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In Chapter 1 we discussed briefly the types of data that are generally avail-
able for empirical analysis, namely, time series, cross section, and panel.
In time series data we observe the values of one or more variables over a pe-
riod of time (e.g., GDP for several quarters or years). In cross-section data,
values of one or more variables are collected for several sample units, or en-
tities, at the same point in time (e.g., crime rates for 50 states in the United
States for a given year). In panel data the same cross-sectional unit (say a
family or a firm or a state) is surveyed over time. In short, panel data have
space as well as time dimensions.

We have already seen an example of this in Table 1.1, which gives data on
eggs produced and their prices for 50 states in the United States for years
1990 and 1991. For any given year, the data on eggs and their prices repre-
sent a cross-sectional sample. For any given state, there are two time series
observations on eggs and their prices. Thus, we have in all (50× 2) = 100
(pooled) observations on eggs produced and their prices.

There are other names for panel data, such as pooled data (pooling of
time series and cross-sectional observations), combination of time series
and cross-section data, micropanel data, longitudinal data (a study over
time of a variable or group of subjects), event history analysis (e.g., studying
the movement over time of subjects through successive states or conditions),
cohort analysis (e.g., following the career path of 1965 graduates of a busi-
ness school). Although there are subtle variations, all these names essentially
connote movement over time of cross-sectional units. We will therefore use the
term panel data in a generic sense to include one or more of these terms. And
we will call regression models based on such data panel data regression models.

16
PANEL DATA REGRESSION
MODELS
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1Some of the references are G. Chamberlain, “Panel Data,” in Handbook of Econometrics,
vol. II, Z. Griliches and M. D. Intriligator, eds., North-Holland Publishers, 1984, Chap. 22.; C.
Hsiao, Analysis of Panel Data, Cambridge University Press, 1986; G. G. Judge, R. C. Hill, W. E.
Griffiths, H. Lutkepohl, and T. C. Lee, Introduction to the Theory and Practice of Econometrics,
2d ed., John Wiley & Sons, New York, 1985, Chap. 11; W. H. Greene, Econometric Analysis, 4th
ed., Prentice-Hall, Englewood Cliffs, N.J., 2000, Chap. 14; Badi H. Baltagi, Econometric Analy-
sis of Panel Data, John Wiley and Sons, New York, 1995; and J. M. Wooldridge, Econometric
Analysis of Cross Section and Panel Data, MIT Press, Cambridge, Mass., 1999.

2Baltagi, op. cit., pp. 3–6.

Panel data are now being increasingly used in economic research. Some
of the well-known panel data sets are:

1. The Panel Study of Income Dynamics (PSID) conducted by the
Institute of Social Research at the University of Michigan. Started in 1968,
each year the Institute collects data on some 5000 families about various
socioeconomic and demographic variables.

2. The Bureau of the Census of the Department of Commerce conducts
a survey similar to PSID, called the Survey of Income and Program Par-
ticipation (SIPP). Four times a year, the respondents are interviewed about
their economic condition.

There are also many other surveys that are conducted by various govern-
mental agencies.

At the outset a warning is in order. The topic of panel data regressions is
vast, and some of the mathematics and statistics involved is quite compli-
cated. We only hope to touch on some of the essentials of the panel data re-
gression models, leaving the details for the references.1 But be forewarned
that some of these references are highly technical. Fortunately, user-friendly
software packages such as Limdep, PcGive, SAS, STATA, Shazam, and
Eviews, among others, have made the task of actually implementing panel
data regressions quite easy.

16.1 WHY PANEL DATA?

What are the advantages of panel data over cross-section or time series
data? Baltagi lists the following advantages of panel data2:

1. Since panel data relate to individuals, firms, states, countries, etc.,
over time, there is bound to be heterogeneity in these units. The techniques
of panel data estimation can take such heterogeneity explicitly into account
by allowing for individual-specific variables, as we shall show shortly. We
use the term individual in a generic sense to include microunits such as
individuals, firms, states, and countries.

2. By combining time series of cross-section observations, panel data
give “more informative data, more variability, less collinearity among vari-
ables, more degrees of freedom and more efficiency.”
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3Y. Grunfeld, “The Determinants of Corporate Investment,” unpublished Ph.D. thesis,
Department of Economics, University of Chicago, 1958. The data are reproduced in several
books. We have taken them from H. D. Vinod and Aman Ullha, Recent Advances in Regression
Methods, Marcel Dekker, New York, 1981, pp. 259–261. The Grunfeld study has become a fa-
vorite of textbook writers as the data is manageable for illustration purposes.

4For each year, we have only four observations on the regressand and the regressors. If we
also allow for the intercept, we will have to estimate three parameters, leaving only a single de-
gree of freedom. Obviously, such a regression may not be meaningful.

3. By studying the repeated cross section of observations, panel data are
better suited to study the dynamics of change. Spells of unemployment, job
turnover, and labor mobility are better studied with panel data.

