mutually dependent, or endogenous, variables and X1 is
an exogenous variable and where u1 and u2 are the stochastic disturbance
terms, the variables Y1 and Y2 are both stochastic. Therefore, unless it can be
shown that the stochastic explanatory variable Y2 in (18.1.1) is distributed
independently of u1 and the stochastic explanatory variable Y1 in (18.1.2) is
distributed independently of u2, application of the classical OLS to these
equations individually will lead to inconsistent estimates.

In the remainder of this chapter we give a few examples of simultaneous-
equation models and show the bias involved in the direct application of the
least-squares method to such models. After discussing the so-called identifi-
cation problem in Chapter 19, in Chapter 20 we discuss some of the special
methods developed to handle the simultaneous-equation models.

18.2 EXAMPLES OF SIMULTANEOUS-EQUATION MODELS

EXAMPLE 18.1

DEMAND-AND-SUPPLY MODEL

As is well known, the price P of a commodity and the quantity Q sold are determined by the

intersection of the demand-and-supply curves for that commodity. Thus, assuming for sim-

plicity that the demand-and-supply curves are linear and adding the stochastic disturbance

terms u1 and u2, we may write the empirical demand-and-supply functions as

Demand function: Qd
t = α0 + α1Pt + u1t α1 < 0 (18.2.1)

Supply function: Qs
t = β0 + β1Pt + u2t β1 > 0 (18.2.2)

Equilibrium condition: Qd
t = Qs

t

(Continued)
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where Qd = quantity demanded

Qs = quantity supplied

t = time

and the α’s and β’s are the parameters. A priori, α1 is expected to be negative (downward-

sloping demand curve), and β1 is expected to be positive (upward-sloping supply curve).

Now it is not too difficult to see that P and Q are jointly dependent variables. If, for exam-

ple, u1t in (18.2.1) changes because of changes in other variables affecting Q
d
t (such as in-

come, wealth, and tastes), the demand curve will shift upward if u1t is positive and downward

if u1t is negative. These shifts are shown in Figure 18.1.

As the figure shows, a shift in the demand curve changes both P and Q. Similarly, a

change in u2t (because of strikes, weather, import or export restrictions, etc.) will shift the sup-

ply curve, again affecting both P and Q. Because of this simultaneous dependence between

Q and P, u1t and Pt in (18.2.1) and u2t and Pt in (18.2.2) cannot be independent. Therefore, a

regression of Q on P as in (18.2.1) would violate an important assumption of the classical

linear regression model, namely, the assumption of no correlation between the explanatory

variable(s) and the disturbance term.

EXAMPLE 18.1 (Continued)
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FIGURE 18.1 Interdependence of price and quantity.
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EXAMPLE 18.2

KEYNESIAN MODEL OF INCOME DETERMINATION

Consider the simple Keynesian model of income determination:

Consumption function: Ct = β0 + β1Yt + ut 0 < β1 < 1 (18.2.3)

Income identity: Yt = C t + I t (= St ) (18.2.4)

where C = consumption expenditure

Y = income

I = investment (assumed exogenous)

S = savings

t = time

u = stochastic disturbance term

β0 and β1 = parameters

The parameter β1 is known as themarginal propensity to consume (MPC) (the amount of extra

consumption expenditure resulting from an extra dollar of income). From economic theory, β1
is expected to lie between 0 and 1. Equation (18.2.3) is the (stochastic) consumption function;

and (18.2.4) is the national income identity, signifying that total income is equal to total con-

sumption expenditure plus total investment expenditure, it being understood that total invest-

ment expenditure is equal to total savings. Diagrammatically, we have Figure 18.2.

From the postulated consumption function and Figure 18.2 it is clear that C and Y are

interdependent and that Yt in (18.2.3) is not expected to be independent of the disturbance

term because when ut shifts (because of a variety of factors subsumed in the error term),

then the consumption function also shifts, which, in turn, affects Yt. Therefore, once again the

classical least-squares method is inapplicable to (18.2.3). If applied, the estimators thus

obtained will be inconsistent, as we shall show later.
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FIGURE 18.2 Keynesian model of income determination.
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3“The goods market equilibrium schedule, or IS schedule, shows combinations of interest
rates and levels of output such that planned spending equals income.’’ See Rudiger Dornbusch
and Stanley Fischer, Macroeconomics, 3d ed., McGraw-Hill, New York, 1984, p. 102. Note that
for simplicity we have assumed away the foreign trade sector.

