5/8/2020

MATLAB - Quick Guide - Tutorialspoint

MATLAB - Quick Guide

MATLAB - Overview

MATLAB (matrix laboratory) is a fourth-generation high-level programming language and interactive

environment for numerical computation, visualization and programming.

MATLAB is developed by MathWorks.

It allows matrix manipulations; plotting of functions and data; implementation of algorithms; creation of
user interfaces; interfacing with programs written in other languages, including C, C++, Java, and

FORTRAN; analyze data; develop algorithms; and create models and applications.

It has numerous built-in commands and math functions that help you in mathematical calculations,

generating plots, and performing numerical methods.

MATLAB's Power of Computational Mathematics

MATLAB is used in every facet of computational mathematics. Following are some commonly used

mathematical calculations where it is used most commonly -

Dealing with Matrices and Arrays
2-D and 3-D Plotting and graphics
Linear Algebra

Algebraic Equations

Non-linear Functions

Statistics

Data Analysis

Calculus and Differential Equations
Numerical Calculations
Integration

Transforms

Curve Fitting

Various other special functions

Features of MATLAB

Following are the basic features of MATLAB -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

1141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

It is a high-level language for numerical computation, visualization and application development.
It also provides an interactive environment for iterative exploration, design and problem solving.

It provides vast library of mathematical functions for linear algebra, statistics, Fourier analysis,
filtering, optimization, numerical integration and solving ordinary differential equations.

It provides built-in graphics for visualizing data and tools for creating custom plots.

MATLAB's programming interface gives development tools for improving code quality
maintainability and maximizing performance.

It provides tools for building applications with custom graphical interfaces.

It provides functions for integrating MATLAB based algorithms with external applications and
languages such as C, Java, .NET and Microsoft Excel.

Uses of MATLAB

MATLAB is widely used as a computational tool in science and engineering encompassing the fields of
physics, chemistry, math and all engineering streams. It is used in a range of applications including -

Signal Processing and Communications
Image and Video Processing

Control Systems

Test and Measurement

Computational Finance

Computational Biology

MATLAB - Environment Setup

Local Environment Setup

Setting up MATLAB environment is a matter of few clicks. The installer can be downloaded from here

MathWorks provides the licensed product, a trial version and a student version as well. You need to log
into the site and wait a little for their approval.

After downloading the installer the software can be installed through few clicks.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 21141

https://www.mathworks.com/downloads/web_downloads/

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

[4\ MathWorks Instailer e

Install MathWorks Software .
Th W install MathWorks prod Iso be required MATLAB
i3 program wall insts thviorks products an your compuler. Tou may alio be requined 1o | TE™
ot stz SIMULINK
® Install using the Intemet | Connection Settings | R2013a |
Install without uning the Inbemet

Math'Works products are protected by patents (see www.mathworis.com/patents) and copynght
laws. By entering into the Software License Agreement that follows, you will slso agree to
sdditional restnctions on your use of these programs. Any unauthornzed use, reproduction, or
dustnbution may result in cnal and cnminal penaltes.

MATLAE and Simulink are reqistered trademarks of The MathWorks, Inc. Pleaze see
wisw.mathworks.comy/trademarks for a [ist of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.,

EFTEN) MadiWorks

[4 1% Complete [5 e

Installing MATLAB 8.1 About 40 minutes remaming
| T
E Pause !

) MathWorks |

Understanding the MATLAB Environment

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 3/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

MATLAB development IDE can be launched from the icon created on the desktop. The main working
window in MATLAB is called the desktop. When MATLAB is started, the desktop appears in its default

layout -

|Lu.l.
The desktop has the following panels -

Current Folder — This panel allows you to access the project folders and files.

Current Folder ¥

Mame =

[+

myscr
test
|| ry_data.out
|| my_data2.out

[+

Command Window - This is the main area where commands can be entered at the command
line. It is indicated by the command prompt (>>).

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 4/141

5/8/2020

. Workspace — The workspace shows all the variables created and/or imported from files.

MATLAB - Quick Guide - Tutorialspoint

Command Window

> a=23

63

fx s>

Workspace

Mame = Value
I:-H a 23
H b 69

. Command History - This panel shows or return commands that are entered at the command

line.

Set up GNU Octave

5:58 PM —-%
el S:01 AM —-%
= &€:09 PM —3%

gF— T/25/2013 T:5T7 AaM —3%
=%—— T/25/2013 T:58 AM ——%
chdir test
progd
=l-%—— T/29/2013 8:55 aM —-%
=2

If you are willing to use Octave on your machine (Linux, BSD, OS X or Windows), then kindly download

latest version from Download GNU Octave

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

. You can check the given installation instructions for your

5/141

http://www.gnu.org/software/octave/download.html

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

machine.

MATLAB - Basic Syntax

MATLAB environment behaves like a super-complex calculator. You can enter commands at the >>
command prompt.

MATLAB is an interpreted environment. In other words, you give a command and MATLAB executes it
right away.

Hands on Practice
Type a valid expression, for example,
5+5

And press ENTER

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is -

ans = 10

Let us take up few more examples -

372 % 3 raised to the power of 2

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is -

ans = 9

Another example,

sin(pi /2) % sine of angle 9@°

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is -

ans =1

Another example,

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 6/141

http://tpcg.io/5fey1d
http://tpcg.io/yDoUVH
http://tpcg.io/HGaenD
http://tpcg.io/voWKwj

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

7/0 % Divide by zero

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is —

ans = Inf
warning: division by zero

Another example,

732 * 20.3

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is -

ans = 1.4860e+04

MATLAB provides some special expressions for some mathematical symbols, like pi for 1, Inf for «, i (and
j) for V-1 etc. Nan stands for 'not a number'.

Use of Semicolon (;) in MATLAB

Semicolon (;) indicates end of statement. However, if you want to suppress and hide the MATLAB output
for an expression, add a semicolon after the expression.

For example,
X = 3;
=X+ 5

When you click the Execute button, or type Ctrl+E, MATLAB executes it immediately and the result
returned is -

Adding Comments

The percent symbol (%) is used for indicating a comment line. For example,

X =9 % assign the value 9 to x

You can also write a block of comments using the block comment operators % { and % }.

The MATLAB editor includes tools and context menu items to help you add, remove, or change the format
of comments.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 7/141

http://tpcg.io/voWKwj
http://tpcg.io/RF6ZDr
http://tpcg.io/T82Hqb

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

Commonly used Operators and Special Characters

MATLAB supports the following commonly used operators and special characters -

Operator

+

()

[

%

Purpose
Plus; addition operator.
Minus; subtraction operator.
Scalar and matrix multiplication operator.
Array multiplication operator.
Scalar and matrix exponentiation operator.
Array exponentiation operator.
Left-division operator.
Right-division operator.
Array left-division operator.
Array right-division operator.

Colon; generates regularly spaced elements and represents an entire row or
column.

Parentheses; encloses function arguments and array indices; overrides
precedence.

Brackets; enclosures array elements.

Decimal point.

Ellipsis; line-continuation operator

Comma; separates statements and elements in a row
Semicolon; separates columns and suppresses display.
Percent sign; designates a comment and specifies formatting.
Quote sign and transpose operator.

Nonconjugated transpose operator.

Assignment operator.

Special Variables and Constants

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

8/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

MATLAB supports the following special variables and constants -

Name Meaning
ans Most recent answer.
eps Accuracy of floating-point precision.
ij The imaginary unit \-1.
Inf Infinity.
NaN Undefined numerical result (not a number).
pi

The number 1T

Naming Variables

Variable names consist of a letter followed by any number of letters, digits or underscore

MATLAB is case-sensitive.

Variable names can be of any length, however, MATLAB uses only first N characters, where N is given by

the function namelengthmax.

Saving Your Work

The save command is used for saving all the variables in the workspace, as a file with .mat extension, in

the current directory.

For example,

save myfile

You can reload the file anytime later using the load command.

load myfile

MATLAB - Variables

In MATLAB environment, every variable is an array or matrix.

You can assign variables in a simple way. For example,

% defining x and initializing it with a value

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

9/141

http://tpcg.io/OLrRT3

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

MATLAB will execute the above statement and return the following result -

It creates a 1-by-1 matrix named x and stores the value 3 in its element. Let us check another example,

X = sqrt(16) % defining x and initializing it with an expression
MATLAB will execute the above statement and return the following result -
X =4

Please note that -
. Once a variable is entered into the system, you can refer to it later.
. Variables must have values before they are used.

. When an expression returns a result that is not assigned to any variable, the system assigns it to
a variable named ans, which can be used later.

For example,

sqrt(78)

MATLAB will execute the above statement and return the following result -

ans = 8.8318

You can use this variable ans -

sqrt(78);
9876/ans

MATLAB will execute the above statement and return the following result -

ans = 1118.2

Let's look at another example -

X =7 * 8;
x * 7.89

MATLAB will execute the above statement and return the following result -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 10/141

http://tpcg.io/jJqTDq
http://tpcg.io/Et2gMW
http://tpcg.io/V6a4q8
http://tpcg.io/uYnzix

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

y = 441.84

Multiple Assignments

You can have multiple assignments on the same line. For example,

MATLAB will execute the above statement and return the following result -

c =14

| have forgotten the Variables!

The who command displays all the variable names you have used.

who

MATLAB will execute the above statement and return the following result -

Your variables are:
a ans b C

The whos command displays little more about the variables -

. Variables currently in memory
. Type of each variables
. Memory allocated to each variable

. Whether they are complex variables or not

whos

MATLAB will execute the above statement and return the following result -

Attr Name Size Bytes Class
a 1x1 8 double
ans 1x70 757 cell
b 1x1 8 double
C 1x1 8 double

Total is 73 elements using 781 bytes

The clear command deletes all (or the specified) variable(s) from the memory.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 11/141

http://tpcg.io/iTtAtL

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

clear x % it will delete x, won't display anything
clear % it will delete all variables in the workspace
% peacefully and unobtrusively

Long Assignments

Long assignments can be extended to another line by using an ellipses (...). For example,

initial_velocity = ©;

acceleration = 9.8;

time = 20;

final_velocity = initial_velocity + acceleration * time

MATLAB will execute the above statement and return the following result -

final_velocity = 196

The format Command

By default, MATLAB displays numbers with four decimal place values. This is known as short format.
However, if you want more precision, you need to use the format command.
The format long command displays 16 digits after decimal.

For example -

format long
x=7+10/3 +5 "~ 1.2

MATLAB will execute the above statement and return the following result-

X = 17.2319816406394

Another example,

format short
X =7+ 10/3 + 5 "~ 1.2

MATLAB will execute the above statement and return the following result -

X = 17.232

The format bank command rounds numbers to two decimal places. For example,

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 12/141

http://tpcg.io/B3mfnW
http://tpcg.io/zd1GYC
http://tpcg.io/klmkjd

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

format bank
daily wage = 177.45;
weekly wage = daily wage * 6

MATLAB will execute the above statement and return the following result -
weekly wage = 1064.70

MATLAB displays large numbers using exponential notation.

The format short e command allows displaying in exponential form with four decimal places plus the
exponent.

For example,

format short e
4.678 * 4.9

MATLAB will execute the above statement and return the following result -
ans = 2.2922e+01

The format long e command allows displaying in exponential form with four decimal places plus the
exponent. For example,

format long e
x = pi

MATLAB will execute the above statement and return the following result -

X = 3.141592653589793e+00

The format rat command gives the closest rational expression resulting from a calculation. For example,

format rat
4.678 * 4.9

MATLAB will execute the above statement and return the following result -

ans = 34177/1491

Creating Vectors

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 13/141

http://tpcg.io/O8OsU0
http://tpcg.io/NhHIuP
http://tpcg.io/VqPGSW
http://tpcg.io/UDTGXT

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

A vector is a one-dimensional array of numbers. MATLAB allows creating two types of vectors -

. Row vectors

o Column vectors

Row vectors are created by enclosing the set of elements in square brackets, using space or comma to
delimit the elements.

For example,

r=1[78910 11]

MATLAB will execute the above statement and return the following result -

Another example,

r=[7809 10 11];
t = [ZJ 3, 4, 5, 6]:
res =r + t

MATLAB will execute the above statement and return the following result -

res =

Column vectors are created by enclosing the set of elements in square brackets, using semicolon(;) to
delimit the elements.

c=1[7, 8 9; 10; 11]

MATLAB will execute the above statement and return the following result -

10
11

Creating Matrices

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 14/141

http://tpcg.io/LmINmJ
http://tpcg.io/jOFUwn
http://tpcg.io/KypbfL

MATLAB - Quick Guide - Tutorialspoint

5/8/2020
A matrix is a two-dimensional array of numbers.

In MATLAB, a matrix is created by entering each row as a sequence of space or comma separated
elements, and end of a row is demarcated by a semicolon. For example, let us create a 3-by-3 matrix as -

m=1[123;456; 7 8 9]

MATLAB will execute the above statement and return the following result -

1 3
4 5 6
7 9

MATLAB - Commands

MATLAB is an interactive program for numerical computation and data visualization. You can enter a

command by typing it at the MATLAB prompt '>>' on the Command Window.

In this section, we will provide lists of commonly used general MATLAB commands.

Commands for Managing a Session

MATLAB provides various commands for managing a session. The following table provides all such

commands -
Command
clc
clear
exist
global
help
lookfor
quit
who

whos

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

Purpose
Clears command window.

Removes variables from memory.
Checks for existence of file or variable.

Declares variables to be global.

Searches for a help topic.
Searches help entries for a keyword.
Stops MATLAB.
Lists current variables.

Lists current variables (long display).

15/141

http://tpcg.io/qEEGC1

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Commands for Working with the System

MATLAB provides various useful commands for working with the system, like saving the current work in
the workspace as a file and loading the file later.

It also provides various commands for other system-related activities like, displaying date, listing files in
the directory, displaying current directory, etc.

The following table displays some commonly used system-related commands -

Command Purpose
cd Changes current directory.
date Displays current date.
delete Deletes a file.
diary Switches on/off diary file recording.
dir Lists all files in current directory.
load Loads workspace variables from a file.
path Displays search path.
pwd Displays current directory.
save Saves workspace variables in a file.
type Displays contents of a file.
what Lists all MATLAB files in the current directory.
wklread Reads .wk1 spreadsheet file.

Input and Output Commands

MATLAB provides the following input and output related commands -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 16/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Command Purpose
disp Displays contents of an array or string.
fscanf Read formatted data from a file.
format Controls screen-display format.
fprintf Performs formatted writes to screen or file.
input Displays prompts and waits for input.

; Suppresses screen printing.

The fscanf and fprintf commands behave like C scanf and printf functions. They support the following
format codes -

Format Code Purpose
%s Format as a string.
%d Format as an integer.
%f Format as a floating point value.
%e Format as a floating point value in scientific notation.
%g Format in the most compact form: %f or %e.
\n Insert a new line in the output string.
\t Insert a tab in the output string.

The format function has the following forms used for numeric display -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 17/141

5/8/2020

Format Function
format short
format long

format short e
format long e
format bank
format +
format rat
format compact

format loose

MATLAB - Quick Guide - Tutorialspoint
Display up to
Four decimal digits (default).
16 decimal digits.
Five digits plus exponent.
16 digits plus exponents.
Two decimal digits.
Positive, negative, or zero.
Rational approximation.
Suppresses some line feeds.

Resets to less compact display mode.

Vector, Matrix and Array Commands

The following table shows various commands used for working with arrays, matrices and vectors -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

18/141

5/8/2020

Command
cat
find

length
linspace
logspace
max
min
prod
reshape
size
sort
sum
eye
ones
zeros
Cross
dot
det
inv
pinv
rank
rref
cell
celldisp

cellplot

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

MATLAB - Quick Guide - Tutorialspoint

Purpose
Concatenates arrays.

Finds indices of nonzero elements.
Computes number of elements.
Creates regularly spaced vector.

Creates logarithmically spaced vector.
Returns largest element.
Returns smallest element.
Product of each column.
Changes size.

Computes array size.
Sorts each column.
Sums each column.

Creates an identity matrix.
Creates an array of ones.
Creates an array of zeros.
Computes matrix cross products.
Computes matrix dot products.
Computes determinant of an array.
Computes inverse of a matrix.
Computes pseudoinverse of a matrix.
Computes rank of a matrix.
Computes reduced row echelon form.
Creates cell array.
Displays cell array.
Displays graphical representation of cell array.

19/141

5/8/2020

num2cell
deal

iscell

Plotting Commands

MATLAB - Quick Guide - Tutorialspoint

Converts numeric array to cell array.

Matches input and output lists.

Identifies cell array.

MATLAB provides numerous commands for plotting graphs. The following table shows some of the

commonly used commands for plotting -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

20/141

5/8/2020

Command
axis
fplot
grid
plot
print
title
xlabel
ylabel
axes
close
close all
figure
gtext
hold
legend
refresh
set
subplot
text
bar
loglog
polar
semilogx
semilogy

stairs

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

MATLAB - Quick Guide - Tutorialspoint

Purpose
Sets axis limits.
Intelligent plotting of functions.
Displays gridlines.
Generates xy plot.
Prints plot or saves plot to a file.
Puts text at top of plot.
Adds text label to x-axis.
Adds text label to y-axis.
Creates axes objects.
Closes the current plot.
Closes all plots.

Opens a new figure window.
Enables label placement by mouse.
Freezes current plot.

Legend placement by mouse.
Redraws current figure window.
Specifies properties of objects such as axes.
Creates plots in subwindows.

Places string in figure.

Creates bar chart.

Creates log-log plot.

Creates polar plot.

Creates semilog plot. (logarithmic abscissa).
Creates semilog plot. (logarithmic ordinate).

Creates stairs plot.

21141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

stem Creates stem plot.

MATLAB - M-Files

So far, we have used MATLAB environment as a calculator. However, MATLAB is also a powerful
programming language, as well as an interactive computational environment.

In previous chapters, you have learned how to enter commands from the MATLAB command prompt.
MATLAB also allows you to write series of commands into a file and execute the file as complete unit, like
writing a function and calling it.

The M Files

MATLAB allows writing two kinds of program files -

. Scripts - script files are program files with .m extension. In these files, you write series of
commands, which you want to execute together. Scripts do not accept inputs and do not return
any outputs. They operate on data in the workspace.