4. Panel data can better detect and measure effects that simply cannot
be observed in pure cross-section or pure time series data. For example, the
effects of minimum wage laws on employment and earnings can be better
studied if we include successive waves of minimum wage increases in the
federal and/or state minimum wages.

5. Panel data enables us to study more complicated behavioral models.
For example, phenomena such as economies of scale and technological
change can be better handled by panel data than by pure cross-section or
pure time series data.

6. By making data available for several thousand units, panel data can
minimize the bias that might result if we aggregate individuals or firms into
broad aggregates.

In short, panel data can enrich empirical analysis in ways that may not be
possible if we use only cross-section or time series data. This is not to sug-
gest that there are no problems with panel data modeling. We will discuss
them after we cover some theory and discuss an example.

16.2 PANEL DATA: AN ILLUSTRATIVE EXAMPLE

To set the stage, let us consider a concrete example. Consider the data given
in Table 16.1, which are taken from a famous study of investment theory
proposed by Y. Grunfeld.3

Grunfeld was interested in finding out how real gross investment (Y) de-
pends on the real value of the firm (X2) and real capital stock (X3). Although
the original study covered several companies, for illustrative purposes we
have obtained data on four companies, General Electric (GE), General
Motor (GM), U.S. Steel (US), and Westinghouse. Data for each company on
the preceding three variables are available for the period 1935–1954. Thus,
there are four cross-sectional units and 20 time periods. In all, therefore, we
have 80 observations. A priori, Y is expected to be positively related to X2

and X3.

In principle, we could run four time series regressions, one for each com-
pany or we could run 20 cross-sectional regressions, one for each year, al-
though in the latter case we will have to worry about the degrees of freedom.4
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TABLE 16.1 INVESTMENT DATA FOR FOUR COMPANIES, 1935–1954

Observation I F−1 C−1 Observation I F−1 C−1

GE

1935 33.1 1170.6 97.8
1936 45.0 2015.8 104.4
1937 77.2 2803.3 118.0
1938 44.6 2039.7 156.2
1939 48.1 2256.2 172.6
1940 74.4 2132.2 186.6
1941 113.0 1834.1 220.9
1942 91.9 1588.0 287.8
1943 61.3 1749.4 319.9
1944 56.8 1687.2 321.3
1945 93.6 2007.7 319.6
1946 159.9 2208.3 346.0
1947 147.2 1656.7 456.4
1948 146.3 1604.4 543.4
1949 98.3 1431.8 618.3
1950 93.5 1610.5 647.4
1951 135.2 1819.4 671.3
1952 157.3 2079.7 726.1
1953 179.5 2371.6 800.3
1954 189.6 2759.9 888.9

GM

1935 317.6 3078.5 2.8
1936 391.8 4661.7 52.6
1937 410.6 5387.1 156.9
1938 257.7 2792.2 209.2
1939 330.8 4313.2 203.4
1940 461.2 4643.9 207.2
1941 512.0 4551.2 255.2
1942 448.0 3244.1 303.7
1943 499.6 4053.7 264.1
1944 547.5 4379.3 201.6
1945 561.2 4840.9 265.0
1946 688.1 4900.0 402.2
1947 568.9 3526.5 761.5
1948 529.2 3245.7 922.4
1949 555.1 3700.2 1020.1
1950 642.9 3755.6 1099.0
1951 755.9 4833.0 1207.7
1952 891.2 4924.9 1430.5
1953 1304.4 6241.7 1777.3
1954 1486.7 5593.6 2226.3

Notes: Y = I = gross investment = additions to plant and equipment plus maintenance and repairs, in millions of dollars deflated by P1

X2 = F = value of the firm = price of common and preferred shares at Dec. 31 (or average price of Dec. 31 and Jan. 31 of the
following year) times number of common and preferred shares outstanding plus total book value of debt at Dec. 31, in
millions of dollars deflated by P2

X3 = C = stock of plant and equipment = accumulated sum of net additions to plant and equipment deflated by P1 minus
depreciation allowance deflated by P3 in these definitions

P1 = implicit price deflator of producers’ durable equipment (1947 = 100)
P2 = implicit price deflator of GNP (1947 = 100)
P3 = depreciation expense deflator = 10-year moving average of wholesale price index of metals and metal products

(1947 = 100)
Source: Reproduced from H. D. Vinod and Aman Ullah, Recent Advances in Regression Methods, Marcel Dekker, New York, 1981,

pp. 259–261.

