Direct Method of Interpolation

Polynomial Interpolation

What is Interpolation ?

Given (x_0, y_0) , (x_1, y_1) , (x_n, y_n) , find the value of 'y' at a value of 'x' that is not given.

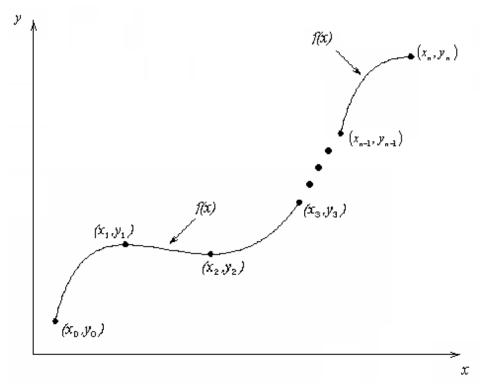


Figure 1 Interpolation of discrete.

Computational

Interpolants

Polynomials are the most common choice of interpolants because they are easy to:

- Evaluate
- Differentiate, and
- Integrate

Direct Method

Given 'n+1' data points (x_0,y_0) , (x_1,y_1) ,..... (x_n,y_n) , pass a polynomial of order 'n' through the data as given below:

$$y = a_0 + a_1 x + \dots + a_n x^n$$
.

where a_0 , a_1 ,..... a_n are real constants.

- Set up `n+1' equations to find `n+1' constants.
- To find the value 'y' at a given value of 'x', simply substitute the value of 'x' in the above polynomial.

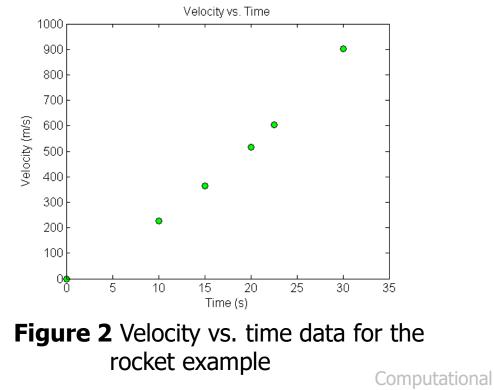
Example 1

The upward velocity of a rocket is given as a function of time in Table 1.

Find the velocity at t=16 seconds using the direct method for linear interpolation.

Table 1 Velocity as a function
of time.

t, (s)	v(t), (m/s)		
0	0		
10	227.04		
15	362.78		
20	517.35		
22.5	602.97		
30	901.67		



Linear Interpolation $v(t) = a_0 + a_1 t$ $v(15) = a_0 + a_1(15) = 362.78$ $v(20) = a_0 + a_1(20) = 517.35$

Solving the above two equations gives,

$$a_0 = -100.93$$
 $a_1 = 30.914$

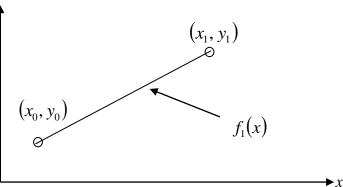


Figure 3 Linear interpolation.

Hence

$$v(t) = -100.93 + 30.914t, \ 15 \le t \le 20.$$

 $v(16) = -100.93 + 30.914(16) = 393.7 \text{ m/s}$

Computational

7

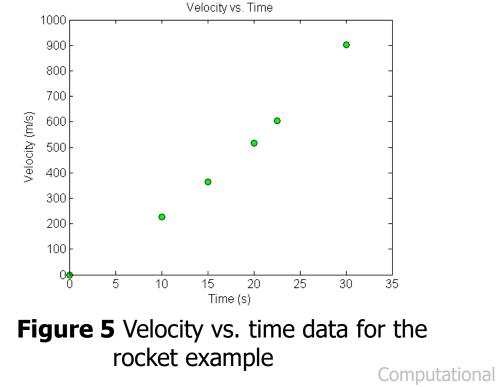
Example 2

The upward velocity of a rocket is given as a function of time in Table 2.

Find the velocity at t=16 seconds using the direct method for quadratic interpolation.