EXAMPLE 18.3

WAGE–PRICE MODELS

Consider the following Phillips-type model of money-wage and price determination:

Ẇt = α0 + α1UNt + α2 Ṗt + u1t (18.2.5)

Ṗt = β0 + β1Ẇt + β2 Ṙt + β3 Ṁ t + u2t (18.2.6)

where Ẇ = rate of change of money wages

UN = unemployment rate, %

Ṗ = rate of change of prices

Ṙ= rate of change of cost of capital

Ṁ = rate of change of price of imported raw material

t = time

u1, u2 = stochastic disturbances

Since the price variable Ṗ enters into the wage equation and the wage variable Ẇ enters into

the price equation, the two variables are jointly dependent. Therefore, these stochastic ex-

planatory variables are expected to be correlated with the relevant stochastic disturbances,

once again rendering the classical OLS method inapplicable to estimate the parameters of

the two equations individually.

EXAMPLE 18.4

THE IS MODEL OF MACROECONOMICS

The celebrated IS, or goods market equilibrium, model of macroeconomics3 in its non-

stochastic form can be expressed as

Consumption function: Ct = β0 + β1Ydt 0 < β1 < 1 (18.2.7)

Tax function: Tt = α0 + α1Yt 0 < α1 < 1 (18.2.8)

Investment function: I t = γ0 + γ1r t (18.2.9)

Definition: Ydt = Yt − Tt (18.2.10)

Government expenditure: Gt = Ḡ (18.2.11)

National income identity: Yt = Ct + I t + Gt (18.2.12)

where Y = national income

C = consumption spending

I = planned or desired net investment

Ḡ = given level of government expenditure

T = taxes

Yd = disposable income

r = interest rate

(Continued)
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If you substitute (18.2.10) and (18.2.8) into (18.2.7) and substitute the resulting equation

for C and Eq. (18.2.9) and (18.2.11) into (18.2.12), you should obtain

IS equation: Yt = π0 + π1r t (18.2.13)

where π0 =
β0 − α0β1 + γ0 + Ḡ

1− β1(1− α1)
(18.2.14)

π1 =
1

1− β1(1− α1)

Equation (18.2.13) is the equation of the IS, or goods market equilibrium, that is, it gives the

combinations of the interest rate and level of income such that the goods market clears or is

in equilibrium. Geometrically, the IS curve is shown in Figure 18.3.

What would happen if we were to estimate, say, the consumption function (18.2.7) in iso-

lation? Could we obtain unbiased and/or consistent estimates of β0 and β1? Such a result is

unlikely because consumption depends on disposable income, which depends on national

income Y, but the latter depends on r and Ḡ as well as the other parameters entering in π0.

Therefore, unless we take into account all these influences, a simple regression of C on Yd
is bound to give biased and/or inconsistent estimates of β0 and β1.

EXAMPLE 18.4 (Continued)

(Continued)
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FIGURE 18.3 The IS curve.

EXAMPLE 18.5

THE LM MODEL

The other half of the famous IS-LM paradigm is the LM, or money market equilibrium, rela-

tion, which gives the combinations of the interest rate and level of income such that the

money market is cleared, that is, the demand for money is equal to its supply. Algebraically,

the model, in the nonstochastic form, may be expressed as:

Money demand function: Md
t = a+ bYt − cr t (18.2.15)

Money supply function: Ms
t = M̄ (18.2.16)

Equilibrium condition: Md
t = Ms

t (18.2.17)
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where Y = income, r = interest rate, and M̄ = assumed level of money supply, say, deter-

mined by the Fed.

Equating the money demand and supply functions and simplifying, we obtain:

LM equation: Yt = λ0 + λ1 M̄ + λ2r t (18.2.18)

where

λ0 = −a/b

λ1 = 1/b (18.2.19)

λ2 = c/b

For a given M = M̄, the LM curve representing the relation (18.2.18) is as shown in

Figure 18.4.

The IS and LM curves show, respectively, that a whole array of interest rates is consistent

with goods market equilibrium and a whole array of interest rates is compatible with equilib-

rium in the money market. Of course, only one interest rate and one level of income will be

consistent simultaneously with the two equilibria. To obtain these, all that needs to be done

is to equate (18.2.13) and (18.2.18). In exercise 18.4 you are asked to show the level of the

interest rate and income that is simultaneously compatible with the goods and money market

equilibrium.

EXAMPLE 18.5 (Continued)

(Continued)
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FIGURE 18.4 The LM curve.

EXAMPLE 18.6

ECONOMETRIC MODELS

An extensive use of simultaneous-equation models has been made in the econometric mod-

els built by several econometricians. An early pioneer in this field was Professor Lawrence

Klein of the Wharton School of the University of Pennsylvania. His initial model, known as

Klein’s model I, is as follows:

Consumption function: Ct = β0 + β1Pt + β2(W +W ′)t + β3Pt−1 + u1t
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4L. R. Klein, Economic Fluctuations in the United States, 1921–1941, John Wiley & Sons,
New York, 1950.