US

1935 209.9 1362.4 53.8
1936 355.3 1807.1 50.5
1937 469.9 2673.3 118.1
1938 262.3 1801.9 260.2
1939 230.4 1957.3 312.7
1940 361.6 2202.9 254.2
1941 472.8 2380.5 261.4
1942 445.6 2168.6 298.7
1943 361.6 1985.1 301.8
1944 288.2 1813.9 279.1
1945 258.7 1850.2 213.8
1946 420.3 2067.7 232.6
1947 420.5 1796.7 264.8
1948 494.5 1625.8 306.9
1949 405.1 1667.0 351.1
1950 418.8 1677.4 357.8
1951 588.2 2289.5 341.1
1952 645.2 2159.4 444.2
1953 641.0 2031.3 623.6
1954 459.3 2115.5 669.7

WEST

1935 12.93 191.5 1.8
1936 25.90 516.0 0.8
1937 35.05 729.0 7.4
1938 22.89 560.4 18.1
1939 18.84 519.9 23.5
1940 28.57 628.5 26.5
1941 48.51 537.1 36.2
1942 43.34 561.2 60.8
1943 37.02 617.2 84.4
1944 37.81 626.7 91.2
1945 39.27 737.2 92.4
1946 53.46 760.5 86.0
1947 55.56 581.4 111.1
1948 49.56 662.3 130.6
1949 32.04 583.8 141.8
1950 32.24 635.2 136.7
1951 54.38 732.8 129.7
1952 71.78 864.1 145.5
1953 90.08 1193.5 174.8
1954 68.60 1188.9 213.5
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5This discussion is influenced by Judge et al., op. cit., and Hsiao, op. cit., pp. 9–10.

Pooling, or combining, all the 80 observations, we can write the Grunfeld
investment function as:

Yit = β1 + β2 X2it + β3 X3it + uit

i = 1, 2, 3, 4 (16.2.1)

t = 1, 2, . . . , 20

where i stands for the ith cross-sectional unit and t for the tth time period.
As a matter of convention, we will let i denote the cross-section identifier
and t the time identifier. It is assumed that there are a maximum of N cross-
sectional units or observations and a maximum of T time periods. If each
cross-sectional unit has the same number of time series observations, then
such a panel (data) is called a balanced panel. In the present example we
have a balanced panel, as each company in the sample has 20 observations.
If the number of observations differs among panel members, we call such a
panel an unbalanced panel. In this chapter we will largely be concerned
with a balanced panel.

Initially, we assume that the X ’s are nonstochastic and that the error term
follows the classical assumptions, namely, E(uit) ∼ N(0, σ 2).

Notice carefully the double and triple subscripted notation, which should
be self-explanatory.

How do we estimate (16.2.1)? The answer follows.

16.3 ESTIMATION OF PANEL DATA REGRESSION MODELS:

THE FIXED EFFECTS APPROACH

Estimation of (16.2.1) depends on the assumptions we make about the
intercept, the slope coefficients, and the error term, uit. There are several
possibilities5:

1. Assume that the intercept and slope coefficients are constant across
time and space and the error term captures differences over time and
individuals.

2. The slope coefficients are constant but the intercept varies over
individuals.

3. The slope coefficients are constant but the intercept varies over indi-
viduals and time.

4. All coefficients (the intercept as well as slope coefficients) vary over
individuals.

5. The intercept as well as slope coefficients vary over individuals and
time.
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6Besides the books mentioned in footnote 1, see Terry E. Dielman, Pooled Cross-sectional
and Time Series Data Analysis, Marcel Dekker, New York, 1989, and Lois W. Sayrs, Pooled Time
Series Analysis, Sage Publications, Newbury Park, California, 1989.

As you can see, each of these cases introduces increasing complexity (and
perhaps more reality) in estimating panel data regression models, such as
(16.2.1). Of course, the complexity will increase if we add more regressors
to the model because of the possibility of collinearity among the regressors.

To cover each of the preceding categories in depth will require a separate
book, and there are already several ones on the market.6 In what follows, we
will cover some of the main features of the various possibilities, especially
the first four. Our discussion is nontechnical.

1. All Coefficients Constant across Time and Individuals

The simplest, and possibly naive, approach is to disregard the space and
time dimensions of the pooled data and just estimate the usual OLS regres-
sion. That is, stack the 20 observations for each company one on top of the
other, thus giving in all 80 observations for each of the variables in the
model. The OLS results are as follows

Ŷ = −63.3041 + 0.1101X2 + 0.3034X3

se = (29.6124) (0.0137) (0.0493)

t = (−2.1376) (8.0188) (6.1545) (16.3.1)

R2 = 0.7565 Durbin–Watson = 0.2187

n = 80 df = 77

If you examine the results of the pooled regression, and applying the con-
ventional criteria, you will see that all the coefficients are individually statis-
tically significant, the slope coefficients have the expected positive signs and
the R2 value is reasonably high. As expected, Y is positively related to X2 and
X3. The “only” fly in the ointment is that the estimated Durbin–Watson sta-
tistic is quite low, suggesting that perhaps there is autocorrelation in the
data. Of course, as we know, a low Durbin–Watson value could be due to
specification errors also. For instance, the estimated model assumes that the
intercept value of GE, GM, US, and Westinghouse are the same. It also as-
sumes that the slope coefficients of the two X variables are all identical for all
the four firms. Obviously, these are highly restricted assumptions. There-
fore, despite its simplicity, the pooled regression (16.2.1) may distort the
true picture of the relationship between Y and the X’s across the four com-
panies. What we need to do is find some way to take into account the specific
nature of the four companies. How this can be done is explained next.
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2. Slope Coefficients Constant but the Intercept Varies across

