

Computational Physics

An *iterative* method.

Basic Procedure:

-Algebraically solve each linear equation for x_i

-Assume an initial guess solution array

-Solve for each x_i and repeat

-Use absolute relative approximate error after each iteration to check if error is within a pre-specified tolerance.

Computational

Why?

The Gauss-Seidel Method allows the user to control round-off error.

Elimination methods such as Gaussian Elimination and LU Decomposition are prone to prone to round-off error.

Also: If the physics of the problem are understood, a close initial guess can be made, decreasing the number of iterations needed.

Computational

Algorithm

A set of *n* equations and *n* unknowns:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

 $a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$

If: the diagonal elements are non-zero

Rewrite each equation solving for the corresponding unknown

ex:

First equation, solve for x_1

Second equation, solve for x_2

Computational

Computational

Computational

Algorithm

General Form for any row 'i'

$$c_{i} - \sum_{\substack{j=1 \ j \neq i}}^{n} a_{ij} x_{j}$$
$$x_{i} = \frac{a_{ii}}{a_{ii}}, i = 1, 2, \dots, n.$$

How or where can this equation be used?

Computational

Solve for the unknowns

Assume an initial guess for [X]

$$\begin{array}{c|c} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{array}$$

Use rewritten equations to solve for each value of x_i .

Important: Remember to use the most recent value of x_i. Which means to apply values calculated to the calculations remaining in the **current** iteration.

Computational

Calculate the Absolute Relative Approximate Error

$$\left| \in_{a} \right|_{i} = \left| \frac{x_{i}^{new} - x_{i}^{old}}{x_{i}^{new}} \right| \times 100$$

So when has the answer been found?

The iterations are stopped when the absolute relative approximate error is less than a prespecified tolerance for all unknowns.

Computational

The upward velocity of a rocket is given at three different times

Table 1Velocity vs. Time data.

Time, <i>t</i> (s)	Velocity v (m/s)
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as:

$$v(t) = a_1 t^2 + a_2 t + a_3, 5 \le t \le 12.$$

Computational

Using a Matrix template of the form

The system of equations becomes

 $\begin{vmatrix} t_1^2 & t_1 & 1 \\ t_2^2 & t_2 & 1 \\ t_2^2 & t_2 & 1 \\ t_2^2 & t_2 & 1 \\ \end{vmatrix} \begin{vmatrix} a_1 \\ a_2 \\ a_2 \end{vmatrix} = \begin{vmatrix} v_1 \\ v_2 \\ v_2 \end{vmatrix}$ $\begin{vmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{vmatrix} \begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} = \begin{vmatrix} 106.8 \\ 177.2 \\ 279.2 \end{vmatrix}$ Initial Guess: Assume an initial guess of $\begin{bmatrix} a_1 \\ a_2 \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$

Computational

Rewriting each equation

$$a_1 = \frac{106.8 - 5a_2 - a_3}{25}$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$a_2 = \frac{177.2 - 64a_1 - a_3}{8}$$

$$a_3 = \frac{279.2 - 144a_1 - 12a_2}{1}$$

Computational

When solving for a_2 , how many of the initial guess values were used?

Computational

Finding the absolute relative approximate error

$$\left|\epsilon_{a}\right|_{i} = \left|\frac{x_{i}^{new} - x_{i}^{old}}{x_{i}^{new}}\right| \times 100$$

$$\left|\epsilon_{a}\right|_{1} = \left|\frac{3.6720 - 1.0000}{3.6720}\right| x 100 = 72.76\%$$

$$\left|\epsilon_{a}\right|_{2} = \left|\frac{-7.8510 - 2.0000}{-7.8510}\right| x 100 = 125.47\%$$

 $\left|\epsilon_{a}\right|_{3} = \left|\frac{-155.36 - 5.0000}{-155.36}\right| x 100 = 103.22\%$

 $\begin{vmatrix} a_1 \\ a_2 \\ a_1 \end{vmatrix} = \begin{vmatrix} 3.6720 \\ -7.8510 \\ -155.36 \end{vmatrix}$

At the end of the first iteration

...