5The model builder will have to specify which of the variables in a model are endogenous
and which are predetermined. Kt−1 and Yt−1 are predetermined because at time t their values
are known. (More on this in Chap. 19.)

Investment function: I t = β4 + β5Pt + β6Pt−1 + β7Kt−1 + u2t

Demand for labor: Wt = β8 + β9(Y + T −W
′)t

+β10(Y + T −W
′)t−1 + β11t + u3t

Identity: Yt + Tt = Ct + I t + Gt

(18.2.20)

Identity: Yt = W ′
t +Wt + Pt

Identity: Kt = Kt−1 + I t

where C = consumption expenditure

I = investment expenditure

G = government expenditure

P = profits

W = private wage bill

W ′= government wage bill

K = capital stock

T = taxes

Y = income after tax

t = time

u1, u2, and u3 = stochastic disturbances4

In the preceding model the variables C, I, W, Y, P, and K are treated as jointly dependent,

or endogenous, variables and the variables Pt−1, Kt−1, and Yt−1 are treated as predeter-

mined.5 In all, there are six equations (including the three identities) to study the interdepen-

dence of six endogenous variables.

In Chapter 20 we shall see how such econometric models are estimated. For the time

being, note that because of the interdependence among the endogenous variables, in gen-

eral they are not independent of the stochastic disturbance terms, which therefore makes it

inappropriate to apply the method of OLS to an individual equation in the system. As shown

in Section 18.3, the estimators thus obtained are inconsistent; they do not converge to their

true population values even when the sample size is very large.

18.3 THE SIMULTANEOUS-EQUATION BIAS: 

INCONSISTENCY OF OLS ESTIMATORS

As stated previously, the method of least squares may not be applied to
estimate a single equation embedded in a system of simultaneous equa-
tions if one or more of the explanatory variables are correlated with the
disturbance term in that equation because the estimators thus obtained
are inconsistent. To show this, let us revert to the simple Keynesian model
of income determination given in Example 18.2. Suppose that we want to

EXAMPLE 18.6 (Continued)
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6It will be greater than zero as long as β1, the MPC, lies between 0 and 1, and it will be neg-
ative if β1 is greater than unity. Of course, a value of MPC greater than unity would not make
much economic sense. In reality therefore the covariance between Yt and ut is expected to be
positive.

estimate the parameters of the consumption function (18.2.3). Assuming that
E(ut) = 0, E(u2

t ) = σ 2, E(utut+ j ) = 0 (for j &= 0), and cov (It, ut) = 0, which
are the assumptions of the classical linear regression model, we first show
that Yt and ut in (18.2.3) are correlated and then prove that β̂1 is an inconsis-
tent estimator of β1.

To prove that Yt and ut are correlated, we proceed as follows. Substitute
(18.2.3) into (18.2.4) to obtain

Yt = β0 + β1Yt + ut + It

that is,

Yt =
β0

1− β1
+

1

1− β1
It +

1

1− β1
ut (18.3.1)

Now

E(Yt) =
β0

1− β1
+

1

1− β1
It (18.3.2)

where use is made of the fact that E(ut) = 0 and that It being exogenous, or
predetermined (because it is fixed in advance), has as its expected value It .

Therefore, subtracting (18.3.2) from (18.3.1) results in

Yt − E(Yt) =
ut

1− β1
(18.3.3)

Moreover,

ut − E(ut) = ut (Why?) (18.3.4)

whence

cov (Yt, ut) = E[Yt − E(Yt)][ut − E(ut)]

=
E
(

u2
t

)

1− β1
from (18.3.3) and (18.3.4) (18.3.5)

=
σ 2

1− β1

Since σ 2 is positive by assumption (why?), the covariance between Y and u
given in (18.3.5) is bound to be different from zero.6 As a result, Yt and ut in
(18.2.3) are expected to be correlated, which violates the assumption of the
classical linear regression model that the disturbances are independent or
at least uncorrelated with the explanatory variables. As noted previously, the
OLS estimators in this situation are inconsistent.
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To show that the OLS estimator β̂1 is an inconsistent estimator of β1 be-
cause of correlation between Yt and ut , we proceed as follows:

β̂1 =

∑

(Ct − C̄)(Yt − Ȳ)
∑

(Yt − Ȳ)2

=

∑

ctyt
∑

y2t
(18.3.6)