Individuals: The Fixed Effects or Least-Squares Dummy Variable

(LSDV) Regression Model

One way to take into account the “individuality” of each company or each
cross-sectional unit is to let the intercept vary for each company but still as-
sume that the slope coefficients are constant across firms. To see this, we
write model (16.2.1) as:

Yit = β1i + β2 X2it + β3 X3it + uit (16.3.2)

Notice that we have put the subscript i on the intercept term to suggest that
the intercepts of the four firms may be different; the differences may be due
to special features of each company, such as managerial style or managerial
philosophy.

In the literature, model (16.3.2) is known as the fixed effects (regression)
model (FEM). The term “fixed effects” is due to the fact that, although the
intercept may differ across individuals (here the four companies), each indi-
vidual’s intercept does not vary over time; that is, it is time invariant. Notice
that if we were to write the intercept as β1it, it will suggest that the intercept
of each company or individual is time variant. It may be noted that the FEM
given in (16.3.2) assumes that the (slope) coefficients of the regressors do not
vary across individuals or over time.

How do we actually allow for the (fixed effect) intercept to vary between
companies? We can easily do that by the dummy variable technique that we
learned in Chapter 9, particularly, the differential intercept dummies.
Therefore, we write (16.3.2) as:

Yit = α1 + α2 D2i + α3 D3i + α4 D4i + β2 X2it + β3 X3it + uit (16.3.3)

where D2i = 1 if the observation belongs to GM, 0 otherwise; D3i = 1 if the
observation belongs to US, 0 otherwise; and D4i = 1 if the observation
belongs to WEST, 0 otherwise. Since we have four companies, we have used
only three dummies to avoid falling into the dummy-variable trap (i.e., the
situation of perfect collinearity). Here there is no dummy for GE. In other
words, α1 represents the intercept of GE and α2, α3, and α4, the differential in-
tercept coefficients, tell by how much the intercepts of GM, US, and WEST dif-
fer from the intercept of GE. In short, GE becomes the comparison company.
Of course, you are free to choose any company as the comparison company.

Incidentally, if you want explicit intercept values for each company, you
can introduce four dummy variables provided you run your regression
through the origin, that is, drop the common intercept in (16.3.3); if you do
not do this, you will fall into the dummy variable trap.

Since we are using dummies to estimate the fixed effects, in the literature
the model (16.3.3) is also known as the least-squares dummy variable
(LSDV) model. So, the terms fixed effects and LSDV can be used inter-
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changeably. In passing, note that the LSDV model (16.3.3) is also known as
the covariance model and X2 and X3 are known as covariates.

The results based on (16.3.3) are as follows:

Ŷit = −245.7924 + 161.5722D2i + 339.6328D3i + 186.5666D3i + 0.1079X2i + 0.3461X3i

se = (35.8112) (46.4563) (23.9863) (31.5068) (0.0175) (0.0266)

t = (−6.8635) (3.4779) (14.1594) (5.9214) (6.1653) (12.9821)

R2 = 0.9345 d = 1.1076 df = 74 (16.3.4)

Compare this regression with (16.3.1). In (16.3.4) all the estimated coeffi-
cients are individually highly significant, as the p values of the estimated t
coefficients are extremely small. The intercept values of the four companies
are statistically different; being −245.7924 for GE, −84.220 (= −245.7924 +
161.5722) for GM, 93.8774 (= −245.7924 + 339.6328) for US, and −59.2258
( = −245.7924 + 186.5666) for WEST. These differences in the intercepts
may be due to unique features of each company, such as differences in man-
agement style or managerial talent.

Which model is better—(16.3.1) or (16.3.4)? The answer should be obvi-
ous, judged by the statistical significance of the estimated coefficients, and
the fact that the R2 value has increased substantially and the fact that the
Durbin–Watson d value is much higher, suggesting that model (16.3.1) was
mis-specified. The increased R2 value, however, should not be surprising as
we have more variables in model (16.3.4).

We can also provide a formal test of the two models. In relation to
(16.3.4), model (16.3.1) is a restricted model in that it imposes a common
intercept on all the companies. Therefore, we can use the restricted F test
discussed in Chapter 8. Using formula (8.7.10), the reader can easily check
that in the present instance the F value is:

F

(

R2
UR − R2

R

)/

3
(

1− R2
UR

)/

74
=

(0.9345− 0.7565)/3

(1− 0.9345)/74
= 66.9980 (16.3.5)

where the restricted R2 value is from (16.3.1) and the unrestricted R2 is from
(16.3.4) and where the number of restrictions is 3, since model (16.3.1)
assumes that the intercepts of the GE, GM, US, and WEST are the same.