Table 2 Velocity as a function
of time.

t, (s)	v(t), (m/s)		
0	0		
10	227.04		
15	362.78		
20	517.35		
22.5	602.97		
30	901.67		



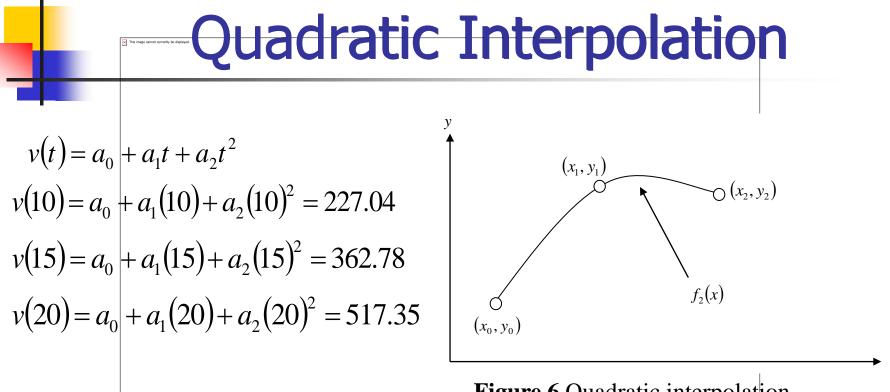


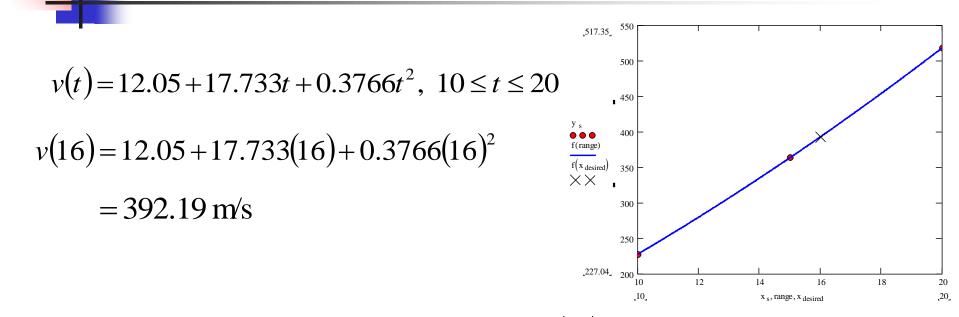
Figure 6 Quadratic interpolation.

Solving the above three equations gives

$$a_0 = 12.05$$
 $a_1 = 17.733$ $a_2 = 0.3766$

Computational

Quadratic Interpolation (cont.)



The absolute relative approximate error $|\epsilon_a|$ obtained between the results from the first and second order polynomial is

$$\left| \in_{a} \right| = \left| \frac{392.19 - 393.70}{392.19} \right| \times 100$$
$$= 0.38410\%$$