Using

 $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 3.6720 \\ -7.8510 \\ -155.36 \end{bmatrix}$

from iteration #1

Iteration #2
the values of a_i are found:

$$a_{1} = \frac{106.8 - 5(-7.8510) - 155.36}{25} = 12.056$$

$$a_{2} = \frac{177.2 - 64(12.056) - 155.36}{8} = -54.882$$

$$a_{3} = \frac{279.2 - 144(12.056) - 12(-54.882)}{1} = -798.34$$

Computational

Finding the absolute relative approximate error

 $\left|\epsilon_{a}\right|_{1} = \left|\frac{12.056 - 3.6720}{12.056}\right| x 100 = 69.543\%$

At the end of the second iteration

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 12.056 \\ -54.882 \\ -798.54 \end{bmatrix}$$

The maximum absolute relative approximate error is 85.695%

$$\left|\epsilon_{a}\right|_{2} = \left|\frac{-54.882 - (-7.8510)}{-54.882}\right| x100 = 85.695\%$$

$$\left|\epsilon_{a}\right|_{3} = \left|\frac{-798.34 - (-155.36)}{-798.34}\right| x 100 = 80.540\%$$

Computational

Repeating more iterations, the following values are obtained

Iteration	a_1	$\left \in_{a} \right _{1} \%$	<i>a</i> ₂	$\left \in_{a} \right _{2} \%$	a ₃	$\left \epsilon_{a}\right _{3}\%$
1	3.6720	72.767	-7.8510	125.47	-155.36	103.22
2	12.056	69.543	-54.882	85.695	-798.34	80.540
3	47.182	74.447	-255.51	78.521	-3448.9	76.852
4	193.33	75.595	-1093.4	76.632	-14440	76.116
5	800.53	75.850	-4577.2	76.112	-60072	75.963
6	3322.6	75.906	-19049	75.972	-249580	75.931

Notice – The relative errors are not decreasing at any significant rate

Also, the solution is not converging to the true solution of

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.29048 \\ 19.690 \\ 1.0857 \end{bmatrix}$$

Computational

Gauss-Seidel Method: Pitfall

What went wrong?

Even though done correctly, the answer is not converging to the correct answer

This example illustrates a pitfall of the Gauss-Siedel method: not all systems of equations will converge.

Is there a fix?

One class of system of equations always converges: One with a *diagonally dominant* coefficient matrix.

Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:

$$|a_{ii}| \ge \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \quad \text{for all 'i'} \qquad \text{and } |a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \text{ for at least one 'i'}$$
Computational Physics

Gauss-Seidel Method: Pitfall

Diagonally dominant: The coefficient on the diagonal must be at least equal to the sum of the other coefficients in that row and at least one row with a diagonal coefficient greater than the sum of the other coefficients in that row.

Which coefficient matrix is diagonally dominant?

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 2 & 5.81 & 34 \\ 45 & 43 & 1 \\ 123 & 16 & 1 \end{bmatrix} \qquad \begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 124 & 34 & 56 \\ 23 & 53 & 5 \\ 96 & 34 & 129 \end{bmatrix}$$

Most physical systems do result in simultaneous linear equations that have diagonally dominant coefficient matrices.

Computational

Given the system of equations

$$12x_1 + 3x_2 - 5x_3 = 1$$
$$x_1 + 5x_2 + 3x_3 = 28$$

$$3x_1 + 7x_2 + 13x_3 = 76$$

The coefficient matrix is:

	12	3	-5]
[A] =	1	5	3
	3	7	13

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Will the solution converge using the Gauss-Siedel method?