Clearly, the F value of 66.9980 (for 3 numerator df and 74 denominator
df) is highly significant and, therefore, the restricted regression (16.3.1)
seems to be invalid.

The Time Effect. Just as we used the dummy variables to account for
individual (company) effect, we can allow for time effect in the sense that the
Grunfeld investment function shifts over time because of factors such as
technological changes, changes in government regulatory and/or tax poli-
cies, and external effects such as wars or other conflicts. Such time effects
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can be easily accounted for if we introduce time dummies, one for each
year. Since we have data for 20 years, from 1935 to 1954, we can introduce
19 time dummies (why?), and write the model (16.3.3) as:

Yit = λ0 + λ1Dum35+ λ2Dum36+ · · · + λ19Dum53+ β2 X2it + β3 X3it + uit

(16.3.6)

where Dum35 takes a value of 1 for observation in year 1935 and 0 other-
wise, etc. We are treating the year 1954 as the base year, whose intercept
value is given by λ0 (why?)

We are not presenting the regression results based on (16.3.6), for none of
the individual time dummies were individually statistically significant. The
R2 value of (16.3.6) was 0.7697, whereas that of (16.3.1) was 0.7565, an in-
crement of only 0.0132. It is left as an exercise for the reader to show that,
on the basis of the restricted F test, this increment is not significant, which
probably suggests that the year or time effect is not significant. This might
suggest that perhaps the investment function has not changed much over
time.

We have already seen that the individual company effects were statisti-
cally significant, but the individual year effects were not. Could it be that
our model is mis-specified in that we have not taken into account both indi-
vidual and time effects together? Let us consider this possibility.

3. Slope Coefficients Constant but the Intercept Varies over

Individuals As Well As Time

To consider this possibility, we can combine (16.3.4) and (16.3.6), as follows:

Yit = α1 + α2 DGMi
+ α3 DUSi

+ α4 DWESTi
+ λ0 + λ1Dum35+ · · ·

+λ19Dum53+ β2 X2i + β3 X3i + uit

(16.3.7)

When we run this regression, we find the company dummies as well as the
coefficients of the X are individually statistically significant, but none of the
time dummies are. Essentially, we are back to (16.3.4).

The overall conclusion that emerges is that perhaps there is pronounced
individual company effect but no time effect. In other words, the investment
functions for the four companies are the same except for their intercepts. In
all the cases we have considered, the X variables had a strong impact on Y.

4. All Coefficients Vary across Individuals 

Here we assume that the intercepts and the slope coefficients are different
for all individual, or cross-section, units. This is to say that the investment
functions of GE, GM, US, and WEST are all different. We can easily extend
our LSDV model to take care of this situation. Reconsider (16.3.4). There we
introduced the individual dummies in an additive manner. But in Chapter 9
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on dummy variables, we showed how interactive, or differential, slope dum-
mies, can account for differences in slope coefficients. To do this in the con-
text of the Grunfeld investment function, what we have to do is multiply
each of the company dummies by each of the X variables [this will add six
more variables to (16.3.4)]. That is, we estimate the following model:

Yit = α1 + α2 D2i + α3 D3i + α4 D4i + β2 X2it + β3 X3it + γ1(D2i X2it)+ γ2(D2i X3it)

+ γ3(D3i X2it)+ γ4(D3i X3it)+ γ5(D4i X2it)+ γ6(D4i X3it)+ uit (16.3.8)

You will notice that the γ ’s are the differential slope coefficients, just as α2, α3,
and α4 are the differential intercepts. If one or more of the γ coefficients are
statistically significant, it will tell us that one or more slope coefficients are
different from the base group. For example, say β2 and γ1 are statistically
significant. In this case (β2 + γ1) will give the value of the slope coefficient of
X2 for General Motors, suggesting that the GM slope coefficient of X2 is dif-
ferent from that of General Electric, which is our comparison company.

If all the differential intercept and all the differential slope coefficients
are statistically significant, we can conclude that the investment functions
of General Motors, United States Steel, and Westinghouse are different
from that of General Electric. If this is in fact the case, there may be little
point in estimating the pooled regression (16.3.1). 

Let us examine the regression results based on (16.3.8). For ease of read-
ing, the regression results of (16.3.8) are given in tabular form in Table 16.2.

As these results reveal, Y is significantly related to X2 and X3. However,
several differential slope coefficients are statistically significant. For in-
stance, the slope coefficient of X2 is 0.0902 for GE, but 0.1828 (0.0902 +
0.092) for GM. Interestingly, none of the differential intercepts are statisti-
cally significant.