. Functions - functions files are also program files with .m extension. Functions can accept
inputs and return outputs. Internal variables are local to the function.

You can use the MATLAB editor or any other text editor to create your .mfiles. In this section, we will
discuss the script files. A script file contains multiple sequential lines of MATLAB commands and function
calls. You can run a script by typing its name at the command line.

Creating and Running Script File

To create scripts files, you need to use a text editor. You can open the MATLAB editor in two ways -

. Using the command prompt
. Using the IDE

If you are using the command prompt, type edit in the command prompt. This will open the editor. You
can directly type edit and then the filename (with .m extension)

edit
Or
edit <filename>

The above command will create the file in default MATLAB directory. If you want to store all program files
in a specific folder, then you will have to provide the entire path.

Let us create a folder named progs. Type the following commands at the command prompt (>>) -

mkdir progs % create directory progs under default directory
chdir progs % changing the current directory to progs
edit progl.m % creating an m file named progl.m

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 221141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint
If you are creating the file for first time, MATLAB prompts you to confirm it. Click Yes.

PUBLISH
2o g Em- | ek
v w v [Pt Indent |5] tx

EDNT MNAVIGATE BREA~

0 GoTo =

A4 Find

1
e ol

Alternatively, if you are using the IDE, choose NEW -> Script. This also opens the editor and creates a file
named Untitled. You can name and save the file after typing the code.

Type the following code in the editor -

NoOfStudents = 6000;
TeachingStaff = 150;
NonTeachingStaff = 20;

Total = NoOfStudents + TeachingStaff ...
+ NonTeachingStaff;
disp(Total);

After creating and saving the file, you can run it in two ways -

. Clicking the Run button on the editor window or

Just typing the filename (without extension) in the command prompt: >> prog1

The command window prompt displays the result -

6170

Example

Create a script file, and type the following code -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 23/141

http://tpcg.io/WUpirG
http://tpcg.io/9URaSz

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

a=5;b-=7;
c=a+b

d = ¢ + sin(b)
e=5*%*d

f = exp(-d)

When the above code is compiled and executed, it produces the following result -

= 12

12.657

63.285
3.1852e-06

-~ O Q 0
n

MATLAB - Data Types

MATLAB does not require any type declaration or dimension statements. Whenever MATLAB encounters
a new variable name, it creates the variable and allocates appropriate memory space.

If the variable already exists, then MATLAB replaces the original content with new content and allocates
new storage space, where necessary.

For example,
Total = 42

The above statement creates a 1-by-1 matrix named 'Total' and stores the value 42 in it.

Data Types Available in MATLAB

MATLAB provides 15 fundamental data types. Every data type stores data that is in the form of a matrix or
array. The size of this matrix or array is a minimum of 0-by-0 and this can grow up to a matrix or array of
any size.

The following table shows the most commonly used data types in MATLAB -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 24/141

http://tpcg.io/9URaSz

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Sr.No. Data Type & Description

int8
8-bit signed integer

2 uint8
8-bit unsigned integer
3 int16
16-bit signed integer
4 uint16
16-bit unsigned integer
> int32
32-bit signed integer
° uint32
32-bit unsigned integer
! int64
64-bit signed integer
8 uint64
64-bit unsigned integer
9 .
single
single precision numerical data
% double
double precision numerical data
11

logical

logical values of 1 or 0, represent true and false respectively

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 25/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

12 char
character data (strings are stored as vector of characters)
13
cell array
array of indexed cells, each capable of storing an array of a different dimension and data type
14 structure
C-like structures, each structure having named fields capable of storing an array of a different
dimension and data type
15 function handle
pointer to a function
16
user classes
objects constructed from a user-defined class
17 .
java classes
objects constructed from a Java class
Example

Create a script file with the following code -

str = '"Hello World!'
n = 2345

d = double(n)
uint32(789.50)
rn 5678.92347

c = int32(rn)

un

When the above code is compiled and executed, it produces the following result -

str = Hello World!

n = 2345

d = 2345
un = 790

rn = 5678.9
c = 5679

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 26/141

http://tpcg.io/mL79yz

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Data Type Conversion

MATLAB provides various functions for converting, a value from one data type to another. The following
table shows the data type conversion functions -

Function Purpose
char Convert to character array (string)
int2str Convert integer data to string
mat2str Convert matrix to string
numa2str Convert number to string
str2double Convert string to double-precision value
str2znum Convert string to number
native2unicode Convert numeric bytes to Unicode characters
unicode2native Convert Unicode characters to numeric bytes
base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double-precision number
num2hex Convert singles and doubles to IEEE hexadecimal strings
cell2mat Convert cell array to numeric array
cell2struct Convert cell array to structure array
cellstr Create cell array of strings from character array
mat2cell Convert array to cell array with potentially different sized cells
num2cell Convert array to cell array with consistently sized cells
struct2cell Convert structure to cell array

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 271141

5/8/2020

Determination of Data Types

MATLAB - Quick Guide - Tutorialspoint

MATLAB provides various functions for identifying data type of a variable.

Following table provides the functions for determining the data type of a variable -

Function
is
isa
iscell
iscellstr
ischar
isfield
isfloat
ishghandle
isinteger
isjava
islogical
isnumeric
isobject
isreal
isscalar
isstr
isstruct
isvector
class
validateattributes

whos

Example

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

Purpose
Detect state
Determine if input is object of specified class
Determine whether input is cell array
Determine whether input is cell array of strings
Determine whether item is character array
Determine whether input is structure array field
Determine if input is floating-point array
True for Handle Graphics object handles
Determine if input is integer array
Determine if input is Java object
Determine if input is logical array
Determine if input is numeric array
Determine if input is MATLAB object
Check if input is real array

Determine whether input is scalar
Determine whether input is character array
Determine whether input is structure array

Determine whether input is vector

Determine class of object
Check validity of array

List variables in workspace, with sizes and types

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Create a script file with the following code -

X =3
isinteger(x)
isfloat(x)
isvector(x)
isscalar(x)
isnumeric(x)

X = 23.54
isinteger(x)
isfloat(x)
isvector(x)
isscalar(x)
isnumeric(x)

X = [1 2 3]
isinteger(x)
isfloat(x)
isvector(x)
isscalar(x)

x = 'Hello'
isinteger(x)
isfloat(x)
isvector(x)
isscalar(x)
isnumeric(x)

When you run the file, it produces the following result -

ans =
ans =
ans =
ans =

P R R RO

ans =
X = 23.540
ans =
ans =
ans =
ans =

P R R RO

ans =

ans = 0

1]
=

ans

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 29/141

http://tpcg.io/CeEcrD

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

ans =1
ans = 0
x = Hello
ans = 0
ans = 0
ans =1
ans = 0
ans = 0

MATLAB - Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations.
MATLAB is designed to operate primarily on whole matrices and arrays. Therefore, operators in MATLAB
work both on scalar and non-scalar data. MATLAB allows the following types of elementary operations -

. Arithmetic Operators

. Relational Operators
. Logical Operators
. Bitwise Operations

. Set Operations

Arithmetic Operators

MATLAB allows two different types of arithmetic operations -

. Matrix arithmetic operations

. Array arithmetic operations

Matrix arithmetic operations are same as defined in linear algebra. Array operations are executed element
by element, both on one-dimensional and multidimensional array.

The matrix operators and array operators are differentiated by the period (.) symbol. However, as the
addition and subtraction operation is same for matrices and arrays, the operator is same for both cases.
The following table gives brief description of the operators -

Show Examples

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 30/141

https://www.tutorialspoint.com/matlab/matlab_arithmetic_operators.htm

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Sr.No. Operator & Description

+

Addition or unary plus. A+B adds the values stored in variables A and B. A and B must have
the same size, unless one is a scalar. A scalar can be added to a matrix of any size.

2 -
Subtraction or unary minus. A-B subtracts the value of B from A. A and B must have the same
size, unless one is a scalar. A scalar can be subtracted from a matrix of any size.

3 %
Matrix multiplication. C = A*B is the linear algebraic product of the matrices A and B. More
precisely,

i
Cli, jy = ¥ Ali,k)B(k, j)
k=1

For non-scalar A and B, the number of columns of A must be equal to the number of rows of
B. A scalar can multiply a matrix of any size.

4 %
Array multiplication. A.*B is the element-by-element product of the arrays A and B. A and B
must have the same size, unless one of them is a scalar.

> /
Slash or matrix right division. B/A is roughly the same as B*inv(A). More precisely, B/A =
(A"B')".

° J
Array right division. A./B is the matrix with elements A(i,j)/B(i,j). A and B must have the same
size, unless one of them is a scalar.

! \
Backslash or matrix left division. If A is a square matrix, A\B is roughly the same as inv(A)*B,
except it is computed in a different way. If A is an n-by-n matrix and B is a column vector with n
components, or a matrix with several such columns, then X = A\B is the solution to the
equation AX = B. A warning message is displayed if A is badly scaled or nearly singular.

8

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 31/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
A

Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A and B must have the same
size, unless one of them is a scalar.

9 A
Matrix power. X*p is X to the power p, if p is a scalar. If p is an integer, the power is computed
by repeated squaring. If the integer is negative, X is inverted first. For other values of p, the
calculation involves eigenvalues and eigenvectors, such that if [V,D] = eig(X), then X*p =
V*D.Ap/V.

10 A
Array power. A."B is the matrix with elements A(i,j) to the B(i,j) power. A and B must have the
same size, unless one of them is a scalar.

11 .
Matrix transpose. A' is the linear algebraic transpose of A. For complex matrices, this is the
complex conjugate transpose.

12 .

Array transpose. A.' is the array transpose of A. For complex matrices, this does not involve
conjugation.

Relational Operators

Relational operators can also work on both scalar and non-scalar data. Relational operators for arrays
perform element-by-element comparisons between two arrays and return a logical array of the same size,
with elements set to logical 1 (true) where the relation is true and elements set to logical O (false) where it
is not.

The following table shows the relational operators available in MATLAB -

Show Examples

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 32/141

https://www.tutorialspoint.com/matlab/matlab_relational_operators.htm

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Sr.No. Operator & Description
1 <

Less than
2 <=

Less than or equal to

: >
Greater than
4 o=
Greater than or equal to
5 —_—
Equal to
6 ~—
Not equal to

Logical Operators

MATLAB offers two types of logical operators and functions -
. Element-wise — These operators operate on corresponding elements of logical arrays.
. Short-circuit — These operators operate on scalar and, logical expressions.

Element-wise logical operators operate element-by-element on logical arrays. The symbols &, |, and ~ are
the logical array operators AND, OR, and NOT.

Short-circuit logical operators allow short-circuiting on logical operations. The symbols && and || are the
logical short-circuit operators AND and OR.

Show Examples

Bitwise Operations

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &, |, and * are as
follows -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 33/141

https://www.tutorialspoint.com/matlab/matlab_logical_operators.htm

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

p q p&q pla ptq
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13; Now in binary format they will be as follows -
A =0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A”B = 0011 0001

~A = 1100 0011

MATLAB provides various functions for bit-wise operations like 'bitwise and', 'bitwise or' and 'bitwise not'
operations, shift operation, etc.

The following table shows the commonly used bitwise operations -

Show Examples

Function Purpose
bitand(a, b) Bit-wise AND of integers a and b
bitcmp(a) Bit-wise complement of a
bitget(a,pos) Get bit at specified position pos, in the integer array a
bitor(a, b) Bit-wise OR of integers a and b
bitset(a, pos) Set bit at specific location pos of a
bitshift(a, k) Returns a shifted to the left by k bits, equivalent to multiplying by 2%. Negative

values of k correspond to shifting bits right or dividing by 2/l and rounding to the
nearest integer towards negative infinite. Any overflow bits are truncated.

bitxor(a, b) Bit-wise XOR of integers a and b

swapbytes Swap byte ordering

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 34/141

https://www.tutorialspoint.com/matlab/matlab_bitwise_operators.htm

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
Set Operations

MATLAB provides various functions for set operations, like union, intersection and testing for set
membership, etc.

The following table shows some commonly used set operations -

Show Examples

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 35/141

https://www.tutorialspoint.com/matlab/matlab_set_operators.htm

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Sr.No. Function & Description

intersect(A,B)

Set intersection of two arrays; returns the values common to both A and B. The values
returned are in sorted order.

2 intersect(A,B,'rows’)
Treats each row of A and each row of B as single entities and returns the rows common to
both A and B. The rows of the returned matrix are in sorted order.

3 .
ismember(A,B)
Returns an array the same size as A, containing 1 (true) where the elements of A are found in
B. Elsewhere, it returns 0 (false).

4 . ' .
ismember(A,B,'rows’)
Treats each row of A and each row of B as single entities and returns a vector containing 1
(true) where the rows of matrix A are also rows of B. Elsewhere, it returns O (false).

5 .
issorted(A)
Returns logical 1 (true) if the elements of A are in sorted order and logical O (false) otherwise.
Input A can be a vector or an N-by-1 or 1-by-N cell array of strings. A is considered to be
sorted if A and the output of sort(A) are equal.

6 . ' '
issorted(A, 'rows’)
Returns logical 1 (true) if the rows of two-dimensional matrix A is in sorted order, and logical 0
(false) otherwise. Matrix A is considered to be sorted if A and the output of sortrows(A) are
equal.

7 .
setdiff(A,B)
Sets difference of two arrays; returns the values in A that are not in B. The values in the
returned array are in sorted order.

8

setdiff(A,B,'rows’)

Treats each row of A and each row of B as single entities and returns the rows from A that are
not in B. The rows of the returned matrix are in sorted order.

The 'rows' option does not support cell arrays.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 36/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

9 setxor

Sets exclusive OR of two arrays

10 .
union

Sets union of two arrays

11 .
unique

Unique values in array

MATLAB - Decision Making

Decision making structures require that the programmer should specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the condition
is determined to be true, and optionally, other statements to be executed if the condition is determined to
be false.

Following is the general form of a typical decision making structure found in most of the programming
languages -

If condition
is false

If condition
is true

conditional Y
code

MATLAB provides following types of decision making statements. Click the following links to check their
detail -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 37/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Sr.No. Statement & Description

1 if ... end statement

An if ... end statement consists of a boolean expression followed by one or more statements.

2 if...else...end statement

An if statement can be followed by an optional else statement, which executes when the
boolean expression is false.

3 If... elseif...elseif...else...end statements

An if statement can be followed by one (or more) optional elseif... and an else statement,
which is very useful to test various conditions.

4 nested if statements

You can use one if or elseif statement inside another if or elseif statement(s).

5 switch statement

A switch statement allows a variable to be tested for equality against a list of values.

6 nested switch statements

You can use one switch statement inside another switch statement(s).

MATLAB - Loop Types

There may be a situation when you need to execute a block of code several number of times. In general,
statements are executed sequentially. The first statement in a function is executed first, followed by the
second, and so on.

Programming languages provide various control structures that allow for more complicated execution
paths.

A loop statement allows us to execute a statement or group of statements multiple times and following is
the general form of a loop statement in most of the programming languages -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 38/141

https://www.tutorialspoint.com/matlab/if_end_statement_matlab.htm
https://www.tutorialspoint.com/matlab/if_else_statement_matlab.htm
https://www.tutorialspoint.com/matlab/if_elseif_else_statement.htm
https://www.tutorialspoint.com/matlab/nested_if_statements_matlab.htm
https://www.tutorialspoint.com/matlab/switch_statement_matlab.htm
https://www.tutorialspoint.com/matlab/nested_switch_statements_matlab.htm

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Conditional Code

If condition
is true

If condition
is false

MATLAB provides following types of loops to handle looping requirements. Click the following links to
check their detail -

Sr.No. Loop Type & Description

1 while loop
Repeats a statement or group of statements while a given condition is true. It tests the
condition before executing the loop body.

2 for loop
Executes a sequence of statements multiple times and abbreviates the code that manages the
loop variable.

3 nested loops

You can use one or more loops inside any another loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a scope, all
automatic objects that were created in that scope are destroyed.

MATLAB supports the following control statements. Click the following links to check their detail.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 39/141

https://www.tutorialspoint.com/matlab/matlab_while_loop.htm
https://www.tutorialspoint.com/matlab/matlab_for_loop.htm
https://www.tutorialspoint.com/matlab/matlab_nested_loops.htm

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Sr.No. Control Statement & Description

1 break statement
Terminates the loop statement and transfers execution to the statement immediately following
the loop.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest its condition prior to
reiterating.

MATLAB - Vectors

A vector is a one-dimensional array of numbers. MATLAB allows creating two types of vectors -
. Row vectors

o Column vectors
Row Vectors

Row vectors are created by enclosing the set of elements in square brackets, using space or comma to
delimit the elements.

r=1[789 10 11]

MATLAB will execute the above statement and return the following result -

Column Vectors

Column vectors are created by enclosing the set of elements in square brackets, using semicolon to
delimit the elements.

c=1[7, 8; 9; 10; 11]

MATLAB will execute the above statement and return the following result -

7

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

40/141

https://www.tutorialspoint.com/matlab/matlab_break_statement.htm
https://www.tutorialspoint.com/matlab/matlab_continue_statement.htm
http://tpcg.io/LmINmJ
http://tpcg.io/KypbfL

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

10
11

Referencing the Elements of a Vector

You can reference one or more of the elements of a vector in several ways. The i!" component of a vector
v is referred as v(i). For example -

v=1_[1;, 2; 3; 4; 5; 6]; % creating a column vector of 6 elements
v(3)

MATLAB will execute the above statement and return the following result -
ans = 3

When you reference a vector with a colon, such as v(:), all the components of the vector are listed.

v=1_[1;, 2; 3; 4; 5; 6]; % creating a column vector of 6 elements

v(:)
MATLAB will execute the above statement and return the following result -

ans =

Qv A W N R

MATLAB allows you to select a range of elements from a vector.