Computational

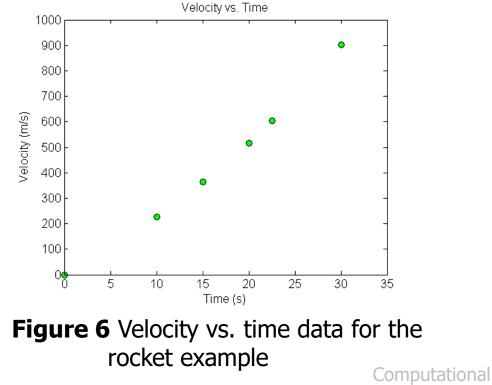
Example 3

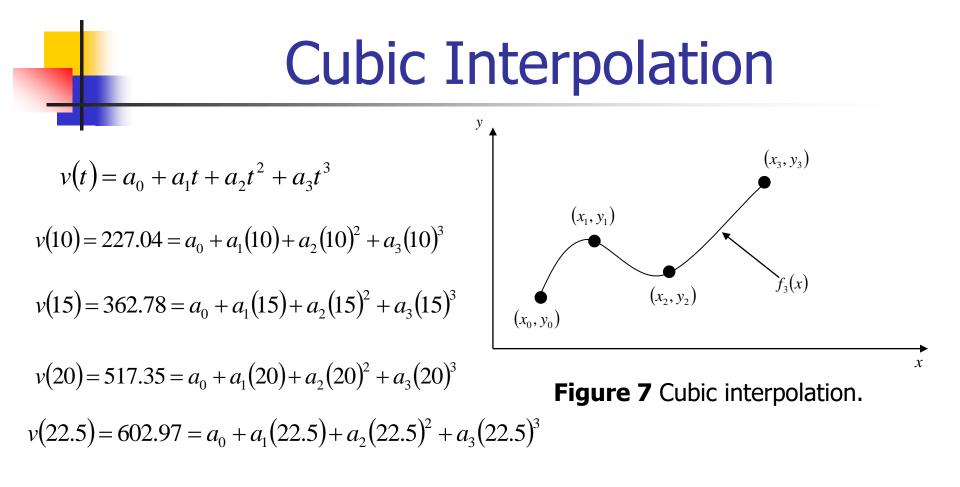
The upward velocity of a rocket is given as a function of time in Table 3.

Find the velocity at t=16 seconds using the direct method for cubic interpolation.

Table 3 Velocity as a function
of time.

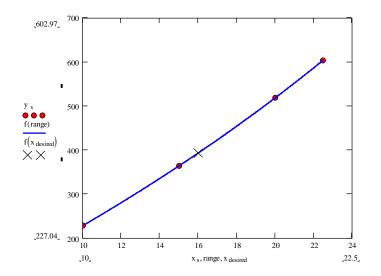
t, (s)	v(t), (m/s)		
0	0		
10	227.04		
15	362.78		
20	517.35		
22.5	602.97		
30	901.67		





 $a_0 = -4.2540$ $a_1 = 21.266$ $a_2 = 0.13204$ $a_3 = 0.0054347$

$\begin{aligned} & \text{Cubic Interpolation (contd)} \\ & v(t) = -4.2540 + 21.266t + 0.13204t^2 + 0.0054347t^3, \quad 10 \le t \le 22.5 \\ & v(16) = -4.2540 + 21.266(16) + 0.13204(16)^2 + 0.0054347(16)^3 \\ & = 392.06 \text{ m/s} \end{aligned}$



The absolute percentage relative approximate error $|\epsilon_a|$ between second and third order polynomial is

$$\left| \in_{a} \right| = \left| \frac{392.06 - 392.19}{392.06} \right| \times 100$$
$$= 0.033269\%$$

Comparison Table

C

 \sim

Table 4 Comparison of different orders of the polynomial.

t(s)	v (m/s)	
0	0	
10	227.04	
15	362.78	
20	517.35	
22.5	602.97	
30	901.67	

Order of Polynomial	1	2	3
v(t=16) m/s	393.7	392.19	392.06
Absolute Relative Approximate Error		0.38410 %	0.033269 %

Distance from Velocity Profile

Find the distance covered by the rocket from t=11s to t=16s ? $v(t) = -4.3810 + 21.289t + 0.13064t^2 + 0.0054606t^3$, $10 \le t \le 22.5$

$$s(16) - s(11) = \int_{11}^{16} v(t) dt$$

= $\int_{11}^{16} (-4.2540 + 21.266t + 0.13204t^{2} + 0.0054347t^{3}) dt$
= $\left[-4.2540t + 21.266\frac{t^{2}}{2} + 0.13204\frac{t^{3}}{3} + 0.0054347\frac{t^{4}}{4} \right]_{11}^{16}$
= 1605 m

Acceleration from Velocity Profile

Find the acceleration of the rocket at t=16s given that $v(t) = -4.2540 + 21.266t + 0.13204^2 + 0.0054347t^3, 10 \le t \le 22.5$

$$a(t) = \frac{d}{dt}v(t)$$

= $\frac{d}{dt}(-4.2540 + 21.266t + 0.13204t^{2} + 0.0054347t^{3})$
= 21.289 + 0.26130t + 0.016382t^{2}, 10 \le t \le 22.5
$$a(16) = 21.266 + 0.26408(16) + 0.016304(16)^{2}$$

= 29.665 m/s²

THE END

Computational Physics