TABLE 16.2 RESULTS OF REGRESSION (16.3.8)

Variable Coefficient Std. error t value p value

Intercept -9.9563 76.3518 -0.1304 0.8966

D2i -139.5104 109.2808 -1.2766 0.2061

D3i -40.1217 129.2343 -0.3104 0.7572

D4i 9.3759 93.1172 0.1006 0.9201

X2i 0.0926 0.0424 2.1844 0.0324

X3i 0.1516 0.0625 2.4250 0.0180

D2iX2i 0.0926 0.0424 2.1844 0.0324

D2iX3i 0.2198 0.0682 3.2190 0.0020

D3iX2i 0.1448 0.0646 2.2409 0.0283

D3iX3i 0.2570 0.1204 2.1333 0.0365

D4iX2i 0.0265 0.1114 0.2384 0.8122

D4iX3i -0.0600 0.3785 -0.1584 0.8745

R2 = 0.9511 d = 1.0896
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7This leads to the so-called seemingly unrelated regression (SURE) modeling, originally
proposed by Arnold Zellner. For a discussion of this model, see Terry E. Dielman, op. cit.

All in all, it seems that the investment functions of the four companies are
different. This might suggest that the data of the four companies are not
“poolable,” in which case one can estimate the investment functions for
each company separately. (See exercise 16.13.) This is a reminder that panel
data regression models may not be appropriate in each situation, despite
the availability of both time series and cross-sectional data. 

A Caution on the Use of the Fixed Effects, or LSDV, Model. Al-
though easy to use, the LSDV model has some problems that need to be
borne in mind.

First, if you introduce too many dummy variables, as in the case of model
(16.3.7), you will run up against the degrees of freedom problem. In the case
of (16.3.7), we have 80 observations, but only 55 degrees of freedom—we
lose 3 df for the three company dummies, 19 df for the 19 year dummies,
2 for the two slope coefficients, and 1 for the common intercept.

Second, with so many variables in the model, there is always the possibil-
ity of multicollinearity, which might make precise estimation of one or more
parameters difficult.

Third, suppose in the FEM (16.3.1) we also include variables such as sex,
color, and ethnicity, which are time invariant too because an individual’s sex
color, or ethnicity does not change over time. Hence, the LSDV approach
may not be able to identify the impact of such time-invariant variables.

Fourth, we have to think carefully about the error term uit. All the results
we have presented so far are based on the assumption that the error term
follows the classical assumptions, namely, uit ∼ N(0, σ 2). Since the i index
refers to cross-sectional observations and t to time series observations, the
classical assumption for uit may have to be modified. There are several pos-
sibilities.

1. We can assume that the error variance is the same for all cross-
section units or we can assume that the error variance is heteroscedastic.

2. For each individual we can assume that there is no autocorrelation
over time. Thus, for example, we can assume that the error term of the
investment function for General Motors is nonautocorrelated. Or we could
assume that it is autocorrelated, say, of the AR(1) type.

3. For a given time, it is possible that the error term for General Motors
is correlated with the error term for, say, U.S. Steel or both U.S. Steel and
Westinghouse.7 Or, we could assume that there is no such correlation.

4. We can think of other permutations and combinations of the error
term. As you will quickly realize, allowing for one or more of these possibil-
ities will make the analysis that much more complicated. Space and mathe-
matical demands preclude us from considering all the possibilities. A some-
what accessible discussion of the various possibilities can be found in
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8Dielman, op. cit., Sayrs, op. cit., Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan,
New York, 1986, Chap. 12.

9Kmenta, op. cit., p. 633.

Dielman, Sayrs, and Kmenta.8 However, some of the problems may be alle-
viated if we resort to the so-called random effects model, which we discuss
next.

16.4 ESTIMATION OF PANEL DATA REGRESSION MODELS:

THE RANDOM EFFECTS APPROACH

Although straightforward to apply, fixed effects, or LSDV, modeling can be
expensive in terms of degrees of freedom if we have several cross-sectional
units. Besides, as Kmenta notes:

An obvious question in connection with the covariance [i.e., LSDV] model is
whether the inclusion of the dummy variables—and the consequent loss of the
number of degrees of freedom—is really necessary. The reasoning underlying the
covariance model is that in specifying the regression model we have failed to in-
clude relevant explanatory variables that do not change over time (and possibly
others that do change over time but have the same value for all cross-sectional
units), and that the inclusion of dummy variables is a cover up of our ignorance
[emphasis added].9

If the dummy variables do in fact represent a lack of knowledge about the
(true) model, why not express this ignorance through the disturbance term
uit? This is precisely the approach suggested by the proponents of the so-
called error components model (ECM) or random effects model (REM).

The basic idea is to start with (16.3.2):

Yit = β1i + β2 X2it + β3 X3it + uit (16.4.1)

Instead of treating β1i as fixed, we assume that it is a random variable with
a mean value of β1 (no subscript i here). And the intercept value for an indi-
vidual company can be expressed as

β1i = β1 + εi i = 1, 2, . . . , N (16.4.2)

where εi is a random error term with a mean value of zero and variance of σ 2
ε .

What we are essentially saying is that the four firms included in our sam-
ple are a drawing from a much larger universe of such companies and that
they have a common mean value for the intercept ( = β1) and the individual
differences in the intercept values of each company are reflected in the error
term εi .