For example, let us create a row vector rv of 9 elements, then we will reference the elements 3 to 7 by
writing rv(3:7) and create a new vector named sub_rv.

rv=[123456789];
sub_rv = rv(3:7)

MATLAB will execute the above statement and return the following result -

sub_rv =

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 41/141

http://tpcg.io/9o0sjC
http://tpcg.io/DOEIeM
http://tpcg.io/JGNvrB

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Vector Operations

In this section, let us discuss the following vector operations -
. Addition and Subtraction of Vectors
. Scalar Multiplication of Vectors
. Transpose of a Vector
. Appending Vectors
. Magnitude of a Vector
. Vector Dot Product

. Vectors with Uniformly Spaced Elements

MATLAB - Matrix

A matrix is a two-dimensional array of numbers.

In MATLAB, you create a matrix by entering elements in each row as comma or space delimited numbers
and using semicolons to mark the end of each row.

For example, let us create a 4-by-5 matrix a -

a=[12345;23456;34567; 4567 8]

MATLAB will execute the above statement and return the following result -

A W N R
v ph W N
A vl M w
N o v b
0 N O u

Referencing the Elements of a Matrix

To reference an element in the mt" row and nt" column, of a matrix mx, we write —
mx(m, n);

For example, to refer to the element in the 2" row and 5" column, of the matrix a, as created in the last
section, we type -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 42/141

https://www.tutorialspoint.com/matlab/matlab_vector_add_subtract.htm
https://www.tutorialspoint.com/matlab/matlab_vector_scalar_multiplication.htm
https://www.tutorialspoint.com/matlab/matlab_vector_transpose.htm
https://www.tutorialspoint.com/matlab/matlab_vector_appending.htm
https://www.tutorialspoint.com/matlab/matlab_vector_magnitude.htm
https://www.tutorialspoint.com/matlab/matlab_vector_dot_product.htm
https://www.tutorialspoint.com/matlab/matlab_vector_uniformly_spaced.htm
http://tpcg.io/zDjZlt
http://tpcg.io/KRePTp

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

a=[12345;23456;34567;456 7 8];
a(2,5)

MATLAB will execute the above statement and return the following result -
ans = 6

To reference all the elements in the m™™ column we type A(:,m).

Let us create a column vector v, from the elements of the 4™ row of the matrix a -

[12345;23456;34567;45678];
a(:,4)

<
1}

MATLAB will execute the above statement and return the following result -

N ooul b

You can also select the elements in the m™" through n" columns, for this we write -

a(:,m:n)

Let us create a smaller matrix taking the elements from the second and third columns -

a=[12345;23456;34567; 456 7 8];
a(:, 2:3)

MATLAB will execute the above statement and return the following result -

ans =

u b~ W N
a v b~ w

In the same way, you can create a sub-matrix taking a sub-part of a matrix.

a=[12345;23456;34567;456 7 8];
a(:, 2:3)

MATLAB will execute the above statement and return the following result -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

431141

http://tpcg.io/KRePTp
http://tpcg.io/K23BWj
http://tpcg.io/xuXW8Y
http://tpcg.io/fxqbr9

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

ans =

v A W N
a vl b w

In the same way, you can create a sub-matrix taking a sub-part of a matrix.

For example, let us create a sub-matrix sa taking the inner subpart of a -

To do this, write -

a=[12345;23456;34567;456 7 8];
sa = a(2:3,2:4)

MATLAB will execute the above statement and return the following result -

sa

Deleting a Row or a Column in a Matrix

You can delete an entire row or column of a matrix by assigning an empty set of square braces [] to that
row or column. Basically, [] denotes an empty array.

For example, let us delete the fourth row of a -

a=[12345;23456;34567; 4567 8];
a(4,) =1[]

MATLAB will execute the above statement and return the following result -

a =
1 3 4 5
3 4 5 6
3 5 6 7

Next, let us delete the fifth column of a -

a=[12345;23456;34567;45678];
a(: , 5)=[]

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 44/141

http://tpcg.io/hUykvD
http://tpcg.io/KUvOjY
http://tpcg.io/5mtHmu

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

MATLAB will execute the above statement and return the following result -

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
Example

In this example, let us create a 3-by-3 matrix m, then we will copy the second and third rows of this matrix
twice to create a 4-by-3 matrix.

Create a script file with the following code -

a=[123;456; 7 829];
new_mat = a([2,3,2,3],:)

When you run the file, it displays the following result -

new_mat =
5 6
7 8 9
4 5 6
7 8 9

Matrix Operations

In this section, let us discuss the following basic and commonly used matrix operations -
. Addition and Subtraction of Matrices

. Division of Matrices

. Scalar Operations of Matrices
. Transpose of a Matrix
. Concatenating Matrices

. Matrix Multiplication
. Determinant of a Matrix

. Inverse of a Matrix

MATLAB - Arrays

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 45/141

https://www.tutorialspoint.com/matlab/matlab_matrix_add_subtract.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_division.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_scalar_operation.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_transpose.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_concatenation.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_multiplication.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_determinant.htm
https://www.tutorialspoint.com/matlab/matlab_matrix_inverse.htm
http://tpcg.io/zL8mJ5

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

All variables of all data types in MATLAB are multidimensional arrays. A vector is a one-dimensional array
and a matrix is a two-dimensional array.

We have already discussed vectors and matrices. In this chapter, we will discuss multidimensional arrays.
However, before that, let us discuss some special types of arrays.

Special Arrays in MATLAB

In this section, we will discuss some functions that create some special arrays. For all these functions, a
single argument creates a square array, double arguments create rectangular array.

The zeros() function creates an array of all zeros -

For example -

zeros(5)
MATLAB will execute the above statement and return the following result -

ans =

© ®©O ®©O OO0
© ®© ®©O OO0
© ®©O ®©O ®© 0
®© ®© ®© ©
®© ®© ®© © 0

The ones() function creates an array of all ones -

For example -

ones(4,3)

MATLAB will execute the above statement and return the following result -

ans =

R R R R
R R R R
R R R R

The eye() function creates an identity matrix.

For example -

eye(4)

MATLAB will execute the above statement and return the following result -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 46/141

http://tpcg.io/w1CS2v
http://tpcg.io/cE3ZT3
http://tpcg.io/XLSqxZ

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

ans =

O P OO
R ©®© OO

0 00 K
O 0O r o

The rand() function creates an array of uniformly distributed random numbers on (0,1) -

For example -

rand(3, 5)

MATLAB will execute the above statement and return the following result -

ans =
0.8147 0.9134 0.2785 0.9649 0.9572
0.9058 0.6324 0.5469 0.1576 0.4854
0.1270 0.0975 0.9575 0.9706 0.8003

A Magic Square

A magic square is a square that produces the same sum, when its elements are added row-wise,
column-wise or diagonally.

The magic() function creates a magic square array. It takes a singular argument that gives the size of the
square. The argument must be a scalar greater than or equal to 3.

magic(4)

MATLAB will execute the above statement and return the following result -

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Multidimensional Arrays

An array having more than two dimensions is called a multidimensional array in MATLAB.
Multidimensional arrays in MATLAB are an extension of the normal two-dimensional matrix.

Generally to generate a multidimensional array, we first create a two-dimensional array and extend it.

For example, let's create a two-dimensional array a.

471141

http://tpcg.io/cBZ80i
http://tpcg.io/sFClCW
http://tpcg.io/78mbTe

5/8/2020

a=1[795;619; 43 2]

MATLAB will execute the above statement and return the following result -

The array a is a 3-by-3 array; we can add a third dimension to a, by providing the values like -

a(:, :, 2)=[123; 456, 7 8 9]

MATLAB will execute the above statement and return the following result -

ans(:,:,1) =
0 0 0
0 0 0
0 0 0
ans(:,:,2) =
1 3
4 6
7 9

We can also create multidimensional arrays using the ones(), zeros() or the rand() functions.

For example,

b = rand(4,3,2)

MATLAB will execute the above statement and return the following result -

b(:,:,1) =
.0344
.4387
.3816

.7655

© 0O O®© O -
© 0O 00

b(:,:,2) =
.6797 0

0.6551 0

-

()

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

.7952
.1869
.4898
.4456

.4984
.9597

© ®© ®

()

.6463
.7094
. 7547
.2760

.2238
.7513

MATLAB - Quick Guide - Tutorialspoint

48/141

http://tpcg.io/LjNUBe
http://tpcg.io/ZvqSzG

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

0.1626 0.3404 0.2551
0.1190 0.5853 0.5060

We can also use the cat() function to build multidimensional arrays. It concatenates a list of arrays along a
specified dimension -

Syntax for the cat() function is -

B = cat(dim, A1, A2...)

Where,
. B is the new array created

. A1, A2, ... are the arrays to be concatenated

dim is the dimension along which to concatenate the arrays

Example

Create a script file and type the following code into it -

Q
I

[987; 654; 321];
[123; 456; 7 8 9];
cat(3, a, b, [23 1; 47 8; 39 90])

n o
1}

When you run the file, it displays -

c(:y:,1) =

7

5 4

3 1
c(:,:,2) =

1 2 3

4 5 6

7 8 9
c(:,:,3) =

2 3 1

4 8

3 9 0

Array Functions

MATLAB provides the following functions to sort, rotate, permute, reshape, or shift array contents.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 49/141

http://tpcg.io/dqud2i

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Function Purpose
length Length of vector or largest array dimension
ndims Number of array dimensions
numel Number of array elements
size Array dimensions
iscolumn Determines whether input is column vector
isempty Determines whether array is empty
ismatrix Determines whether input is matrix
isrow Determines whether input is row vector
isscalar Determines whether input is scalar
isvector Determines whether input is vector
blkdiag Constructs block diagonal matrix from input arguments
circshift Shifts array circularly
ctranspose Complex conjugate transpose
diag Diagonal matrices and diagonals of matrix
flipdim Flips array along specified dimension
fliplr Flips matrix from left to right
flipud Flips matrix up to down
ipermute Inverses permute dimensions of N-D array
permute Rearranges dimensions of N-D array
repmat Replicates and tile array
reshape Reshapes array
rot90 Rotates matrix 90 degrees
shiftdim Shifts dimensions
issorted Determines whether set elements are in sorted order
sort Sorts array elements in ascending or descending order

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 50/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

sortrows Sorts rows in ascending order

squeeze Removes singleton dimensions

transpose Transpose

vectorize Vectorizes expression
Examples

The following examples illustrate some of the functions mentioned above.
Length, Dimension and Number of elements -

Create a script file and type the following code into it -

x = [7.1, 3.4, 7.2, 28/4, 3.6, 17, 9.4, 8.9];

length(x) % length of x vector

y = rand(3, 4, 5, 2);

ndims(y) % no of dimensions in array y

s = ['Zara', 'Nuha', 'Shamim', 'Riz', 'Shadab'];
numel(s) % no of elements in s

When you run the file, it displays the following result -

ans = 8
ans = 4
ans = 23

Circular Shifting of the Array Elements -

Create a script file and type the following code into it -

Q
1}

[123;, 456; 7 8 9] % the original array a

circshift(a,1) % circular shift first dimension values down by 1.

circshift(a,[1 -1]) % circular shift first dimension values % down by 1
% and second dimension values to the left % by 1.

(on
1}

When you run the file, it displays the following result -

a =
1 2 3
5 6
7 8 9
b =
8
1 2 3

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 51/141

http://tpcg.io/xnxEia
http://tpcg.io/09oYso

5/8/2020

4 5 6
C =
8 9 7
2 3 1
6
Sorting Arrays

MATLAB - Quick Guide - Tutorialspoint

Create a script file and type the following code into it -

v=1_[234512 950 19 17]
sort(v)
m=1[264;539;201]
sort(m, 1)

sort(m, 2)

%
%
%
%
%

horizontal vector

sorting v

two dimensional array
sorting m along the row
sorting m along the column

When you run the file, it displays the following result -

VvV =
23 45 12 9
ans =
) 5 9 12
m =
2 6 4
3 9
0 1
ans =
2 0 1
2 3 4
5 6 9
ans =
2 6
3 5 9
) 2
Cell Array

Cell arrays are arrays of indexed cells where each cell can store an array of a different dimensions and

data types.

The cell function is used for creating a cell array. Syntax for the cell function is -

C = cell(dim)
C = cell(dimi,...,dimN)
D = cell(obj)

17

17

19 23 45

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

http://tpcg.io/on1dG8

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Where,

. C is the cell array;

. dim is a scalar integer or vector of integers that specifies the dimensions of cell array C;
. dim1, ..., dimN are scalar integers that specify the dimensions of C;

. obj is One of the following -

. Java array or object

. .NET array of type System.String or System.Object
Example

Create a script file and type the following code into it -

cell(2, 5);
c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5}

@]
1}

When you run the file, it displays the following result -

C =

{
[1,1] = Red
[2,1] = 1
[1,2] = Blue
[2,2] = 2
[1,3] = Green
[2,3] = 3
[1,4] = Yellow
[2,4] = 4
[1,5] = White
[2,5] = &

}

Accessing Data in Cell Arrays

There are two ways to refer to the elements of a cell array -

. Enclosing the indices in first bracket (), to refer to sets of cells

. Enclosing the indices in braces {}, to refer to the data within individual cells
When you enclose the indices in first bracket, it refers to the set of cells.
Cell array indices in smooth parentheses refer to sets of cells.

For example -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 53/141

http://tpcg.io/8Wbvt9
http://tpcg.io/NbHSVk

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5};
c(1:2,1:2)

MATLAB will execute the above statement and return the following result -

ans =

{
[1,1] = Red
[2,1] = 1
[1,2] = Blue
[2,2] = 2

}

You can also access the contents of cells by indexing with curly braces.

For example -

c = {'Red', 'Blue', 'Green', 'Yellow', 'White'; 1 2 3 4 5};
c{1, 2:4}

MATLAB will execute the above statement and return the following result -

ans = Blue
ans = Green
ans = Yellow

MATLAB - Colon Notation

The colon(:) is one of the most useful operator in MATLAB. It is used to create vectors, subscript arrays,
and specify for iterations.

If you want to create a row vector, containing integers from 1 to 10, you write —

1:10

MATLAB executes the statement and returns a row vector containing the integers from 1 to 10 -

1 2 3 4 5 6 7 8 9 10

If you want to specify an increment value other than one, for example -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 54/141

http://tpcg.io/Ie4bDm
http://tpcg.io/Uj61Ix
http://tpcg.io/5kEsL2

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

100: -5: 50

MATLAB executes the statement and returns the following result -

ans =
100 95 90 85 80 75 70 65 60 55 50

Let us take another example -

0:pi/8:pi

MATLAB executes the statement and returns the following result -

ans =
Columns 1 through 7

(4] 0.3927 0.7854 1.1781 1.5708 1.9635 2.3562
Columns 8 through 9
2.7489 3.1416

You can use the colon operator to create a vector of indices to select rows, columns or elements of arrays.

The following table describes its use for this purpose (let us have a matrix A) -

Format Purpose
A(:,)) is the jth column of A.
A(i,:) is the ith row of A.
A(:,) is the equivalent two-dimensional array. For matrices this is the same as A.
A(j:k) is A(j), A(j+1),...,A(k).
A(:,j:k) is ACLj), AGj+HT),..., A K).
A(:,:,k) is the k" page of three-dimensional array A.
A(i,j.k,:) is a vector in four-dimensional array A. The vector includes A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and
so on.
A(2) is all the elements of A, regarded as a single column. On the left side of an assignment

statement, A(:) fills A, preserving its shape from before. In this case, the right side must
contain the same number of elements as A.

Example
Create a script file and type the following code in it -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 55/141

http://tpcg.io/u0TZbw

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

A=1[1234;,4567; 7 89 10]

A(:,2) % second column of A

A(:,2:3) % second and third column of A

A(2:3,2:3) % second and third rows and second and third columns

When you run the file, it displays the following result -

A=
1 2 3 4
5 6 7
7 9 10
ans =
2
5
8
ans =
2 3
5 6
8 9
ans =
5 6
9

MATLAB - Numbers

MATLAB supports various numeric classes that include signed and unsigned integers and single-precision
and double-precision floating-point numbers. By default, MATLAB stores all numeric values as double-
precision floating point numbers.

You can choose to store any number or array of numbers as integers or as single-precision numbers.

All numeric types support basic array operations and mathematical operations.

Conversion to Various Numeric Data Types

MATLAB provides the following functions to convert to various numeric data types -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 56/141

http://tpcg.io/TvNUg6

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Function Purpose

double Converts to double precision number
single Converts to single precision number
int8 Converts to 8-bit signed integer
int16 Converts to 16-bit signed integer
int32 Converts to 32-bit signed integer
int64 Converts to 64-bit signed integer
uint8 Converts to 8-bit unsigned integer

uint16 Converts to 16-bit unsigned integer

uint32 Converts to 32-bit unsigned integer

uint64 Converts to 64-bit unsigned integer

Example

Create a script file and type the following code -

= single([5.32 3.47 6.28]) .* 7.5
= double([5.32 3.47 6.28]) .* 7.5
= int8([5.32 3.47 6.28]) .* 7.5

= int16([5.32 3.47 6.28]) .* 7.5
= int32([5.32 3.47 6.28]) .* 7.5
= int64([5.32 3.47 6.28]) .* 7.5

X X X X X X
1

When you run the file, it shows the following result -

X =
39.900 26.025 47.100
X =
39.900 26.025 47.100
X =
38 23 45
X =

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 57/141

http://tpcg.io/88040h

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
38 23 45

38 23 45

38 23 45

Example

Let us extend the previous example a little more. Create a script file and type the following code -

int32([5.32 3.47 6.28]) .* 7.5
int64([5.32 3.47 6.28]) .* 7.5
num2cell(x)

When you run the file, it shows the following result -

38 23 45

38 23 45

~ X

[1,1]
[1,2]
[1,3]

38
23
45

Smallest and Largest Integers

The functions intmax() and intmin() return the maximum and minimum values that can be represented
with all types of integer numbers.

Both the functions take the integer data type as the argument, for example, intmax(int8) or intmin(int64)
and return the maximum and minimum values that you can represent with the integer data type.