=

∑

Ctyt
∑

y2t

where the lowercase letters, as usual, indicate deviations from the (sample)
mean values. Substituting for Ct from (18.2.3), we obtain

β̂1 =

∑

(β0 + β1Yt + ut)yt
∑

y2t
(18.3.7)

= β1 +

∑

ytut
∑

y2t

where in the last step use is made of the fact that 
∑

yt = 0 and (
∑

Ytyt/
∑

y2t ) = 1 (why?).
If we take the expectation of (18.3.7) on both sides, we obtain

E(β̂1) = β1 + E

[
∑

ytut
∑

y2t

]

(18.3.8)

Unfortunately, we cannot evaluate E(
∑

ytut/
∑

y2t ) since the expectations
operator is a linear operator. [Note: E(A/B) &= E(A)/E(B).] But intuitively it
should be clear that unless the term (

∑

ytut/
∑

y2t ) is zero, β̂1 is a biased es-
timator of β1. But have we not shown in (18.3.5) that the covariance be-
tween Y and u is nonzero and therefore would β̂1 not be biased? The answer
is, not quite, since cov (Yt, ut), a population concept, is not quite 

∑

ytut ,
which is a sample measure, although as the sample size increases indefi-
nitely the latter will tend toward the former. But if the sample size increases
indefinitely, then we can resort to the concept of consistent estimator and
find out what happens to β̂1 as n, the sample size, increases indefinitely.
In short, when we cannot explicitly evaluate the expected value of an esti-
mator, as in (18.3.8), we can turn our attention to its behavior in the large
sample.

Now an estimator is said to be consistent if its probability limit,7 or plim
for short, is equal to its true (population) value. Therefore, to show that β̂1 of
(18.3.7) is inconsistent, we must show that its plim is not equal to the true β1.

7See App. A for the definition of probability limit.
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8As stated in App. A, the plim of a constant (for example, β1) is the same constant and the
plim of (A/B) = plim(A)/plim(B). Note, however, that E(A/B) &= E(A)/E(B).

9In general, however, the direction of the bias will depend on the structure of the particular
model and the true values of the regression coefficients.

10This is borrowed from Kenneth J. White, Nancy G. Horsman, and Justin B. Wyatt,
SHAZAM: Computer Handbook for Econometrics for Use with Basic Econometrics, McGraw-
Hill, New York, 1985, pp. 131–134.

Applying the rules of probability limit to (18.3.7), we obtain8

plim (β̂1) = plim (β1)+ plim

(
∑

ytut
∑

y2t

)

= plim (β1)+ plim

(

∑

ytut
/

n
∑

y2t
/

n

)

(18.3.9)

= β1 +
plim

(
∑

ytut
/

n
)

plim
(
∑

y2t
/

n
)

where in the second step we have divided 
∑

ytut and
∑

y2t by the total num-
ber of observations in the sample n so that the quantities in the parentheses
are now the sample covariance between Y and u and the sample variance of
Y, respectively.

In words, (18.3.9) states that the probability limit of β̂1 is equal to true β1

plus the ratio of the plim of the sample covariance between Y and u to the
plim of the sample variance of Y. Now as the sample size n increases indef-
initely, one would expect the sample covariance between Y and u to approx-
imate the true population covariance E[Yt − E(Yt)][ut − E(ut)], which from
(18.3.5) is equal to [σ 2/(1− β1)]. Similarly, as n tends to infinity, the sample
variance of Y will approximate its population variance, say σ 2

Y . Therefore,
Eq. (18.3.9) may be written as

plim (β̂1) = β1 +
σ 2/(1− β1)

σ 2
Y

= β1 +
1

1− β1

(

σ 2

σ 2
Y

)

(18.3.10)

Given that 0 < β1 < 1 and that σ 2 and σ 2
Y are both positive, it is obvious from

Eq. (18.3.10) that plim (β̂1) will always be greater than β1; that is, β̂1 will
overestimate the true β1.

9 In other words, β̂1 is a biased estimator, and the
bias will not disappear no matter how large the sample size.

18.4 THE SIMULTANEOUS-EQUATION BIAS: 

A NUMERICAL EXAMPLE

To demonstrate some of the points made in the preceding section, let us
return to the simple Keynesian model of income determination given in
Example 18.2 and carry out the following Monte Carlo study.10 Assume that



Gujarati: Basic 

Econometrics, Fourth 

Edition

IV. Simultaneous−Equation 

Models

18. Simultaneous−Equation 

Models

© The McGraw−Hill 

Companies, 2004

728 PART FOUR: SIMULTANEOUS-EQUATION MODELS

the values of investment I are as shown in column 3 of Table 18.1. Further
assume that

E(ut) = 0

E(utut+ j ) = 0 ( j &= 0)

var (ut) = σ 2 = 0.04

cov (ut, It) = 0

The ut thus generated are shown in column (4).
For the consumption function (18.2.3) assume that the values of the true

parameters are known and are β0 = 2 and β1 = 0.8.
From the assumed values of β0 and β1 and the generated values of ut we

can generate the values of income Yt from (18.3.1), which are shown in col-
umn 1 of Table 18.1. Once Yt are known, and knowing β0, β1, and ut, one can
easily generate the values of consumption Ct from (18.2.3). The C’s thus gen-
erated are given in column 2.