Substituting (16.4.2) into (16.4.1), we obtain:

Yit = β1 + β2 X2it + β3 X3it + εi + uit

= β1 + β2 X2it + β3 X3it +wit
(16.4.3)
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where
wit = εi + uit (16.4.4)

The composite error term wit consists of two components, εi , which is the
cross-section, or individual-specific, error component, and uit, which is
the combined time series and cross-section error component. The term error
components model derives its name because the composite error term wit

consists of two (or more) error components.
The usual assumptions made by ECM are that

εi ∼ N
(

0, σ 2
ε

)

uit ∼ N
(

0, σ 2
u

)

(16.4.5)

E(εiuit) = 0 E(εiεj ) = 0 (i '= j)

E(uituis) = E(uituj t) = E(uitujs) = 0 (i '= j; t '= s).

that is, the individual error components are not correlated with each other
and are not autocorrelated across both cross-section and time series units. 

Notice carefully the difference between FEM and ECM. In FEM each
cross-sectional unit has its own (fixed) intercept value, in all N such values
for N cross-sectional units. In ECM, on the other hand, the intercept β1 rep-
resents the mean value of all the (cross-sectional) intercepts and the error
component εi represents the (random) deviation of individual intercept
from this mean value. However, keep in mind that εi is not directly observ-
able; it is what is known as an unobservable, or latent, variable.

As a result of the assumptions stated in (16.4.5), it follows that

E(wit) = 0 (16.4.6)

var (wit) = σ 2
ε + σ 2

u (16.4.7)

Now if σ 2
ε = 0, there is no difference between models (16.2.1) and (16.4.3),

in which case we can simply pool all the (cross-sectional and time series)
observations and just run the pooled regression, as we did in (16.3.1).

As (16.4.7) shows, the error term wit is homoscedastic. However, it can be
shown that wit and wis (t '= s) are correlated; that is, the error terms of a
given cross-sectional unit at two different points in time are correlated. The
correlation coefficient, corr (wit, wis), is as follows:

corr (wit, wis) =
σ 2

ε

σ 2
ε + σ 2

u

(16.4.8)

Notice two special features of the preceding correlation coefficient. First, for
any given cross-sectional unit, the value of the correlation between error
terms at two different times remains the same no matter how far apart the
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TABLE 16.3 ECM ESTIMATION OF THE GRUNFELD INVESTMENT FUNCTION

Variable Coefficient Std. error t statistic p value

Intercept -73.0353 83.9495 -0.8699 0.3870

X2 0.1076 0.0168 6.4016 0.0000

X3 0.3457 0.0168 13.0235 0.0000

Random effect:

GE -169.9282

GM -9.5078

USS 165.5613

Westinghouse 13.87475

R2 = 0.9323 (GLS)

10The interested reader may refer to Kmenta, op. cit., pp. 625–630 for an accessible
discussion.

two time periods are, as is clear from (16.4.8). This is in strong contrast to
the first-order [AR(1)] scheme that we discussed in Chapter 12, where we
found that the correlation between time periods declines over time. Second,
the correlation structure given in (16.4.8) remains the same for all cross-
sectional units; that is, it is identical for all individuals.

If we do not take this correlation structure into account, and estimate
(16.4.3) by OLS, the resulting estimators will be inefficient. The most ap-
propriate method here is the method of generalized least squares (GLS).

We will not discuss the mathematics of GLS in the present context be-
cause of its complexity.10 Since most modern statistical software packages
now have routines to estimate ECM (as well as FEM), we will only present
the results for our investment example. But before we do that, it may be
noted that we can easily extend (16.4.4) to allow for a random error compo-
nent to take into account variation over time (see exercise 16.6).

The results of ECM estimation of the Grunfeld investment function are
presented in Table 16.3. Several aspects of this regression should be noted.
First, if you sum the random effect values given for the four companies, it
will be zero, as it should (why?). Second, the mean value of the random
error component, εi , is the common intercept value of −73.0353. The ran-
dom effect value of GE of −169.9282 tells us by how much the random error
component of GE differs from the common intercept value. Similar inter-
pretation applies to the other three values of the random effects. Third, the
R2 value is obtained from the transformed GLS regression.

If you compare the results of the ECM model given in Table 16.3 with
those obtained from FEM, you will see that generally the coefficient values
of the two X variables do not seem to differ much, except for those given in
Table 16.2, where we allowed the slope coefficients of the two variables to
differ across cross-sectional units.
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11Wooldridge, op. cit., p. 450.
12Judge et al., op. cit., pp. 489–491.

16.5 FIXED EFFECTS (LSDV) VERSUS RANDOM EFFECTS MODEL

The challenge facing a researcher is: Which model is better, FEM or ECM?
The answer to this question hinges around the assumption one makes
about the likely correlation between the individual, or cross-section specific,
error component εi and the X regressors.