Example

The following example illustrates how to obtain the smallest and largest values of integers. Create a script
file and write the following code in it -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 58/141

http://tpcg.io/MmR9Fu

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

% displaying the smallest and largest signed integer data
str = 'The range for int8 is:\n\t%d to %d ';

sprintf(str, intmin('int8'), intmax('int8"))

str = 'The range for intl6 is:\n\t%d to %d ';
sprintf(str, intmin('int16'), intmax('intl6'))

str = 'The range for int32 is:\n\t%d to %d ';
sprintf(str, intmin('int32"'), intmax('int32"))

str = 'The range for int64 is:\n\t%d to %d ';
sprintf(str, intmin('int64'), intmax('int64"))

% displaying the smallest and largest unsigned integer data
str = 'The range for uint8 is:\n\t%d to %d ';

sprintf(str, intmin('uint8'), intmax('uint8'))

str = 'The range for uintl6 is:\n\t%d to %d ';

sprintf(str, intmin('uint16'), intmax('uintl6'))

str = 'The range for uint32 is:\n\t%d to %d ';

sprintf(str, intmin('uint32'), intmax('uint32'))

str = '"The range for uint64 is:\n\t%d to %d ';

sprintf(str, intmin('uint64'), intmax('uint64'))

When you run the file, it shows the following result -

ans

The range for int8 is:
-128 to 127

ans = The range for intl6 is:
-32768 to 32767

ans = The range for int32 is:
-2147483648 to 2147483647

ans = The range for int64 is:
0 to ©

ans = The range for uint8 is:
0 to 255

ans = The range for uintl6 is:
@ to 65535

ans = The range for uint32 is:
0 to -1

ans = The range for uint64 is:

0 to 18446744073709551616

Smallest and Largest Floating Point Numbers

The functions realmax() and realmin() return the maximum and minimum values that can be represented
with floating point numbers.

Both the functions when called with the argument 'single’, return the maximum and minimum values that
you can represent with the single-precision data type and when called with the argument 'double’, return
the maximum and minimum values that you can represent with the double-precision data type.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 59/141

http://tpcg.io/Natcm3

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Example

The following example illustrates how to obtain the smallest and largest floating point numbers. Create a
script file and write the following code in it —

% displaying the smallest and largest single-precision

% floating point number

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g’';

sprintf(str, -realmax('single'), -realmin('single'),
realmin('single'), realmax('single'))

% displaying the smallest and largest double-precision

% floating point number

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';

sprintf(str, -realmax('double'), -realmin('double'),
realmin('double'), realmax('double'))

When you run the file, it displays the following result -

ans = The range for single is:
-3.40282e+38 to -1.17549e-38 and
1.17549e-38 to 3.40282e+38

ans = The range for double is:

-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

MATLAB - Strings

Creating a character string is quite simple in MATLAB. In fact, we have used it many times. For example,
you type the following in the command prompt -

my_string = 'Tutorials Point'
MATLAB will execute the above statement and return the following result -
my_string = Tutorials Point

MATLAB considers all variables as arrays, and strings are considered as character arrays. Let us use the
whos command to check the variable created above -

whos

MATLAB will execute the above statement and return the following result -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 60/141

http://tpcg.io/obYi0b
http://tpcg.io/Gp4xGj

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Name Size Bytes Class Attributes
my_string 1x16 32 char

Interestingly, you can use numeric conversion functions like uint8 or uint16 to convert the characters in
the string to their numeric codes. The char function converts the integer vector back to characters -

Example

Create a script file and type the following code into it -

my_string = 'Tutorial''s Point';

str_ascii = uint8(my_string) % 8-bit ascii values
str_back_to_char= char(str_ascii)

str_16bit = uintil6(my_string) % 16-bit ascii values

str_back_to_char = char(str_16bit)

When you run the file, it displays the following result -

str_ascii =
84 117 116 111 114 105 97 108 39 115 32 80 111 105 110 116

str_back_to_char = Tutorial's Point
str_16bit =

84 117 116 111 114 105 97 1e8 39 115 32 80 111 105 110 116

str_back_to_char = Tutorial's Point

Rectangular Character Array

The strings we have discussed so far are one-dimensional character arrays; however, we need to store
more than that. We need to store more dimensional textual data in our program. This is achieved by
creating rectangular character arrays.

Simplest way of creating a rectangular character array is by concatenating two or more one-dimensional
character arrays, either vertically or horizontally as required.

You can combine strings vertically in either of the following ways -

. Using the MATLAB concatenation operator [] and separating each row with a semicolon (;).
Please note that in this method each row must contain the same number of characters. For
strings with different lengths, you should pad with space characters as needed.

. Using the char function. If the strings are of different lengths, char pads the shorter strings with
trailing blanks so that each row has the same number of characters.

Example

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 61/141

http://tpcg.io/5j9YAU

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Create a script file and type the following code into it -

doc_profile = ['Zara Ali 5
'Sr. Surgeon 5
'R N Tagore Cardiology Research Center']

char('Zara Ali', 'Sr. Surgeon',

'RN Tagore Cardiology Research Center')

doc_profile

When you run the file, it displays the following result -

doc_profile =

Zara Ali

Sr. Surgeon

R N Tagore Cardiology Research Center
doc_profile =

Zara Ali

Sr. Surgeon

RN Tagore Cardiology Research Center

You can combine strings horizontally in either of the following ways -

. Using the MATLAB concatenation operator, [] and separating the input strings with a comma or a
space. This method preserves any trailing spaces in the input arrays.

. Using the string concatenation function, strcat. This method removes trailing spaces in the
inputs.

Example

Create a script file and type the following code into it -

name = 'Zara Ali 5
position = 'Sr. Surgeon '3
worksAt = 'R N Tagore Cardiology Research Center';

profile = [name ', position ', ' worksAt]

strcat(name, ', ', position, ', ', worksAt)

profile

When you run the file, it displays the following result -

Zara Ali , Sr. Surgeon > R N Tagore Cardiology Research Center
Zara Ali,Sr. Surgeon,R N Tagore Cardiology Research Center

profile
profile

Combining Strings into a Cell Array

From our previous discussion, it is clear that combining strings with different lengths could be a pain as all
strings in the array has to be of the same length. We have used blank spaces at the end of strings to
equalize their length.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 62/141

http://tpcg.io/yGQIqG
http://tpcg.io/on28bx

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

However, a more efficient way to combine the strings is to convert the resulting array into a cell array.

MATLAB cell array can hold different sizes and types of data in an array. Cell arrays provide a more
flexible way to store strings of varying length.

The cellstr function converts a character array into a cell array of strings.

Example

Create a script file and type the following code into it -

name = 'Zara Ali '
position = 'Sr. Surgeon 5
worksAt = 'R N Tagore Cardiology Research Center';

profile = char(name, position, worksAt);
profile = cellstr(profile);
disp(profile)

When you run the file, it displays the following result -

{

[1,1] = Zara Ali

[2,1] = Sr. Surgeon

[3,1] = R N Tagore Cardiology Research Center
}

String Functions in MATLAB

MATLAB provides numerous string functions creating, combining, parsing, comparing and manipulating
strings.

Following table provides brief description of the string functions in MATLAB -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 63/141

http://tpcg.io/FWBvUc

5/8/2020

Function

Functions for storing text in character arrays, combine character arrays, etc.

blanks
cellstr
char
iscellstr
ischar
sprintf
strcat

strjoin

Functions for identifying parts of strings, find and replace substrings

ischar
isletter
isspace
isstrprop
sscanf
strfind
strrep
strsplit
strtok
validatestring
symvar
regexp
regexpi
regexprep

regexptranslate

MATLAB - Quick Guide - Tutorialspoint

Purpose

Create string of blank characters

Create cell array of strings from character array

Convert to character array (string)

Determine whether input is cell array of strings

Determine whether item is character array
Format data into string
Concatenate strings horizontally

Join strings in cell array into single string

Determine whether item is character array
Array elements that are alphabetic letters

Array elements that are space characters

Determine whether string is of specified category

Read formatted data from string

Find one string within another

Find and replace substring

Split string at specified delimiter

Selected parts of string

Check validity of text string

Determine symbolic variables in expression
Match regular expression (case sensitive)
Match regular expression (case insensitive)
Replace string using regular expression

Translate string into regular expression

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

64/141

5/8/2020

strcmp
strcmpi
strncmp

strncmpi

MATLAB - Quick Guide - Tutorialspoint

Functions for string comparison
Compare strings (case sensitive)
Compare strings (case insensitive)
Compare first n characters of strings (case sensitive)

Compare first n characters of strings (case insensitive)

Functions for changing string to upper- or lowercase, creating or removing white space

deblank
strtrim
lower

upper

strjust

Examples

Strip trailing blanks from end of string

Remove leading and trailing white space from string
Convert string to lowercase

Convert string to uppercase

Justify character array

The following examples illustrate some of the above-mentioned string functions -

Formatting Strings

Create a script file and type the following code into it -

A = pi*1eee*ones(1,5);

sprintf ("' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)

When you run the file, it displays the following result -

ans = 3141.592654
3141.59
+3141.59

3141.59
000003141.59

Joining Strings

Create a script file and type the following code into it -

%cell array of strings

str_array = {'red’, 'blue', 'green', 'yellow', 'orange'};

% Join strings in cell array into single string

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

65/141

http://tpcg.io/xnhX9S
http://tpcg.io/GyrVi0

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

strl = strjoin(str_array, "-")

str2 = strjoin(str_array, ","

When you run the file, it displays the following result -

strl = red-blue-green-yellow-orange
str2 = red,blue,green,yellow,orange

Finding and Replacing Strings

Create a script file and type the following code into it -

students = {'Zara Ali', 'Neha Bhatnagar',
'Monica Malik', 'Madhu Gautam',
'Madhu Sharma', 'Bhawna Sharma',...
'Nuha Ali', 'Reva Dutta',
'Sunaina Ali', 'Sofia Kabir'};

% The strrep function searches and replaces sub-string.
new_student = strrep(students(8), 'Reva', 'Poulomi')

% Display first names
first_names = strtok(students)

When you run the file, it displays the following result -

new_student =

{
[1,1] = Poulomi Dutta

}

first_names =

{
[1,1] = Zara
[1,2] = Neha
[1,3] = Monica
[1,4] = Madhu
[1,5] = Madhu
[1,6] = Bhawna
[1,7] = Nuha
[1,8] = Reva
[1,9] = Sunaina
[1,10] = Sofia

}

Comparing Strings

Create a script file and type the following code into it -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 66/141

http://tpcg.io/dAzljs
http://tpcg.io/qLmRXz

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

strl = 'This is test'
str2 = 'This is text'
if (strcmp(strl, str2))

sprintf('%s and %s are equal', strl, str2)
else

sprintf('%s and %s are not equal', strl, str2)
end

When you run the file, it displays the following result -

strl This is test
str2

ans = This is test and This is text are not equal

This is text

MATLAB - Functions

A function is a group of statements that together perform a task. In MATLAB, functions are defined in
separate files. The name of the file and of the function should be the same.

Functions operate on variables within their own workspace, which is also called the local workspace,
separate from the workspace you access at the MATLAB command prompt which is called the base
workspace.

Functions can accept more than one input arguments and may return more than one output arguments.

Syntax of a function statement is -

function [outl,out2, ..., outN] = myfun(inl,in2,in3, ..., inN)

Example

The following function named mymax should be written in a file named mymax.m. It takes five numbers as
argument and returns the maximum of the numbers.

Create a function file, named mymax.m and type the following code in it —

function max = mymax(nl, n2, n3, n4, n5)

%This function calculates the maximum of the
% five numbers given as input
max = nl;
if(n2 > max)
max = n2;
end
if(n3 > max)
max = n3;
end

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 67/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

if(n4 > max)

max = n4;
end
if(n5 > max)
max = n5;

end

The first line of a function starts with the keyword function. It gives the name of the function and order of
arguments. In our example, the mymax function has five input arguments and one output argument.

The comment lines that come right after the function statement provide the help text. These lines are
printed when you type -

help mymax

MATLAB will execute the above statement and return the following result -

This function calculates the maximum of the
five numbers given as input

You can call the function as -
mymax(34, 78, 89, 23, 11)

MATLAB will execute the above statement and return the following result -

ans = 89

Anonymous Functions

An anonymous function is like an inline function in traditional programming languages, defined within a

single MATLAB statement. It consists of a single MATLAB expression and any number of input and output
arguments.

You can define an anonymous function right at the MATLAB command line or within a function or script.
This way you can create simple functions without having to create a file for them.

The syntax for creating an anonymous function from an expression is

f = @(arglist)expression

Example

In this example, we will write an anonymous function named power, which will take two numbers as input
and return first number raised to the power of the second number.

Create a script file and type the following code in it -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 68/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

power = @(X, n) X.”n;
resultl = power(7, 3)
result2 = power(49, 0.5)
result3 = power(10, -10)
result4 = power (4.5, 1.5)

When you run the file, it displays -

resultl = 343
result2 = 7
result3 = 1.0000e-10

result4 = 9.5459

Primary and Sub-Functions

Any function other than an anonymous function must be defined within a file. Each function file contains a
required primary function that appears first and any number of optional sub-functions that comes after the
primary function and used by it.

Primary functions can be called from outside of the file that defines them, either from command line or
from other functions, but sub-functions cannot be called from command line or other functions, outside the
function file.

Sub-functions are visible only to the primary function and other sub-functions within the function file that
defines them.

Example

Let us write a function named quadratic that would calculate the roots of a quadratic equation. The
function would take three inputs, the quadratic co-efficient, the linear co-efficient and the constant term. It
would return the roots.

The function file quadratic.m will contain the primary function quadratic and the sub-function disc, which
calculates the discriminant.

Create a function file quadratic.m and type the following code in it -

function [x1,x2] = quadratic(a,b,c)

%this function returns the roots of

% a quadratic equation.

% It takes 3 input arguments

% which are the co-efficients of x2, x and the
%constant term

% It returns the roots

d = disc(a,b,c);

x1 (-b + d) / (2*a);

x2 = (-b - d) / (2*a);

end % end of quadratic

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 69/141

http://tpcg.io/PXhKSZ

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

function dis = disc(a,b,c)

%function calculates the discriminant
dis = sqrt(b”2 - 4*a*c);

end % end of sub-function

You can call the above function from command prompt as -

quadratic(2,4,-4)

MATLAB will execute the above statement and return the following result -

ans = 0.7321

Nested Functions

You can define functions within the body of another function. These are called nested functions. A nested
function contains any or all of the components of any other function.

Nested functions are defined within the scope of another function and they share access to the containing
function's workspace.

A nested function follows the following syntax —

function x = A(pl, p2)
B(p2)
function y = B(p3)

end

end

Example

Let us rewrite the function quadratic, from previous example, however, this time the disc function will be a
nested function.

Create a function file quadratic2.m and type the following code in it -

function [x1,x2] = quadratic2(a,b,c)
function disc % nested function

d = sqrt(b”2 - 4*a*c);

end % end of function disc

disc;
x1 = (-b + d) / (2*a);
x2 = (-b - d) / (2*a);

end % end of function quadratic2

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 70/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

You can call the above function from command prompt as -

quadratic2(2,4,-4)
MATLAB will execute the above statement and return the following result -

ans = 0.73205

Private Functions

A private function is a primary function that is visible only to a limited group of other functions. If you do
not want to expose the implementation of a function(s), you can create them as private functions.

Private functions reside in subfolders with the special name private.

They are visible only to functions in the parent folder.

Example

Let us rewrite the quadratic function. This time, however, the disc function calculating the discriminant, will
be a private function.

Create a subfolder named private in working directory. Store the following function file disc.m in it -

function dis = disc(a,b,c)

%function calculates the discriminant
dis = sqrt(b”2 - 4*a*c);

end % end of sub-function

Create a function quadratic3.m in your working directory and type the following code in it -

function [x1,x2] = quadratic3(a,b,c)

%this function returns the roots of

% a quadratic equation.

% It takes 3 input arguments

% which are the co-efficient of x2, x and the
%constant term

% It returns the roots

d = disc(a,b,c);

x1 = (-b + d) / (2*a);
x2 = (-b - d) / (2*a);
end % end of quadratic3

You can call the above function from command prompt as -

quadratic3(2,4,-4)

MATLAB will execute the above statement and return the following result -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 71141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

ans = 0.73205

Global Variables

Global variables can be shared by more than one function. For this, you need to declare the variable as
global in all the functions.

If you want to access that variable from the base workspace, then declare the variable at the command
line.

The global declaration must occur before the variable is actually used in a function. It is a good practice to
use capital letters for the names of global variables to distinguish them from other variables.

Example

Let us create a function file named average.m and type the following code in it -

function avg = average(nums)
global TOTAL

avg = sum(nums)/TOTAL;

end

Create a script file and type the following code in it -

global TOTAL;

TOTAL = 10;

n = [34, 45, 25, 45, 33, 19, 40, 34, 38, 42];
av = average(n)

When you run the file, it will display the following result -

av = 35.500

MATLAB - Data Import

Importing data in MATLAB means loading data from an external file. The importdata function allows
loading various data files of different formats. It has the following five forms -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 721141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Sr.No. Function & Description

A = importdata(filename)

Loads data into array A from the file denoted by filename.

2 A = importdata('-pastespecial’)
Loads data from the system clipboard rather than from a file.

g A = importdata(___, delimiterin)
Interprets delimiterin as the column separator in ASCII file, flename, or the clipboard data.
You can use delimiterin with any of the input arguments in the above syntaxes.

4 A = importdata(___, delimiterin, headerlinesin)
Loads data from ASCII file, filename, or the clipboard, reading numeric data starting from line
headerlinesin+1.

5

[A, delimiterOut, headerlinesOut] = importdata(___)

Returns the detected delimiter character for the input ASCII file in delimiterOut and the
detected number of header lines in headerlinesOut, using any of the input arguments in the
previous syntaxes.

By default, Octave does not have support for importdata() function, so you will have to search and install this
package to make following examples work with your Octave installation.

Example 1

Let us load and display an image file. Create a script file and type the following code in it -

filename = ‘'smile.jpg’;
A = importdata(filename);
image(A);

When you run the file, MATLAB displays the image file. However, you must store it in the current directory.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 73/141

5/8/2020

Example 2

MATLAB - Quick Guide - Tutorialspoint

T T T T

-

T

T T

The stupid smile

you have everytime

)

The person you like

sends you a text
message

0 0 6 ®

“5":' 'Ilzﬂ 1-;'3 TIEI] 1:&13

200

In this example, we import a text file and specify Delimiter and Column Header. Let us create a space-
delimited ASCII file with column headers, named weeklydata.txt.