Since the true β0 and β1 are known, and since our sample errors are
exactly the same as the “true’’ errors (because of the way we designed the
Monte Carlo study), if we use the data of Table 18.1 to regress Ct on Yt we
should obtain β0 = 2 and β1 = 0.8, if OLS were unbiased. But from (18.3.7)
we know that this will not be the case if the regressor Yt and the disturbance
ut are correlated. Now it is not too difficult to verify from our data that the
(sample) covariance between Yt and ut is

∑

ytut = 3.8 and that 
∑

y2t = 184.

Yt Ct It ut
(1) (2) (3) (4)

18.15697 16.15697 2.0 −0.3686055

19.59980 17.59980 2.0 −0.8004084E-01

21.93468 19.73468 2.2 0.1869357

21.55145 19.35145 2.2 0.1102906

21.88427 19.48427 2.4 −0.2314535E-01

22.42648 20.02648 2.4 0.8529544E-01

25.40940 22.80940 2.6 0.4818807

22.69523 20.09523 2.6 −0.6095481E-01

24.36465 21.56465 2.8 0.7292983E-01

24.39334 21.59334 2.8 0.7866819E-01

24.09215 21.09215 3.0 −0.1815703

24.87450 21.87450 3.0 −0.2509900E-01

25.31580 22.11580 3.2 −0.1368398

26.30465 23.10465 3.2 0.6092946E-01

25.78235 22.38235 3.4 −0.2435298

26.08018 22.68018 3.4 −0.1839638

27.24440 23.64440 3.6 −0.1511200

28.00963 24.40963 3.6 0.1926739E-02

30.89301 27.09301 3.8 0.3786015

28.98706 25.18706 3.8 −0.2588852E-02

Source: Kenneth J. White, Nancy G. Horsman, and Justin B. Wyatt, SHAZAM
Computer Handbook for Econometrics for Use with Damodar Gujarati: Basic
Econometrics, September 1985, p. 132.

TABLE 18.1 
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11See Eq. (18.3.5).
12Op. cit., pp. 133–134.

Then, as (18.3.7) shows, we should have

β̂1 = β1 +

∑

ytut
∑

y2t

= 0.8+
3.8

184

(18.4.1)

= 0.82065

That is, β̂1 is upward-biased by 0.02065.
Now let us regress Ct on Yt, using the data given in Table 18.1. The re-

gression results are

Ĉ t = 1.4940 + 0.82065Yt

se = (0.35413) (0.01434) (18.4.2)

t = (4.2188) (57.209) R2 = 0.9945

As expected, the estimated β1 is precisely the one predicted by (18.4.1). In
passing, note that the estimated β0 too is biased.

In general the amount of the bias in β̂1 depends on β1, σ
2 and var (Y) and,

in particular, on the degree of covariance between Y and u.11 As Kenneth
White et al. note, “This is what simultaneous equation bias is all about. In
contrast to single equation models, we can no longer assume that variables
on the right hand side of the equation are uncorrelated with the error
term.’’12 Bear in mind that this bias remains even in large samples.

In view of the potentially serious consequences of applying OLS in
simultaneous-equation models, is there a test of simultaneity that can tell us
whether in a given instance we have the simultaneity problem? One version
of the Hausman specification test can be used for this purpose, which we
discuss in Chapter 19.

18.5 SUMMARY AND CONCLUSIONS

1. In contrast to single-equation models, in simultaneous-equation mod-
els more than one dependent, or endogenous, variable is involved, neces-
sitating as many equations as the number of endogenous variables.

2. A unique feature of simultaneous-equation models is that the endoge-
nous variable (i.e., regressand) in one equation may appear as an explana-
tory variable (i.e., regressor) in another equation of the system.

3. As a consequence, such an endogenous explanatory variable be-
comes stochastic and is usually correlated with the disturbance term of the
equation in which it appears as an explanatory variable.

4. In this situation the classical OLS method may not be applied because
the estimators thus obtained are not consistent, that is, they do not converge
to their true population values no matter how large the sample size.