If it is assumed that εi and the X ’s are uncorrelated, ECM may be appro-
priate, whereas if εi and the X ’s are correlated, FEM may be appropriate.

Why would one expect correlation between the individual error compo-
nent εi and one or more regressors? Consider an example. Suppose we have
a random sample of a large number of individuals and we want to model their
wage, or earnings, function. Suppose earnings are a function of education,
work experience, etc. Now if we let εi stand for innate ability, family back-
ground, etc., then when we model the earnings function including εi it is very
likely to be correlated with education, for innate ability and family back-
ground are often crucial determinants of education. As Wooldridge contends,
“In many applications, the whole reason for using panel data is to allow the
unobserved effect [i.e., εi] to be correlated with the explanatory variables.”11

The assumptions underlying ECM is that the εi are a random drawing
from a much larger population. But sometimes this may not be so. For
example, suppose we want to study the crime rate across the 50 states in the
United States. Obviously, in this case, the assumption that the 50 states are
a random sample is not tenable.

Keeping this fundamental difference in the two approaches in mind,
what more can we say about the choice between FEM and ECM? Here the
observations made by Judge et al. may be helpful12:

1. If T (the number of time series data) is large and N (the number of
cross-sectional units) is small, there is likely to be little difference in the values
of the parameters estimated by FEM and ECM. Hence the choice here is based
on computational convenience. On this score, FEM may be preferable.

2. When N is large and T is small, the estimates obtained by the two
methods can differ significantly. Recall that in ECM β1i = β1 + εi , where εi is
the cross-sectional random component, whereas in FEM we treat β1i as
fixed and not random. In the latter case, statistical inference is conditional
on the observed cross-sectional units in the sample. This is appropriate if we
strongly believe that the individual, or cross-sectional, units in our sample
are not random drawings from a larger sample. In that case, FEM is appro-
priate. However, if the cross-sectional units in the sample are regarded as
random drawings, then ECM is appropriate, for in that case statistical in-
ference is unconditional.

3. If the individual error component εi and one or more regressors are
correlated, then the ECM estimators are biased, whereas those obtained
from FEM are unbiased.



Gujarati: Basic 

Econometrics, Fourth 

Edition

III. Topics in Econometrics 16. Panel Data Regression 

Models

© The McGraw−Hill 

Companies, 2004

CHAPTER SIXTEEN: PANEL DATA REGRESSION MODELS 651

13Taylor has shown that for T ≥ 3 and (N− K) ≥ 9, where K is the number of regressors, the
statement holds. See W. E. Taylor, “Small Sample Considerations in Estimation from Panel
Data,” Journal of Econometrics, vol. 13, 1980, pp. 203–223.

14J. A. Hausman, “Specification Tests in Econometrics,” Econometrica, vol. 46, 1978,
pp. 1251–1271.

15For the details, see Baltagi, op. cit., pp. 68–73.
16Jack Johnson and John DiNardo, Econometric Methods, 4th ed., McGraw-Hill, 1997, p. 403.

4. If N is large and T is small, and if the assumptions underlying ECM
hold, ECM estimators are more efficient than FEM estimators.13

Is there a formal test that will help us to choose between FEM and ECM?
Yes, a test was developed by Hausman in 1978.14 We will not discuss the de-
tails of this test, for they are beyond the scope of this book.15 The null hypo-
thesis underlying the Hausman test is that the FEM and ECM estimators do
not differ substantially. The test statistic developed by Hausman has an
asymptotic χ2 distribution. If the null hypothesis is rejected, the conclusion
is that ECM is not appropriate and that we may be better off using FEM, in
which case statistical inferences will be conditional on the εi in the sample.

Despite the Hausman test, it is important to keep in mind the warning
sounded by Johnston and DiNardo. In deciding between fixed effects or ran-
dom effects models, they argue that, “ . . . there is no simple rule to help the
researcher navigate past the Scylla of fixed effects and the Charybdis of mea-
surement error and dynamic selection. Although they are an improvement
over cross-section data, panel data do not provide a cure-all for all of an
econometrician’s problems.”16

16.6 PANEL DATA REGRESSIONS: SOME CONCLUDING COMMENTS

As noted at the outset, the topic of panel data modeling is vast and complex.
We have barely scratched the surface. Among the topics that we have not
discussed, the following may be mentioned.

1. Hypothesis testing with panel data.
2. Heteroscedasticity and autocorrelation in ECM.
3. Unbalanced panel data.
4. Dynamic panel data models in which the lagged value(s) of the

regressand (Yit) appears as an explanatory variable.
5. Simultaneous equations involving panel data.
6. Qualitative dependent variables and panel data.

One or more of these topics can be found in the references cited in this
chapter, and the reader is urged to consult them to learn more about this
topic. These references also cite several empirical studies in various areas of
business and economics that have used panel data regression models. The
beginner is well advised to read some of these applications to get a feel
about how researchers have actually implemented such models.