Our text file weeklydata.txt looks like this —

SunDay
95.01
73.11
60.68
48.60
89.13

MonDay
76.21
45.65
41.85
82.14
44 .47

TuesDay
61.
79.
92.
73.
57.

54
19
18
82
63

WednesDay ThursDay

40.57
93.55
91.69
41.03
89.36

55.79
75.29
81.32
0.99

13.89

FriDay
70.28
69.87
90.38
67.22
19.88

Create a script file and type the following code in it -

filename
delimite

= 'weeklydata.txt';

rIn =

LI
B

headerlinesIn = 1;
A = importdata(filename,delimiterIn,headerlinesIn);

% View d
for k =

ata
[1:7]

disp(A.colheaders{1, k})
disp(A.data(:, k))

disp(
end

")

When you run the file, it displays the following result -

SunDay
95.01
73.11
60.68
48.60

00
00
00
00

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

SaturDay
81.53
74.68
74.51
93.18
46.60

74/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
89.1300

MonDay
76.2100
45.6500
41.8500
82.1400
44,4700

TuesDay
61.5400
79.1900
92.1800
73.8200
57.6300

WednesDay
40.5700
93.5500
91.6900
41.0300
89.3600

ThursDay
55.7900
75.2900
81.3200
0.9900
13.8900

FriDay
70.2800
69.8700
90.3800
67.2200
19.8800

SaturDay
81.5300
74.6800
74.5100
93.1800
46.6000

Example 3

In this example, let us import data from clipboard.
Copy the following lines to the clipboard -
Mathematics is simple

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 75/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Create a script file and type the following code -
A = importdata('-pastespecial')

When you run the file, it displays the following result -

A:
'Mathematics is simple’

Low-Level File I/10

The importdata function is a high-level function. The low-level file /O functions in MATLAB allow the most
control over reading or writing data to a file. However, these functions need more detailed information
about your file to work efficiently.

MATLAB provides the following functions for read and write operations at the byte or character level -

Function Description
fclose Close one or all open files
feof Test for end-of-file
ferror Information about file I/O errors
fgetl Read line from file, removing newline characters
fgets Read line from file, keeping newline characters
fopen Open file, or obtain information about open files
fprintf Write data to text file
fread Read data from binary file
frewind Move file position indicator to beginning of open file
fscanf Read data from text file
fseek Move to specified position in file
ftell Position in open file
fwrite Write data to binary file

Import Text Data Files with Low-Level I/0

MATLAB provides the following functions for low-level import of text data files -

. The fscanf function reads formatted data in a text or ASCII file.
https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 76/141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

The fgetl and fgets functions read one line of a file at a time, where a newline character
separates each line.

The fread function reads a stream of data at the byte or bit level.

Example

We have a text data file 'myfile.txt' saved in our working directory. The file stores rainfall data for three
months; June, July and August for the year 2012.

The data in myfile.txt contains repeated sets of time, month and rainfall measurements at five places. The
header data stores the number of months M; so we have M sets of measurements.

The file looks like this -

Rainfall Data

Months: June, July, August

M:

3

12:00:00
June-2012

17.
19.
17.
9.5
10.
20.
18.

21
15
92
9

46
97
23

28.

52

0.35

28.

49

9.33

13.
19.
10.

09:10:02
July-2012

12.
20.
30.
18.
30.
30.
28.
15:

17.
17.
NaN
26.
17.
NaN
26.

76
46
97
23
46
97
67

16.
23.
49.
30.
33.
49.
30.

03:40
August-2012

09
54

79
54

79

16.
.45
21.
24.
.45
21.
24.

11

11

17
50
34

94
17
50
34
17
50
34

55

19
98

19
98

39.78
17.57
17.40
NaN

NaN

17.65
17.95

14.38
NaN

47 .65
27.95
NaN

47.65
27.95

19.59
13.48
25.85
12.23
13.48
25.85
12.23

16.
NaN
17.

55

06

0.31

14.
14.
.46

16

11.
24.
24.
.46
34.
24.

16

36

17.
22.
25.
16.
22.
25.
16.

89
45

86
89
45

89
45

.46

25
55
(4
99
55
a5
99

23.67
12.01
11.09
0.23

19.33
14.00
19.34

16.89
19.33
34.00
19.34
29.33
34.00
29.34

19.22
24.01
27.21
18.67
24.01
27.21
18.67

We will import data from this file and display this data. Take the following steps -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

Open the file with fopen function and get the file identifier.

771141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

. Describe the data in the file with format specifiers, such as '%s' for a string, '%d' for an integer,
or '%f' for a floating-point number.

. To skip literal characters in the file, include them in the format description. To skip a data field,
use an asterisk ('*') in the specifier.

For example, to read the headers and return the single value for M, we write —

M = fscanf(fid, '%*s %*s\n%*s %*s %*s %*s\nM=%d\n\n', 1);

. By default, fscanf reads data according to our format description until it does not find any match
for the data, or it reaches the end of the file. Here we will use for loop for reading 3 sets of data
and each time, it will read 7 rows and 5 columns.

. We will create a structure named mydata in the workspace to store data read from the file. This
structure has three fields - time, month, and raindata array.

Create a script file and type the following code in it -

filename = '/data/myfile.txt’;
rows = 7;
cols = 5;

% open the file
fid = fopen(filename);

% read the file headers, find M (number of months)
M = fscanf(fid, '%*s %*s\n%*s %*s %*s %*s\nM=%d\n\n', 1);

% read each set of measurements

for n = 1:M
mydata(n).time = fscanf(fid, '%s', 1);
mydata(n).month = fscanf(fid, '%s', 1);

% fscanf fills the array in column order,
% so transpose the results
mydata(n).raindata = ...
fscanf(fid, '%f', [rows, cols]);
end
for n = 1:M
disp(mydata(n).time), disp(mydata(n).month)
disp(mydata(n).raindata)
end

% close the file
fclose(fid);

When you run the file, it displays the following result -

12:00:00
June-2012

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 78/141

5/8/2020

17.
28.
39.
16.
23.
19.

MATLAB - Quick Guide - Tutorialspoint
2100 17.5700 11.0900 13.1700 14.4500

5200 NaN 9.5900 NaN 14.0000
7800 12.0100 9.3300 14.8900 18.2300
5500 17.9200 NaN 19.3300 10.3400
6700 28.4900 0.3100 20.9700 17.9500

1500 17.4000 0.2300 19.5000 16.4600

0.3500 17.0600 10.4600 17.6500 19.3400

09:10:02

July-2012
12.7600 NaN 34.0000 33.1700 24.4500
16.9400 24.8900 18.2300 NaN 34.0000
14.3800 19.3300 30.3400 34.8900 28.6700
11.8600 30.9700 27.9500 29.3300 30.3400
16.8900 49.5000 16.4600 30.9700 27.9500
20.4600 47.6500 19.3400 49.5000 36.4600
23.1700 24.4500 30.4600 47.6500 29.3400

15:03:40

August-2012
17.0900 13.4800 27.2100 11.4500 25.0500
16.5500 22.5500 26.7900 13.4800 27.2100
19.5900 24.0100 24.9800 22.5500 26.7900
17.2500 NaN 12.2300 24.0100 24.9800
19.2200 21.1900 16.9900 NaN 12.2300
17.5400 25.8500 18.6700 21.1900 16.9900

11.

4500 25.0500 17.5400 25.8500 18.6700

MATLAB - Data Output

Data export (or output) in MATLAB means to write into files. MATLAB allows you to use your data in
another application that reads ASCII files. For this, MATLAB provides several data export options.

You can create the following type of files —

Rectangular, delimited ASCII data file from an array.
Diary (or log) file of keystrokes and the resulting text output.
Specialized ASCII file using low-level functions such as fprintf.

MEX-file to access your C/C++ or Fortran routine that writes to a particular text file format.

Apart from this, you can also export data to spreadsheets.

There are two ways to export a numeric array as a delimited ASCII data file -

Using the save function and specifying the -ascii qualifier

Using the dimwrite function

Syntax for using the save function is -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 79/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

save my_data.out num_array -ascii

where, my_data.out is the delimited ASCII data file created, num_array is a numeric array and —ascii is
the specifier.

Syntax for using the dimwrite function is —
dlmwrite('my_data.out', num_array, 'dlm_char')

where, my_data.out is the delimited ASCII data file created, num_array is a numeric array and dIm_char is
the delimiter character.

Example

The following example demonstrates the concept. Create a script file and type the following code -

num_array = [1234 ; 4567; 789 0];
save array_datal.out num_array -ascii;

type array_datal.out
dlmwrite('array_data2.out', num_array, ' ');
type array_data2.out

When you run the file, it displays the following result -

1.0000000e+00 2.0000000e+00 3.0000000e+00 4.0000000e+00
4.0000000e+00 5.0000000e+00 6.0000000e+00 7.0000000e+00
7.0000000e+00 8.0000000e+00 9.0000000e+00 0.0000000e+00

1234
4567
78960

Please note that the save -ascii command and the dimwrite function does not work with cell arrays as
input. To create a delimited ASCII file from the contents of a cell array, you can

. Either, convert the cell array to a matrix using the cell2mat function
. Or export the cell array using low-level file 1/O functions.

If you use the save function to write a character array to an ASCII file, it writes the ASCII equivalent of the
characters to the file.

For example, let us write the word 'hello' to a file -

h = 'hello’;
save textdata.out h -ascii
type textdata.out

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 80/141

http://tpcg.io/kv3bPU
http://tpcg.io/9IBzFL

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

MATLAB executes the above statements and displays the following result. which is the characters of the
string 'hello’ in 8-digit ASCII format.

1.0400000e+02 1.0100000e+02 1.0800000e+02 1.0800000e+02 1.1100000e+02

Writing to Diary Files

Diary files are activity logs of your MATLAB session. The diary function creates an exact copy of your
session in a disk file, excluding graphics.

To turn on the diary function, type -

diary

Optionally, you can give the name of the log file, say -
diary logdata.out

To turn off the diary function -

diary off
You can open the diary file in a text editor.

Exporting Data to Text Data Files with Low-Level 1/O

So far, we have exported numeric arrays. However, you may need to create other text files, including
combinations of numeric and character data, nonrectangular output files, or files with non-ASCII encoding
schemes. For these purposes, MATLAB provides the low-level fprintf function.

As in low-level I/O file activities, before exporting, you need to open or create a file with the fopen function
and get the file identifier. By default, fopen opens a file for read-only access. You should specify the
permission to write or append, such as 'w' or 'a".

After processing the file, you need to close it with fclose(fid) function.

The following example demonstrates the concept -

Example
Create a script file and type the following code in it -
create a matrix y, with two rows

0:10:100;
[x; log(x)];

X R
Il

% open a file for writing
fid = fopen('logtable.txt', 'w');

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 81/141

http://tpcg.io/hxRydz

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

% Table Header
fprintf(fid, 'Log Function\n\n');

% print values in column order

% two values appear on each row of the file
fprintf(fid, '%f %f\n', y);

fclose(fid);

% display the file created
type logtable.txt

When you run the file, it displays the following result -

Log Function
0.000000 -Inf
10.000000 2.302585
20.000000 2.995732
30.000000 3.401197
40.000000 3.688879
50.000000 3.912023
60 .000000 4.094345
70.000000 4.248495
80.000000 4.382027
90.000000 4.499810

100.000000 4.605170

MATLAB - Plotting

To plot the graph of a function, you need to take the following steps -

. Define x, by specifying the range of values for the variable x, for which the function is to be
plotted

. Define the function, y = f(x)
. Call the plot command, as plot(x, y)

Following example would demonstrate the concept. Let us plot the simple function y = x for the range of
values for x from 0 to 100, with an increment of 5.

Create a script file and type the following code -

X = [0:5:100];
y = X;
plot(x, y)

When you run the file, MATLAB displays the following plot -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 82/141

5/8/2020

100

MATLAB - Quick Guide - Tutorialspoint

70

50

30

10 ,f/f

100

Let us take one more example to plot the function y = x2. In this example, we will draw two graphs with the
same function, but in second time, we will reduce the value of increment. Please note that as we decrease
the increment, the graph becomes smoother.

Create a script file and type the following code -

Xx=[12345678910];
X = [-100:20:100];

y = X."2;

plot(x, y)

When you run the file, MATLAB displays the following plot —

10000 T
8000 -

l \

Joo0t

5000 -
4000}

3000 ¢

ot \

S00 80

60

Change the code file a little, reduce the increment to 5 -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

[-100:5:100];
X."2;

100

83/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

plot(x, y)

MATLAB draws a smoother graph -

10000

Mﬂﬂ}1 .

8000 |- \ / i

T000 | \ ;" -1

6000 - .

100 80 60 40 -20 0 20 40 60 80 100

Adding Title, Labels, Grid Lines and Scaling on the Graph

MATLAB allows you to add title, labels along the x-axis and y-axis, grid lines and also to adjust the axes to
spruce up the graph.

. The xlabel and ylabel commands generate labels along x-axis and y-axis.
. The title command allows you to put a title on the graph.
. The grid on command allows you to put the grid lines on the graph.

. The axis equal command allows generating the plot with the same scale factors and the spaces
on both axes.

. The axis square command generates a square plot.

Example

Create a script file and type the following code -
X = [0:0.01:10];
y = sin(x);

plot(x, y), xlabel('x"), ylabel('Sin(x)"'), title('Sin(x) Graph'),
grid on, axis equal

MATLAB generates the following graph -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 84/141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

Sin{x] Graph
: T T ! : T ! T
T W
|- i
= ;
=
& ; |
. - i
i 1 1 | 1 i 1 1
" & 5 & 7 & &
x

Drawing Multiple Functions on the Same Graph

You can draw multiple graphs on the same plot. The following example demonstrates the concept -

Example

Create a script file and type the following code -

X

y
g

[0 :

9.01: 10];

sin(x);
cos(x);

plot(x-' y) X) gJ

".-"), legend('Sin(x)"',

"Cos(x)")

MATLAB generates the following graph -

08}
06}
04t
02t

D21
L4
Ss

DB

Sin(x)
—— Cos(x) ||

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

8 9 10

85/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Setting Colors on Graph

MATLAB provides eight basic color options for drawing graphs. The following table shows the colors and

their codes -

Code

Example

Let us draw the graph of two polynomials
o f(x)=3x*+2x3+ 7x%> + 2x + 9 and
e« g(X)=5x3+9x +2
Create a script file and type the following code -

X [-16 : @0.01: 10];

y = 3*.M + 2 ¥ x,"3 +7 * x."2 + 2 * x+ 9;
g=5%*x."3+9*x+ 2;

plot(x, y, 'r', x, g, 'g")

When you run the file, MATLAB generates the following graph -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

Color
White
Black
Blue
Red
Cyan
Green
Magenta

Yellow

86/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

35 T T T T L] T T T

05

0.5 1

10 B8 & 4 3 0 2: 4 3 g 10

Setting Axis Scales

The axis command allows you to set the axis scales. You can provide minimum and maximum values for
x and y axes using the axis command in the following way -

axis ([xmin xmax ymin ymax])
The following example shows this -

Example
Create a script file and type the following code -
x = [0 : 0.01: 10];

y = exp(-x).* sin(2*x + 3);
plot(x, y), axis([© 10 -1 1])

When you run the file, MATLAB generates the following graph -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 87/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

0.8 .

D6} .

04} 1

02 .

:|=
Lo
T
1

p 1 2 3 4 & 6 7T 8 9 10

Generating Sub-Plots

When you create an array of plots in the same figure, each of these plots is called a subplot. The subplot
command is used for creating subplots.

Syntax for the command is -
subplot(m, n, p)

where, m and n are the number of rows and columns of the plot array and p specifies where to put a
particular plot.

Each plot created with the subplot command can have its own characteristics. Following example
demonstrates the concept -

Example

Let us generate two plots -
y = e "*sin(10x)
y = e Zsin(10x)

Create a script file and type the following code -

X = [0:0.01:5];
y = exp(-1.5%x).*sin(10*x);
subplot(1,2,1)

plot(x,y), xlabel('x"),ylabel('exp(-1.5x)*sin(10x)"),axis([@ 5 -1 1])
y = exp(-2*x).*sin(10*x);

subplot(1,2,2)

plot(x,y),xlabel('x"),ylabel('exp(-2x)*sin(10x)"),axis([@ 5 -1 1])

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 88/141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

When you run the file, MATLAB generates the following graph -

1

ﬂ.B]I 0Bt

06 :| UE\

04 | 04 ‘
=3 =
S ot | S 02f| n
& | = f\
. = -
’;- D"\ | I Illll _."-\._ e e] 5: u.| || .ill '_ —
[+ 1 W ":F u
é'ﬂztj y ?'UE'H

o

E 0.4 Il,l 04t J

06} Q6

D8 DB

=1 i i i =1 i i
0 1 2 3 4 5 0 1 2 3 4

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

MATLAB - Graphics

This chapter will continue exploring the plotting and graphics capabilities of MATLAB. We will discuss -

. Drawing bar charts
. Drawing contours

. Three dimensional plots

Drawing Bar Charts

The bar command draws a two dimensional bar chart. Let us take up an example to demonstrate the
idea.

Example

Let us have an imaginary classroom with 10 students. We know the percent of marks obtained by these
students are 75, 58, 90, 87, 50, 85, 92, 75, 60 and 95. We will draw the bar chart for this data.

Create a script file and type the following code -

x = [1:10];

y = [75, 58, 90, 87, 50, 85, 92, 75, 60, 95];
bar(x,y), xlabel('Student'),ylabel('Score'),
title('First Sem:")

print -deps graph.eps

When you run the file, MATLAB displays the following bar chart -

89/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Farst Sem:
1DD T T L T T T T T

Score

Drawing Contours

A contour line of a function of two variables is a curve along which the function has a constant value.
Contour lines are used for creating contour maps by joining points of equal elevation above a given level,
such as mean sea level.

MATLAB provides a contour function for drawing contour maps.

Example

Let us generate a contour map that shows the contour lines for a given function g = f(x, y). This function
has two variables. So, we will have to generate two independent variables, i.e., two data sets x and y. This
is done by calling the meshgrid command.

The meshgrid command is used for generating a matrix of elements that give the range over x and y
along with the specification of increment in each case.

Let us plot our function g = f(x, y), where -5 < x < 5, -3 <y < 3. Let us take an increment of 0.1 for both
the values. The variables are set as -

[x,y] = meshgrid(-5:0.1:5, -3:0.1:3);

Lastly, we need to assign the function. Let our function be: x2 + y2

Create a script file and type the following code -

[x,y] = meshgrid(-5:0.1:5,-3:0.1:3); %independent variables

g = X."2 + y."2; % our function
contour(x,y,g) % call the contour function
print -deps graph.eps

When you run the file, MATLAB displays the following contour map -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 90/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Let us modify the code a little to spruce up the map

[x,y] = meshgrid(-5:0.1:5,-3:0.1:3); %independent variables

g = X."2 + y."2; % our function

[C, h] = contour(x,y,g); % call the contour function
set(h, 'ShowText', 'on', 'TextStep',get(h, 'LevelStep')*2)

print -deps graph.eps

When you run the file, MATLAB displays the following contour map -

3 Ié llll T T o T ™ T T T T
: -
2 ® f’ffg__hxkx b= -
= P b =]
) j(\'\ !
| |
} / 1
ok |
A\ | | L
(=] L |I - 5]
= t"u T
1 ':,"“)
X‘.
e & '
2 W \\“‘-m__,.,_.-/"// 7
= : =y 73
\ 2 b/]
3 I.I" i = i i s £ i L . i i i L

Three Dimensional Plots

Three-dimensional plots basically display a surface defined by a function in two variables, g = f (x,y).

As before, to define g, we first create a set of (x,y) points over the domain of the function using the
meshgrid command. Next, we assign the function itself. Finally, we use the surf command to create a
surface plot.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 91/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

The following example demonstrates the concept -

Example

Let us create a 3D surface map for the function g = xe % *+¥?)

Create a script file and type the following code -

[x,y] = meshgrid(-2:.2:2);
g = x .* exp(-x."2 - y."2);
surf(x, y, g)

print -deps graph.eps

When you run the file, MATLAB displays the following 3-D map -

You can also use the mesh command to generate a three-dimensional surface. However, the surf
command displays both the connecting lines and the faces of the surface in color, whereas, the mesh
command creates a wireframe surface with colored lines connecting the defining points.

MATLAB - Algebra

So far, we have seen that all the examples work in MATLAB as well as its GNU, alternatively called
Octave. But for solving basic algebraic equations, both MATLAB and Octave are little different, so we will
try to cover MATLAB and Octave in separate sections.

We will also discuss factorizing and simplification of algebraic expressions.

Solving Basic Algebraic Equations in MATLAB

The solve function is used for solving algebraic equations. In its simplest form, the solve function takes
the equation enclosed in quotes as an argument.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 92/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

For example, let us solve for x in the equation x-5 =0
solve('x-5=0")
MATLAB will execute the above statement and return the following result -

ans =

You can also call the solve function as -

y = solve('x-5 =0")
MATLAB will execute the above statement and return the following result -

y:
5

You may even not include the right hand side of the equation -

solve('x-5")
MATLAB will execute the above statement and return the following result -

ans =

If the equation involves multiple symbols, then MATLAB by default assumes that you are solving for x,
however, the solve function has another form —

solve(equation, variable)

where, you can also mention the variable.

For example, let us solve the equation v — u — 3t2 = 0, for v. In this case, we should write -

solve('v-u-3*t"2=0", 'v')
MATLAB will execute the above statement and return the following result -

ans =
3*t"2 + u

Solving Basic Algebraic Equations in Octave

The roots function is used for solving algebraic equations in Octave and you can write above examples
as follows -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 93/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

For example, let us solve for x in the equation x-5 =0

roots([1, -5])

Octave will execute the above statement and return the following result -

ans =5

You can also call the solve function as -

y = roots([1, -5])

Octave will execute the above statement and return the following result —

y =5

Solving Quadratic Equations in MATLAB

The solve function can also solve higher order equations. It is often used to solve quadratic equations.
The function returns the roots of the equation in an array.

The following example solves the quadratic equation x2 -7x +12 = 0. Create a script file and type the
following code -

eq = 'x"2 -7*x + 12 = 0';
s = solve(eq);

disp('The first root is: "), disp(s(1));
disp('The second root is: '), disp(s(2));

When you run the file, it displays the following result -
The first root is:

3

The second root is:
4

Solving Quadratic Equations in Octave

The following example solves the quadratic equation x? -7x +12 = 0 in Octave. Create a script file and
type the following code -

s = roots([1, -7, 12]);

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 94/141

http://tpcg.io/ct1kc8
http://tpcg.io/11R2ha
http://tpcg.io/krH00w

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

disp('The first root is: "), disp(s(1));
disp('The second root is: "), disp(s(2));

When you run the file, it displays the following result -

The first root is:
4

The second root is:
3

Solving Higher Order Equations in MATLAB

The solve function can also solve higher order equations. For example, let us solve a cubic equation as
(x-3)’(x-7) = 0

solve('(x-3)"2*(x-7)=0")
MATLAB will execute the above statement and return the following result -

ans =

In case of higher order equations, roots are long containing many terms. You can get the numerical value
of such roots by converting them to double. The following example solves the fourth order equation x* -
7x3 +3x2-5x+9=0.

Create a script file and type the following code -

eq = 'xXM - 7*X"3 + 3*x"2 - 5*x + 9 = 0';
s = solve(eq);

disp('The first root is: "), disp(s(1));

disp('The second root is: '), disp(s(2));
disp('The third root is: '), disp(s(3));

disp('The fourth root is: '), disp(s(4));

% converting the roots to double type

disp('Numeric value of first root'), disp(double(s(1)));

disp('Numeric value of second root'), disp(double(s(2)));
disp('Numeric value of third root'), disp(double(s(3)));

disp('Numeric value of fourth root'), disp(double(s(4)));

When you run the file, it returns the following result -

The first root is:
6.630396332390718431485053218985
The second root is:

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 95/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
1.0597804633025896291682772499885
The third root is:
- 0.34508839784665403032666523448675 - 1.0778362954630176596831109269793*1i
The fourth root is:
- 0.34508839784665403032666523448675 + 1.0778362954630176596831109269793*1
Numeric value of first root
6.6304
Numeric value of second root
1.0598
Numeric value of third root
-0.3451 - 1.0778i1
Numeric value of fourth root
-0.3451 + 1.0778i

Please note that the last two roots are complex numbers.

Solving Higher Order Equations in Octave

The following example solves the fourth order equation x* — 7x3 + 3x2 - 5x + 9 = 0.

Create a script file and type the following code -

A [1J '7) 3: '5) 9])
roots(v);

% converting the roots to double type

disp('Numeric value of first root'), disp(double(s(1)));
disp('Numeric value of second root'), disp(double(s(2)));
disp('Numeric value of third root'), disp(double(s(3)));
disp('Numeric value of fourth root'), disp(double(s(4)));

When you run the file, it returns the following result -

Numeric value of first root
6.6304

Numeric value of second root
-0.34509 + 1.077841i

Numeric value of third root
-0.34509 - 1.077841

Numeric value of fourth root
1.0598

Solving System of Equations in MATLAB

The solve function can also be used to generate solutions of systems of equations involving more than
one variables. Let us take up a simple example to demonstrate this use.

Let us solve the equations -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 96/141

http://tpcg.io/SFJLl3

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
5x+9y =5

3x—-6y=4
Create a script file and type the following code -

S

solve('5*x + 9*y = 5','3*x - 6%y = 4');
S.

< X

S.

When you run the file, it displays the following result -

ans =
22/19

ans =
-5/57

In same way, you can solve larger linear systems. Consider the following set of equations -

x+3y-2z=5
3x+5y+6z=7
2x+4y+3z2=8

Solving System of Equations in Octave

We have a little different approach to solve a system of 'n' linear equations in 'n' unknowns. Let us take up
a simple example to demonstrate this use.

Let us solve the equations -
5x+9y =5
3x—-6y=4

Such a system of linear equations can be written as the single matrix equation Ax = b, where A is the
coefficient matrix, b is the column vector containing the right-hand side of the linear equations and x is the
column vector representing the solution as shown in the below program -

Create a script file and type the following code -

[5J 9: 3: '6]3
= [5;4]1;
A\Db

o >
I

When you run the file, it displays the following result -

ans =

1.157895
-0.087719

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 97/141

http://tpcg.io/dGswio

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

In same way, you can solve larger linear systems as given below -

x+3y-2z=5
3x+5y+6z2=7
2x+4y+3z2=8

Expanding and Collecting Equations in MATLAB

The expand and the collect function expands and collects an equation respectively. The following
example demonstrates the concepts -

When you work with many symbolic functions, you should declare that your variables are symbolic.

Create a script file and type the following code -

syms x %symbolic variable x
syms y %symbolic variable x
% expanding equations
expand((x-5)*(x+9))

expand ((x+2)*(x-3)*(x-5)*(x+7))
expand(sin(2*x))
expand(cos(x+y))

% collecting equations

collect(x”3 *(x-7))
collect(x™4*(x-3)*(x-5))

When you run the file, it displays the following result -

ans =
X"2 + 4*x - 45
ans =
XM+ X3 - 43*xM2 + 23*x + 210
ans =
2*cos(x)*sin(x)
ans =

cos(x)*cos(y) - sin(x)*sin(y)
ans =

XN - 7*x"3
ans =

X"6 - 8*x"5 + 15*x™4

Expanding and Collecting Equations in Octave

You need to have symbolic package, which provides expand and the collect function to expand and
collect an equation, respectively. The following example demonstrates the concepts -

When you work with many symbolic functions, you should declare that your variables are symbolic but
Octave has different approach to define symbolic variables. Notice the use of Sin and Cos, which are also

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 98/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

defined in symbolic package.

Create a script file and type the following code -

% first of all load the package, make sure its installed.
pkg load symbolic

% make symbols module available
symbols

R

define symbolic variables
sym ('x");
sym ('y');
sym ('z');

N < X
1

% expanding equations

expand ((x-5)*(x+9))
expand((x+2)*(x-3)*(x-5)*(x+7))
expand(Sin(2*x))

expand(Cos (x+y))

% collecting equations

collect(x”"3 *(x-7), z)
collect(x*4*(x-3)*(x-5), z)

When you run the file, it displays the following result -

ans =

-45.0+x"2+(4.0)*x
ans =

210.0+Xx" - (43.0)*x 2+x"3+(23.0) *x
ans =

sin((2.0)*x)
ans =

cos(y+x)
ans =

XN(3.0)*(-7.0+x)
ans =

(-3.0+x)*x"(4.0)*(-5.0+x)

Factorization and Simplification of Algebraic Expressions

The factor function factorizes an expression and the simplify function simplifies an expression. The
following example demonstrates the concept -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 99/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Example
Create a script file and type the following code -

syms X
syms y

factor(x”3 - y”3)
factor([x"2-y*2,x"3+y"3])
simplify((x"4-16)/(x"2-4))

When you run the file, it displays the following result -

ans =

(X - y)*(x*2 + x*y + y"2)
ans =

[(X - »)*(x+y), (x+y)*(x*2 - x*y + y*2)]
ans =

X2 + 4

MATLAB - Calculus

MATLAB provides various ways for solving problems of differential and integral calculus, solving
differential equations of any degree and calculation of limits. Best of all, you can easily plot the graphs of
complex functions and check maxima, minima and other stationery points on a graph by solving the
original function, as well as its derivative.

This chapter will deal with problems of calculus. In this chapter, we will discuss pre-calculus concepts i.e.,
calculating limits of functions and verifying the properties of limits.

In the next chapter Differential, we will compute derivative of an expression and find the local maxima and
minima on a graph. We will also discuss solving differential equations.

Finally, in the Integration chapter, we will discuss integral calculus.

Calculating Limits

MATLAB provides the limit function for calculating limits. In its most basic form, the limit function takes
expression as an argument and finds the limit of the expression as the independent variable goes to zero.

For example, let us calculate the limit of a function f(x) = (x3 + 5)/(x* + 7), as x tends to zero.

syms X
limit((x*3 + 5)/ (x4 + 7))

MATLAB will execute the above statement and return the following result -
ans =

5/7

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 100/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

The limit function falls in the realm of symbolic computing; you need to use the syms function to tell
MATLAB which symbolic variables you are using. You can also compute limit of a function, as the variable
tends to some number other than zero. To calculate lim ,.5(f(x)), we use the limit command with
arguments. The first being the expression and the second is the number, that x approaches, here it is a.

For example, let us calculate limit of a function f(x) = (x-3)/(x-1), as x tends to 1.

limit((x - 3)/(x-1),1)

MATLAB will execute the above statement and return the following result -

ans =
NaN

Let's take another example,

limit(x~2 + 5, 3)
MATLAB will execute the above statement and return the following result -

ans =
14
Calculating Limits using Octave

Following is Octave version of the above example using symbolic package, try to execute and compare
the result -

pkg load symbolic
symbols

x = sym("x");
subs ((x"3+5)/(x"4+7),X,0)

Octave will execute the above statement and return the following result -

ans =
0.7142857142857142857

Verification of Basic Properties of Limits

Algebraic Limit Theorem provides some basic properties of limits. These are as follows -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 101/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

lm (f(@) +9(2)) = lim f(z) + lim g()
I (flw)—gl=l] = Imjle]—lnglz)
m (f(2)-9(x)) = limf(a)-lmg(a)
lim (f(z)/g(2)) = lm f(z)/limg(z)

Let us consider two functions -
. f(x) = (3x + 5)/(x - 3)

. g(x) = x? + 1

Let us calculate the limits of the functions as x tends to 5, of both functions and verify the basic properties
of limits using these two functions and MATLAB.

Example

Create a script file and type the following code into it —

syms X
f = (3*x + 5)/(x-3);
g = x"2 + 1;

11 = limit(f, 4)
12 = limit (g, 4)
1Add = limit(f + g, 4)
1Sub = limit(f - g, 4)
IMult = limit(f*g, 4)
1biv = limit (f/g, 4)

When you run the file, it displays -

11 =
17

12

17

1Add =
34

1Sub =

IMult =

289

1Div =

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 102/141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

Verification of Basic Properties of Limits using Octave

Following is Octave version of the above example using symbolic package, try to execute and compare
the result -

pkg 1
symbo

-+ X
Il

(

X

11 =
12 =
1Add
1Sub

IMult = subs (f*g, x, 4)

oad symbolic
1s

sym("x");

3*x + 5)/(x-3);
"2+ 1;

subs(f, x, 4)

subs (g, x, 4)
subs (f+g, x,
subs (f-g, x,

4)
4)

1Div = subs (f/g, x, 4)

Octave will execute the above statement and return the following result -

Left and Right Sided Limits

When a function has a discontinuity for some particular value of the variable, the limit does not exist at
that point. In other words, limits of a function f(x) has discontinuity at x = a, when the value of limit, as x

approaches x from left side, does not equal the value of the limit as x approaches from right side.

This leads to the concept of left-handed and right-handed limits. A left-handed limit is defined as the limit
as x -> a, from the left, i.e., x approaches a, for values of x < a. A right-handed limit is defined as the limit
as x -> a, from the right, i.e., x approaches a, for values of x > a. When the left-handed limit and right-
handed limit are not equal, the limit does not exist.

Let us consider a function -

f(x) = (x - 3)/|x - 3|

We will show that limy.>3 f(x) does not exist. MATLAB helps us to establish this fact in two ways -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

103/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
. By plotting the graph of the function and showing the discontinuity.
. By computing the limits and showing that both are different.
The left-handed and right-handed limits are computed by passing the character strings 'left' and 'right' to

the limit command as the last argument.

Example
Create a script file and type the following code into it -

f = (x - 3)/abs(x-3);
ezplot(f,[-1,5])

1 = 1limit(f,x,3, 'left")
r = limit(f,x,3, 'right")

When you run the file, MATLAB draws the following plot

(% - 3Wabs(x - 3)
'| -
05
ok
A5F
-1
1 0 1 2 3 4 5

MATLAB - Differential

MATLAB provides the diff command for computing symbolic derivatives. In its simplest form, you pass the
function you want to differentiate to diff command as an argument.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 104/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
For example, let us compute the derivative of the function f(t) = 3t* + 2t
Example

Create a script file and type the following code into it -
syms t

f o= 3%tr2 + 2%t1(-2);
diff(f)

When the above code is compiled and executed, it produces the following result -

ans =
6%t - 4/t"3
Following is Octave equivalent of the above calculation -

pkg load symbolic
symbols

t Sym(lltll)’,
f o= 3%EA2 + 2%tA(-2);
differentiate(f,t)

Octave executes the code and returns the following result -

ans =
-(4.0)*t"(-3.0)+(6.0)*t

Verification of Elementary Rules of Differentiation

Let us briefly state various equations or rules for differentiation of functions and verify these rules. For this
purpose, we will write f|(x) for a first order derivative and f"(x) for a second order derivative.

Following are the rules for differentiation -

Rule 1

For any functions f and g and any real numbers a and b are the derivative of the function -
h(x) = af(x) + bg(x) with respect to x is given by -
h'(x) = af'(x) + bg'(x)

Rule 2

The sum and subtraction rules state that if f and g are two functions, f and @' are their derivatives
respectively, then,

(f+g)=f+gd

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 105/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
(f-g)=f-gd

Rule 3

The product rule states that if f and g are two functions, f' and g' are their derivatives respectively, then,

(f.g)=f.g+g.f

Rule 4

The quotient rule states that if f and g are two functions, f' and g' are their derivatives respectively, then,

(flg)' = (f.g - g'.f)/g?

Rule 5

The polynomial or elementary power rule states that, if y = f(x) = x", then f = n. x(™1)
A direct outcome of this rule is that the derivative of any constant is zero, i.e., if y = k, any constant, then

f=0

Rule 6

The chain rule states that, derivative of the function of a function h(x) = f(g(x)) with respect to x is,

h*(x)= f(g(x)).g'(x)

Example
Create a script file and type the following code into it -

syms X
syms t

f = (x + 2)*(x*2 + 3)

derl = diff(f)

f = (t"2 + 3)*(sqrt(t) + t73)
der2 = diff(f)

f = (X2 - 2*x + 1)*(3*x"3 - 5*x"2 + 2)
der3 = diff(f)

f = (2*x"2 + 3*x)/(x*3 + 1)

derd4 = diff(f)

f = (x*2 + 1)~17

der5 = diff(f)

f = (73 + 3% t22 + 5%t -9)7(-6)
der6 = diff(f)

When you run the file, MATLAB displays the following result -
'F =

(x*2 + 3)*(x + 2)

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 106/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

derl =
2*¥x*(X + 2) + x*2 + 3

f =
(tA(1/2) + tA3)*(t72 + 3)

der2
(tr2

+

3)*(3*%tA2 + 1/(2*%tA(1/2))) + 2%t*(tA(1/2) + t3)

'F:
(x~2

2*¥x + 1)*(3*x"3 - 5*%x"2 + 2)

der3 =
(2*¥x - 2)*(3*x"3 - 5*x"2 + 2) - (- 9*x"2 + 10*x)*(x"2 - 2*x + 1)

f =
(2*¥x72 + 3*x)/(x"3 + 1)

derd4 =
(4*x + 3)/(x"3 + 1) - (3*x"2*(2*x"2 + 3*x))/(x"3 + 1)"2

-F=
(x"2 + 1)717

der5 =
34*%x*(x"2 + 1)716

'F:
1/(t"3 + 3*t"2 + 5%t - 9)"6

der6 =
-(6*%(3*t"2 + 6%t + 5))/(t"3 + 3*t"2 + 5%t - 9)~7

Following is Octave equivalent of the above calculation -

pkg load symbolic

symbols

X = sym("x");

t - Sym("'t");

f = (x+ 2)*(x*2 + 3)

derl = differentiate(f,x)

f o= (22 + 3)*(t~(1/2) + t73)

der2 = differentiate(f,t)

f = (X2 - 2*x + 1)*(3*x"3 - 5*x"2 + 2)
der3 = differentiate(f,x)

f = (2*x"2 + 3*x)/(x"3 + 1)

der4 = differentiate(f,x)

f = (x"2 + 1)*M17

der5 = differentiate(f,x)

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 107/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint
f = (t73 + 3* t72 + 5%t -9)7(-6)
der6 = differentiate(f,t)

Octave executes the code and returns the following result -

'F:

(2.04x)*(3.0+x"(2.0))
derl =

3.0+x7(2.0)+(2.0)*(2.0+x) *x
'F:

(t~(3.0)+sqgrt(t))*(3.0+t"(2.9))
der2 =

(2.0)*(t"(3.0)+sqrt(t))*t+((3.0)*t"(2.0)+(0.5)*t"(-0.5))*(3.0+t"(2.9))
'F:

(1.0+x7(2.0)-(2.0)*x)*(2.0-(5.0)*x"(2.0)+(3.0)*x"(3.0))
der3 =

(-2.0+(2.0)*Xx)*(2.0-(5.0)*x"(2.0)+(3.0)*x*(3.0))+((9.0)*x"(2.0)- (10.0)*x)*(1.0+x"(2.0)-(2.0)*x)
f =

(1.04+x7(3.0))7(-1)*((2.9)*x"(2.0)+(3.0)*x)
der4 =

(1.0+x7(3.0))"(-1)*(3.0+(4.0)*x)-(3.0)*(1.0+x*(3.0)) (-2)*x*(2.0)*((2.0)*x"(2.0)+(3.0)*X)
f =

(1.0+x7(2.0))"(17.0)
der5 =

(34.0)*(1.0+x"(2.0))"(16.0)*x
f =

(-9.0+(3.0)*t"(2.0)+t"(3.0)+(5.0)*t)"(-6.0)
der6 =

-(6.0)*(-9.0+(3.0)*t"(2.0)+t"(3.0)+(5.0)*t)"(-7.0)*(5.0+(3.0) *t"(2.0)+(6.0)*t)

Derivatives of Exponential, Logarithmic and Trigonometric Functions

The following table provides the derivatives of commonly used exponential, logarithmic and trigonometric
functions -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 108/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Function Derivative

cax c@X.In c.a (In is natural logarithm)

eX e*

In x 1/x

Ingx 1/x.Inc

xX x%.(1 +In x)
sin(x) cos(X)
cos(x) -sin(x)
tan(x) sec?(x), or 1/cos?(x), or 1 + tan?(x)
cot(x) -csc?(x), or -1/sin?(x), or -(1 + cot?(x))
sec(x) sec(x).tan(x)
csc(x) -csc(x).cot(x)

Example

Create a script file and type the following code into it -

syms X

y = exp(x)
diff(y)

y = xX"9
diff(y)

y = sin(x)
diff(y)

y = tan(x)
diff(y)

y = cos(x)
diff(y)

y = log(x)
diff(y)

y = loglo(x)
diff(y)

y = sin(x)"2
diff(y)

y = cos(3*x"2 + 2*x + 1)
diff(y)

y = exp(x)/sin(x)
diff(y)

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 109/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

When you run the file, MATLAB displays the following result -

y:
exp(x)
ans =

exp(x)

X9
ans =
9*x"8

y:
sin(x)
ans =
cos(x)

y:
tan(x)
ans =
tan(x)"2 + 1

y:
cos(x)
ans =
-sin(x)

y =
log(x)
ans =
1/x

y:
log(x)/log(10)
ans =
1/(x*1log(10))

y:
sin(x)"2
ans =
2*cos(x)*sin(x)

y:
cos(3*x"2 + 2*x + 1)
ans =
-sin(3*x"2 + 2*x + 1)*(6*x + 2)

y:
exp(x)/sin(x)
ans =
exp(x)/sin(x) - (exp(x)*cos(x))/sin(x)"2

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

110/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Following is Octave equivalent of the above calculation -

pkg load symbolic
symbols

x = sym("x");
y = Exp(x)
differentiate(y,x)

y = x"9
differentiate(y,x)

y = Sin(x)
differentiate(y,x)

y = Tan(x)
differentiate(y,x)

y = Cos(x)
differentiate(y,x)

y = Log(x)
differentiate(y,x)

% symbolic packages does not have this support
%y = Loglo(x)
%differentiate(y,x)

y = Sin(x)"2
differentiate(y,x)

y = Cos(3*x"2 + 2*x + 1)
differentiate(y,x)

y = Exp(x)/Sin(x)
differentiate(y,x)

Octave executes the code and returns the following result -

y:

exp(x)
ans =

exp(x)
y:

x"(9.0)
ans =

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 111/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

(9.0)*x"(8.0)
y]

sin(x)
ans =

cos(x)
y:

tan(x)
ans =

1+tan(x)”2
y:

cos(x)
ans =

-sin(x)
y:

log(x)
ans =

x*(-1)
y =

sin(x)"(2.0)
ans =

(2.0)*sin(x)*cos(x)
y:

cos(1.0+(2.9)*x+(3.0)*x"(2.0))
ans =

-(2.0+(6.0)*x)*sin(1.0+(2.0)*x+(3.0)*x (2.9))
y =

sin(x)”~(-1)*exp(x)
ans =

sin(x)~(-1)*exp(x)-sin(x)~(-2)*cos(x)*exp(x)

Computing Higher Order Derivatives

To compute higher derivatives of a function f, we use the syntax diff(f,n).

Let us compute the second derivative of the function y = f(x) = x .e™*

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 112/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

f = x*exp(-3*x);
diff(f, 2)

MATLAB executes the code and returns the following result -

ans =
9*x*exp(-3*x) - 6*exp(-3*x)

Following is Octave equivalent of the above calculation -

pkg load symbolic

symbols
X = Sym(llxll);
f = X*Exp(-3*x);

differentiate(f, x, 2)

Octave executes the code and returns the following result -

ans =

(9.0)*exp(-(3.0)*x)*x-(6.0)*exp(-(3.0)*x)

Example

In this example, let us solve a problem. Given that a function y = f(x) = 3 sin(x) + 7 cos(5x). We will have

to find out whether the equation f* + f = -5cos(2x) holds true.

Create a script file and type the following code into it —

syms X
y = 3*sin(x)+7*cos(5*x); % defining the function
lhs = diff(y,2)+y; %evaluting the lhs of the equation
rhs = -5*cos(2*x); %rhs of the equation
if(isequal(lhs,rhs))

disp('Yes, the equation holds true');
else

disp('No, the equation does not hold true');
end

disp('Value of LHS is: "), disp(lhs);

When you run the file, it displays the following result -

No, the equation does not hold true
Value of LHS is:
-168*cos(5*x)

Following is Octave equivalent of the above calculation -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

113/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

pkg load symbolic

symbols

x = sym("x");

y = 3*Sin(x)+7*Cos(5*x); % defining the function

lhs = differentiate(y, X, 2) + y; %evaluting the lhs of the equation
rhs = -5*Cos(2*x); %rhs of the equation

if(lhs == rhs)
disp('Yes, the equation holds true');
else
disp('No, the equation does not hold true');
end
disp('Value of LHS is: '), disp(lhs);

Octave executes the code and returns the following result -

No, the equation does not hold true
Value of LHS is:
-(168.0)*cos((5.0)*x)

Finding the Maxima and Minima of a Curve

If we are searching for the local maxima and minima for a graph, we are basically looking for the highest
or lowest points on the graph of the function at a particular locality, or for a particular range of values of
the symbolic variable.

For a function y = f(x) the points on the graph where the graph has zero slope are called stationary
points. In other words stationary points are where f'(x) = 0.

To find the stationary points of a function we differentiate, we need to set the derivative equal to zero and
solve the equation.

Example

Let us find the stationary points of the function f(x) = 2x3 + 3x? - 12x + 17
Take the following steps -

First let us enter the function and plot its graph.

syms x
y = 2*¥x"3 + 3*x72 - 12*x + 17; % defining the function
ezplot(y)

MATLAB executes the code and returns the following plot -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 114/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

32 12x+ 23+ 17

T T T T T T U

500 f-

400 Fim
300+ £

200

100+ / :

i
l

00 A

200+ / 1

-300 - .

Here is Octave equivalent code for the above example -

pkg load symbolic
symbols

sym('x");
inline("2*x"3 + 3*x"2 - 12*x + 17");

ezplot(y)
print -deps graph.eps

Our aim is to find some local maxima and minima on the graph, so let us find the local maxima
and minima for the interval [-2, 2] on the graph.

syms X
y = 2*¥x"3 + 3*x72 - 12*x + 17; % defining the function
ezplot(y, ['21 2])

MATLAB executes the code and returns the following plot -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 115/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

I2-12x+2C+17
‘n Ll T L T L] T Ll

15

Here is Octave equivalent code for the above example -

pkg load symbolic
symbols

x
1]

sym('x");
inline("2*x”"3 + 3*x"2 - 12*x + 17");

eZPlot(y, ['2) 2])
print -deps graph.eps

Next, let us compute the derivative.

g = diff(y)

MATLAB executes the code and returns the following result -

g:
6*x"2 + 6*x - 12

Here is Octave equivalent of the above calculation -

pkg load symbolic

symbols

= sym("x");
y = 2*¥X"3 + 3*x"2 - 12*x + 17;
g = differentiate(y,x)

Octave executes the code and returns the following result -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 116/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

g:
-12.0+(6.0)*x+(6.0)*x*(2.0)

Let us solve the derivative function, g, to get the values where it becomes zero.

s = solve(g)

MATLAB executes the code and returns the following result -

Following is Octave equivalent of the above calculation -

pkg load symbolic
symbols

x = sym("x");

y = 2*¥x"3 + 3*xM2 - 12*x + 17;
g = differentiate(y,x)
roots([6, 6, -12])

Octave executes the code and returns the following result -

g:

-12.0+(6.0)*x"(2.0)+(6.0)*x
ans =

This agrees with our plot. So let us evaluate the function f at the critical points x = 1, -2. We can
substitute a value in a symbolic function by using the subs command.

subs(y, 1), subs(y, -2)
MATLAB executes the code and returns the following result -

ans =

ans =

Following is Octave equivalent of the above calculation -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 117/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

pkg load symbolic

symbols

- Sym("x");

= 2*¥X"3 + 3*x"2 - 12*x + 17;
g = differentiate(y,x)

roots([6, 6, -12])
subs(y, x, 1), subs(y, x, -2)

ans =
10.0

ans =
37.0-4.6734207789940138748E-18*1

Therefore, The minimum and maximum values on the function f(x) = 2x3 + 3x2 — 12x + 17, in the interval
[-2,2] are 10 and 37.

Solving Differential Equations

MATLAB provides the dsolve command for solving differential equations symbolically.

The most basic form of the dsolve command for finding the solution to a single equation is
dsolve('eqn')

where eqn is a text string used to enter the equation.
It returns a symbolic solution with a set of arbitrary constants that MATLAB labels C1, C2, and so on.

You can also specify initial and boundary conditions for the problem, as comma-delimited list following the
equation as -

dsolve('egn', 'condl', 'cond2',..)

For the purpose of using dsolve command, derivatives are indicated with a D. For example, an equation
like f'(t) = -2*f + cost(t) is entered as -

'Df = -2*f + cos(t)’

Higher derivatives are indicated by following D by the order of the derivative.
For example the equation f'(x) + 2f'(x) = 5sin3x should be entered as -

'D2y + 2Dy = 5*sin(3*x)’

Let us take up a simple example of a first order differential equation: y' = 5y.

s = dsolve('Dy = 5*y")

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 118/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

MATLAB executes the code and returns the following result -

S =
C2*exp(5*t)

Let us take up another example of a second order differential equation as: y" -y =0, y(0) = -1, y'(0) = 2.

dsolve('D2y - y = 0','y(0) = -1','Dy(0) = 2")
MATLAB executes the code and returns the following result -

ans =
exp(t)/2 - (3*exp(-t))/2

MATLAB - Integration

Integration deals with two essentially different types of problems.

. In the first type, derivative of a function is given and we want to find the function. Therefore, we
basically reverse the process of differentiation. This reverse process is known as anti-
differentiation, or finding the primitive function, or finding an indefinite integral.

. The second type of problems involve adding up a very large number of very small quantities and
then taking a limit as the size of the quantities approaches zero, while the number of terms tend
to infinity. This process leads to the definition of the definite integral.

Definite integrals are used for finding area, volume, center of gravity, moment of inertia, work done by a
force, and in numerous other applications.

Finding Indefinite Integral Using MATLAB

By definition, if the derivative of a function f(x) is f'(x), then we say that an indefinite integral of f(x) with

respect to x is f(x). For example, since the derivative (with respect to x) of x? is 2x, we can say that an

indefinite integral of 2x is x2.

In symbols -

f'(x?) = 2x, therefore,

[2xdx = x2.

Indefinite integral is not unique, because derivative of x2 + ¢, for any value of a constant c, will also be 2x.
This is expressed in symbols as -

[2xdx = x? + c.

Where, c is called an 'arbitrary constant'.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 119/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

MATLAB provides an int command for calculating integral of an expression. To derive an expression for
the indefinite integral of a function, we write -

int(f);

For example, from our previous example -

syms X
int(2*x)

MATLAB executes the above statement and returns the following result -

ans =
X2

Example 1

In this example, let us find the integral of some commonly used expressions. Create a script file and type
the following code in it -

syms X n

int(sym(x”n))

f = 'sin(n*t)"’
int(sym(f))

syms a t
int(a*cos(pi*t))
int(a”x)

When you run the file, it displays the following result -

ans =
piecewise([n == -1, log(x)], [n ~= -1, x*(n + 1)/(n + 1)])
f =
sin(n*t)
ans =
-cos(n*t)/n
ans =
(a*sin(pi*t))/pi
ans =
a”x/log(a)

Example 2
Create a script file and type the following code in it -

syms X n
int(cos(x))

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 120/141

5/8/2020

int(exp(x))

int(log(x))

int(x~-1)

int(x~5*cos(5*x))

pretty(int(x"5*cos(5*x)))

int(x*-5)

int(sec(x)"2)

pretty(int(1 - 10*x + 9 * x"2))

int((3 + 5*x -6*x"2 - 7*x"3)/2*x"2)
pretty(int((3 + 5*x -6*x"2 - 7*x"3)/2*x"2))

Note that the pretty function returns an expression in a more readable format.

When you run the file, it displays the following result -

ans =
sin(x)

ans =
exp(x)

ans =
x*(log(x) - 1)

ans =
log(x)

ans =

MATLAB - Quick Guide - Tutorialspoint

(24*cos(5*x))/3125 + (24*x*sin(5*x))/625 - (12*x"2*cos(5*x))/125 + (x*4*cos(5*x))/5 - (4*x"3*sirt

2
24 cos(5 x) 24 x sin(5 x) 12 x cos(5 x)
___________ + - - - - -
3125 625 125
3 5

_____________ + —_— e e e Em—-m—-——--
25 5
ans =
-1/(4%x"4)
ans =
tan(x)

2
Xx (3 x -5x+1)

ans =
- (7*x76)/12 - (3*x75)/5 + (5*x"4)/8 + x"3/2

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

4
x cos(5 x)

121/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

6 5 4 3

7 X 3 X 5 x X
T T
12 5 8 2

Finding Definite Integral Using MATLAB

By definition, definite integral is basically the limit of a sum. We use definite integrals to find areas such as
the area between a curve and the x-axis and the area between two curves. Definite integrals can also be
used in other situations, where the quantity required can be expressed as the limit of a sum.

The int function can be used for definite integration by passing the limits over which you want to calculate
the integral.

To calculate

b
I, f(x)dx = fib) - fla)
we write,
int(x, a, b)
For example, to calculate the value of
9
f4 xdx

we write -

int(x, 4, 9)
MATLAB executes the above statement and returns the following result -

ans =
65/2

Following is Octave equivalent of the above calculation -

pkg load symbolic

symbols

x = sym("x");
f = x;

c = [1, o];

integral = polyint(c);

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 122/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

a = polyval(integral, 9) - polyval(integral, 4);
display('Area: '), disp(double(a));

Octave executes the code and returns the following result -

Area:

32.500

An alternative solution can be given using quad() function provided by Octave as follows -

pkg load symbolic
symbols

f = inline("x");
[a, ierror, nfneval] = quad(f, 4, 9);

display('Area: '), disp(double(a));
Octave executes the code and returns the following result -

Area:
32.500

Example 1

Let us calculate the area enclosed between the x-axis, and the curve y = x3-2x+5 and the ordinates x = 1
and x = 2.

The required area is given by -

A=[[(x®— 2x+ 5)dx

Create a script file and type the following code -

f = x"3 - 2*x +5;
a = int(f, 1, 2)
display('Area: '), disp(double(a));

When you run the file, it displays the following result -

a =

23/4

Area:
5.7500

Following is Octave equivalent of the above calculation -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 123/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

pkg load symbolic
symbols

X Sym("X");
f = x*3 - 2*x +5;
c=1[1, 0, -2, 5];
integral = polyint(c);

a = polyval(integral, 2) - polyval(integral, 1);
display('Area: '), disp(double(a));

Octave executes the code and returns the following result -

Area:

5.7500

An alternative solution can be given using quad() function provided by Octave as follows -

pkg load symbolic

symbols
x = sym("x");
f = inline("x”"3 - 2*x +5");

[a, ierror, nfneval] = quad(f, 1, 2);
display('Area: '), disp(double(a));

Octave executes the code and returns the following result -

Area:
5.7500

Example 2

Find the area under the curve: f(x) = x? cos(x) for -4 < x < 9.

Create a script file and write the following code -

f = x*2*cos(x);

ezplot(f, [-4,9])

a = int(f, -4, 9)

disp('Area: '), disp(double(a));

When you run the file, MATLAB plots the graph -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 124/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

\

=l

20| \ 1
a

-
20} i
301 -
40} 'h\& .
L I N B

The output is given below -

a =
8*cos(4) + 18*cos(9) + 14*sin(4) + 79*sin(9)

Area:
0.3326

Following is Octave equivalent of the above calculation -

pkg load symbolic

symbols
X = Sym("X")j
f = inline("x"2*cos(x)");

ezplot(f, [-4,9])
print -deps graph.eps

[a, ierror, nfneval] = quad(f, -4, 9);
display('Area: '), disp(double(a));

MATLAB - Polynomials

MATLAB represents polynomials as row vectors containing coefficients ordered by descending powers.
For example, the equation P(x) = x* + 7x3 - 5x + 9 could be represented as -

p=[170-59];

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 125/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Evaluating Polynomials

The polyval function is used for evaluating a polynomial at a specified value. For example, to evaluate
our previous polynomial p, at x = 4, type -

p=[170 -509];
polyval(p,4)

MATLAB executes the above statements and returns the following result -

ans = 693

MATLAB also provides the polyvalm function for evaluating a matrix polynomial. A matrix polynomial is a
polynomial with matrices as variables.

For example, let us create a square matrix X and evaluate the polynomial p, at X -

p [170 -509];
X=[12-34;2-563;3102;5-738];
polyvalm(p, X)

MATLAB executes the above statements and returns the following result -

ans =
2307 -1769 -939 4499
2314 -2376 -249 4695
2256 -1892 -549 4310
4570 -4532 -1062 9269

Finding the Roots of Polynomials
The roots function calculates the roots of a polynomial. For example, to calculate the roots of our

polynomial p, type -

[L70 -509];
roots(p)

S O
1} 1}

MATLAB executes the above statements and returns the following result -

r =
-6.8661 + 0.00001
-1.4247 + 0.00001
0.6454 + 0.70951
0.6454 - 0.70951

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 126/141

http://tpcg.io/C5Voqz
http://tpcg.io/oAFVh6
http://tpcg.io/BnkJN6

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

The function poly is an inverse of the roots function and returns to the polynomial coefficients. For
example -

p2 = poly(r)
MATLAB executes the above statements and returns the following result -
p2 =
Columns 1 through 3:
1.00000 + ©.00000i 7.00000 + 0.00000i ©.00000 + 0.00000i
Columns 4 and 5:

-5.00000 - 0.000001 9.00000 + 0.000001

Polynomial Curve Fitting

The polyfit function finds the coefficients of a polynomial that fits a set of data in a least-squares sense. If

x and y are two vectors containing the x and y data to be fitted to a n-degree polynomial, then we get the
polynomial fitting the data by writing -

p = polyfit(x,y,n)

Example

Create a script file and type the following code -

[123456];y=[5.543.1128 290.7 498.4 978.67]; %data
polyfit(x,y,4) %get the polynomial

% Compute the values of the polyfit estimate over a finer range,
% and plot the estimate over the real data values for comparison:
X2 = 1:.1:6;

y2 = polyval(p,x2);

plot(x,y, 'o',x2,y2)

grid on

When you run the file, MATLAB displays the following result -

p:
4.1056 -47.9607 222.2598 -362.7453 191.1250

And plots the following graph -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 1271141

http://tpcg.io/mdrxRn

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

BN ' T o T T T T
IR R T S O OO SO N
5001 ... G S - ______ ﬁ _____ -

i

M_b..:..... smssksass

MATLAB - Transforms

MATLAB provides command for working with transforms, such as the Laplace and Fourier transforms.
Transforms are used in science and engineering as a tool for simplifying analysis and look at data from
another angle.

For example, the Fourier transform allows us to convert a signal represented as a function of time to a
function of frequency. Laplace transform allows us to convert a differential equation to an algebraic
equation.

MATLAB provides the laplace, fourier and fft commands to work with Laplace, Fourier and Fast Fourier
transforms.

The Laplace Transform

The Laplace transform of a function of time f(t) is given by the following integral -

() =J, f(8).e~*dt

Laplace transform is also denoted as transform of f(t) to F(s). You can see this transform or integration
process converts f(t), a function of the symbolic variable t, into another function F(s), with another variable
S.

Laplace transform turns differential equations into algebraic ones. To compute a Laplace transform of a
function f(t), write -

laplace(f(t))

Example

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 128/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

In this example, we will compute the Laplace transform of some commonly used functions.

Create a script file and type the following code -

syms s t abw

laplace(a)
laplace(t”2)
laplace(t”9)
laplace(exp(-b*t))
laplace(sin(w*t))
laplace(cos(w*t))

When you run the file, it displays the following result -

ans =
1/s"2

ans =
2/s"3

ans =
362880/s"10

ans =
1/(b + s)

ans =
w/(s”2 + wr2)

ans =
s/(s"2 + wh2)
The Inverse Laplace Transform

MATLAB allows us to compute the inverse Laplace transform using the command ilaplace.

For example,

ilaplace(1/s”"3)
MATLAB will execute the above statement and display the result -

ans =
tr2/2
Example

Create a script file and type the following code -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 129/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

syms s t abw

ilaplace(1/s"7)
ilaplace(2/(w+s))
ilaplace(s/(s"2+4))
ilaplace(exp(-b*t))
ilaplace(w/(s”"2 + w”2))
ilaplace(s/(s"2 + w"2))

When you run the file, it displays the following result -

ans =
t"6/720

ans =
2*exp(-t*w)

ans =
cos(2*t)

ans =
ilaplace(exp(-b*t), t, x)

ans =
sin(t*w)

ans =
cos(t*w)

The Fourier Transforms

Fourier transforms commonly transforms a mathematical function of time, f(t), into a new function,
sometimes denoted by or F, whose argument is frequency with units of cycles/s (hertz) or radians per
second. The new function is then known as the Fourier transform and/or the frequency spectrum of the

function f.

Example

Create a script file and type the following code in it -

syms X

f = exp(-2*x"2); %our function
ezplot(f,[-2,2]) % plot of our function
FT = fourier(f) % Fourier transform

When you run the file, MATLAB plots the following graph -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

130/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

The following result is displayed -

FT =
(27(1/2)*pir(1/2)*exp(-wr2/8))/2

Plotting the Fourier transform as -

ezplot(FT)

Gives the following graph -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 131/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

Inverse Fourier Transforms

MATLAB provides the ifourier command for computing the inverse Fourier transform of a function. For
example,

f = ifourier(-2*exp(-abs(w)))
MATLAB will execute the above statement and display the result -

f =
-2/ (pi*(x"2 + 1))

MATLAB - GNU Octave Tutorial

GNU Octave is a high-level programming language like MATLAB and it is mostly compatible with
MATLAB. It is also used for numerical computations.

Octave has the following common features with MATLAB -

. matrices are fundamental data type

. it has built-in support for complex numbers
. it has built-in math functions and libraries
. it supports user-defined functions

GNU Octave is also freely redistributable software. You may redistribute it and/or modify it under the terms
of the GNU General Public License (GPL) as published by the Free Software Foundation.

MATLAB vs Octave

Most MATLAB programs run in Octave, but some of the Octave programs may not run in MATLAB
because, Octave allows some syntax that MATLAB does not.

For example, MATLAB supports single quotes only, but Octave supports both single and double quotes for
defining strings. If you are looking for a tutorial on Octave, then kindly go through this tutorial from
beginning which covers both MATLAB as well as Octave.

Compatible Examples

Almost all the examples covered in this tutorial are compatible with MATLAB as well as Octave. Let's try
following example in MATLAB and Octave which produces same result without any syntax changes -

This example creates a 3D surface map for the function g = xe" (¢ *¥°) Create a script file and type the
following code -

[x,y] = meshgrid(-2:.2:2);
g = x .* exp(-x."2 - y."2);

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 132/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

surf(x, y, 8)
print -deps graph.eps

When you run the file, MATLAB displays the following 3-D map -

Non-compatible Examples

Though all the core functionality of MATLAB is available in Octave, there are some functionality for

example, Differential & Integration Calculus, which does not match exactly in both the languages. This
tutorial has tried to give both type of examples where they differed in their syntax.

Consider following example where MATLAB and Octave make use of different functions to get the area of
a curve: f(x) = x2 cos(x) for -4 < x < 9. Following is MATLAB version of the code -

f = x"2*cos(x);

ezplot(f, [-4,9])

a = int(f, -4, 9)

disp('Area: '), disp(double(a));

When you run the file, MATLAB plots the graph -

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 133/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

2 cos(x)

30t /]".]

i / |

10} /e \ -

The following result is displayed

a =
8*cos(4) + 18*cos(9) + 14*sin(4) + 79*sin(9)

Area:
0.3326

But to give area of the same curve in Octave, you will have to make use of symbolic package as follows

pkg load symbolic

symbols
x = sym("x");
f = inline("x"2*cos(x)");

ezplot(f, [-4,9])
print -deps graph.eps

[a, ierror, nfneval] = quad(f, -4, 9);
display('Area: '), disp(double(a));

MATLAB - Simulink

Simulink is a simulation and model-based design environment for dynamic and embedded systems,
integrated with MATLAB. Simulink, also developed by MathWorks, is a data flow graphical programming
language tool for modelling, simulating and analyzing multi-domain dynamic systems. It is basically a
graphical block diagramming tool with customizable set of block libraries.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 134/141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

It allows you to incorporate MATLAB algorithms into models as well as export the simulation results into
MATLAB for further analysis.

Simulink supports -

system-level design
simulation
automatic code generation

testing and verification of embedded systems

There are several other add-on products provided by MathWorks and third-party hardware and software
products that are available for use with Simulink.

The following list gives brief description of some of them -

Stateflow allows developing state machines and flow charts.

Simulink Coder allows the generation of C source code for real-time implementation of systems
automatically.

xPC Target together with x86-based real-time systems provide an environment to simulate and
test Simulink and Stateflow models in real-time on the physical system.

Embedded Coder supports specific embedded targets.
HDL Coder allows to automatically generate synthesizable VHDL and Verilog.

SimEvents provides a library of graphical building blocks for modelling queuing systems.

Simulink is capable of systematic verification and validation of models through modelling style checking,
requirements traceability and model coverage analysis.

Simulink Design Verifier allows you to identify design errors and to generate test case scenarios for model
checking.

Using Simulink

To open Simulink, type in the MATLAB work space -

simulink

Simulink opens with the Library Browser. The Library Browser is used for building simulation models.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 135/141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

|i@i@imﬂink Library Browser | |
g s ol -
| Eile Edit View Help
3. L3 » Entersearchierm - M Gl
| Libraries Library: Simuink LSurch Resuls: (none} | Frequenty Used |
HE e ot e b ———— e e i m e
4 %3] Simulink -
Commonly Used Blocks | b L COmiy e
. Blods
Continuous
Discontinuities
Dizcrete Continusus
Legic and Bit Operations

Lookup Tables
Math Operations
Model Verification
Model-Wide Utilities
Ports & Subsystems
Signal Attributes
Signal Routing
Sinks
Sources
User-Defined Functions
- Additional Math & Discrs
Aerospace Blockset
Communications Systen
Computer Vision Systerr,
Control System Toolbox |
o |"&| DSP System Toolbox
: Embedded Coder
Fuzzy Logic Toolbox
HDL Verifier
Image Acquisttion Toolb
Instrument Control Tooll
Medel Predictive Contro
Meural Network Toolbox

1]

8 (1] (2] & [Z B [P] [

=
OPC Toolbox
Real-Time Windows Tarc

Report Generator

Robust Control Toolbox -~ @
i | i | [

Showing: Simulink '

Discontinuities

Disorele

Lagies and Bit
Operations

Lockup Tables

hath
Cperations

hModel
Venlicalion

Modal-Wide
Litilaties

Poris &
Subsystams

Shgnal Attribuwtes

Signal Routing

L]

b

On the left side window pane, you will find several libraries categorized on the basis of various systems,
clicking on each one will display the design blocks on the right window pane.

Building Models

To create a new model, click the New button on the Library Browser's toolbar. This opens a new untitled

model window.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm

136/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

m
[[d&: few Dwpley fisgmem Pmadsbon fnalyes Cede feohr e
- ED-M &~ ®- we o = @ -
v T, sty
Bl untaied | ® Ealetnies o
L
£d
| =
=
i
105% el
— —

A Simulink model is a block diagram.

Model elements are added by selecting the appropriate elements from the Library Browser and dragging
them into the Model window.

Alternately, you can copy the model elements and paste them into the model window.

Examples

Drag and drop items from the Simulink library to make your project.

For the purpose of this example, two blocks will be used for the simulation - A Source (a signal) and a
Sink (a scope). A signal generator (the source) generates an analog signal, which will then be graphically
visualized by the scope(the sink).

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 137/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

| inrarias | Library; Simulnk | Search Resulis: (none)] Freguendly Used
PR Simulink - |
I Com Lt .
E:::ir:i:&; Used Blocks Ehd:mhl l!"\._ Continsous
Discontmuitiss
Discrats E Discontinuities b Titorate
Logic and Bit Operations
Lookup Tables = L
: 2 gie and B)
Egh Fpt_"“"'r_‘* ﬁ: Opartinng R Lociup Tables
el Verfication

Model-Wide Utilities e hinth & Model
Ports & Subsysterns + B SR aliEn el F catien
Signal Attnbutes
Signal Routing E Medal-Wide Parts &
Sinks T Utilities Subpysems
Sources

ser-Lefined FUnclions . :

Signal Attributes I Bowti
» Additional Math & Discrete = E i E e e
Aerospace Blockset
Communications Systern Toolbox -}«E- Sinks 1 % Saurces
Computer Vision System Toolbox 2
Control System Toolbox
Lhae-Dafines . Agditians Math

DSP System Toolbox E Fundtions - e
Embedded Coder
Fuzzy Logic Toolbox

Begin by dragging the required blocks from the library to the project window. Then, connect the blocks
together which can be done by dragging connectors from connection points on one block to those of
another.

Let us drag a 'Sine Wave' block into the model.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 138/141

5/8/2020

MATLAB - Quick Guide - Tutorialspoint

Logic and Bit Operations

p—
Lookup Tables
Math E]pperatiuns A gﬁ::?ﬁ;ﬁﬂ_
Model Verification
Model-Wide Utilities
Ports & SUbS}TStEFHS 1z3 p Digital Cloc
Signal Attributes
Soufees
User-Defined Functions = [S
b Additional Math & Discrete =
[i Aerospace Blockset
[i Communications System Toolbox J'U]_ L, Pulse Generator
[i Computer Vision System Toolbox
i Control Systern Toolbox 2andam
i [*a| DSP System Toolbox '\M P g
[i Embedded Coder
[+ i FI_IE‘_',,I' Ln:lgic Toolbox E} Repesating Se-
x i HDL Verifier quence Interp...
i Image Acquisition Toolbox
i Instrument Control Toolbox “ﬁ =eh Signal Builder
i Model Predictive Control Toolbox
[i Meural Metwork Toolbox a
4| OPC Toolbaox L Vi Sine Wavs
i Real-Time Windows Target
i Report Generator M Uniform Ran-
i Robust Control Toolbox " dom Number
b |®%| SimEvents

Select 'Sinks' from the library and drag a 'Scope' block into the model.

Librarses

4 [Pl Simulink

Continuous
Discontinurties
Discrete

Lookup Tables
Math Operations
Model Verification

Signal Attributes

Sources

Commonly Used Blocks
Logic and Bit Operations

Model-\Wide Utilities
Ports &t Subsystemns

Siinal F-nul;ini

Uszer-Defined Functions

| Library: Simulink/Sinks

el 1

Jilllel |

| Search Resuts: (none)

Freq 4 1

Cisplay] Floating Scope
Ot k. - Soope

Sieg Simulation E T bruater

Te Flle 4 smout Te Wedsoace
2 Graph

Drag a signal line from the output of the Sine Wave block to the input of the Scope block.

https://www.tutorialspoint.com/matla

b/matlab_quick_guide.htm

139/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

File Edit View Display Diagram Simulation Apnalysis Code Jools Help
Bl - =] e o . -

% @ -2 4 P &) ¥ 100
Model Browser = | untitied |

iii untitled ® ||*&|untitled

F i
Vi >

W oE e

Sine Wave Soope
Mode| Browser = | untited |
"8 untitled ® |[Pa|untitied

Al
|V

Sine Wave Soope

HoE e

Run the simulation by pressing the 'Run' button, keeping all parameters default (you can change them
from the Simulation menu)

You should get the below graph from the scope.

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 140/141

5/8/2020 MATLAB - Quick Guide - Tutorialspoint

R LRI R

https://www.tutorialspoint.com/matlab/matlab_quick_guide.htm 141/141