Computational

Checking if the coefficient matrix is diagonally dominant $\begin{vmatrix} a_{11} &= |12| = 12 \ge |a_{12}| + |a_{13}| = |3| + |-5| = 8 \\ \begin{vmatrix} a_{22} &= |5| = 5 \ge |a_{21}| + |a_{23}| = |1| + |3| = 4 \\ \begin{vmatrix} a_{33} &= |13| = |13| = 13 \ge |a_{31}| + |a_{32}| = |3| + |7| = 10 \end{vmatrix}$

The inequalities are all true and at least one row is *strictly* greater than: Therefore: The solution should converge using the Gauss-Siedel Method

Computational

Computational

The absolute relative approximate error $\left| \in_{a} \right|_{1} = \left| \frac{0.50000 - 1.0000}{0.50000} \right| \times 100 = 100.00\%$

$$\left|\epsilon_{a}\right|_{2} = \left|\frac{4.9000 - 0}{4.9000}\right| \times 100 = 100.00\%$$

$$\left|\epsilon_{a}\right|_{3} = \left|\frac{3.0923 - 1.0000}{3.0923}\right| \times 100 = 67.662\%$$

The maximum absolute relative error after the first iteration is 100%

Computational

After Iteration #1

 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.5000 \\ 4.9000 \\ 3.0923 \end{bmatrix}$

Substituting the x values into the equations

$$x_1 = \frac{1 - 3(4.9000) + 5(3.0923)}{12} = 0.14679$$

$$x_2 = \frac{28 - (0.14679) - 3(3.0923)}{5} = 3.7153$$

$$x_3 = \frac{76 - 3(0.14679) - 7(4.900)}{13} = 3.8118$$

After Iteration #2

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.14679 \\ 3.7153 \\ 3.8118 \end{bmatrix}$$

Computational

Iteration #2 absolute relative approximate error

$$\left|\epsilon_{a}\right|_{1} = \left|\frac{0.14679 - 0.50000}{0.14679}\right| \times 100 = 240.61\%$$

$$\left|\epsilon_{a}\right|_{2} = \left|\frac{3.7153 - 4.9000}{3.7153}\right| \times 100 = 31.889\%$$

$$\epsilon_{a}|_{3} = \left|\frac{3.8118 - 3.0923}{3.8118}\right| \times 100 = 18.874\%$$

The maximum absolute relative error after the first iteration is 240.61%

This is much larger than the maximum absolute relative error obtained in iteration #1. Is this a problem?

Computational

Repeating more iterations, the following values are obtained

Iteration	<i>a</i> ₁	$\left \epsilon_{a}\right _{1}\%$	<i>a</i> ₂	$\left \epsilon_{a}\right _{2}$ %	<i>a</i> ₃	$\left \epsilon_{a}\right _{3}\%$
1	0.50000	100.00	4.9000	100.00	3.0923	67.662
2	0.14679	240.61	3.7153	31.889	3.8118	18.876
3	0.74275	80.236	3.1644	17.408	3.9708	4.0042
4	0.94675	21.546	3.0281	4.4996	3.9971	0.65772
5	0.99177	4.5391	3.0034	0.82499	4.0001	0.074383
6	0.99919	0.74307	3.0001	0.10856	4.0001	0.00101

The solution obtained
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.99919 \\ 3.0001 \\ 4.0001 \end{bmatrix}$$
 is close to the exact solution of $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$

Computational

Given the system of equations

- $3x_1 + 7x_2 + 13x_3 = 76$
 - $x_1 + 5x_2 + 3x_3 = 28$
- $12x_1 + 3x_2 5x_3 = 1$

With an initial guess of

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Rewriting the equations

$$x_{1} = \frac{76 - 7x_{2} - 13x_{3}}{3}$$
$$x_{2} = \frac{28 - x_{1} - 3x_{3}}{5}$$
$$x_{3} = \frac{1 - 12x_{1} - 3x_{2}}{-5}$$

Computational

Conducting six iterations, the following values are obtained

Iteration	<i>a</i> ₁	$\left\ \in_{a} \right\ _{1} \%$	A_2	$\left \epsilon_{a}\right _{2}\%$	<i>a</i> ₃	$\left \epsilon_{a}\right _{3}\%$
1	21.000	95.238	0.80000	100.00	50.680	98.027
2	-196.15	110.71	14.421	94.453	-462.30	110.96
3	-1995.0	109.83	-116.02	112.43	4718.1	109.80
4	-20149	109.90	1204.6	109.63	-47636	109.90
5	2.0364×10^{5}	109.89	-12140	109.92	4.8144×10^{5}	109.89
6	-2.0579×10^{5}	109.89	1.2272×10^{5}	109.89	-4.8653×10^{6}	109.89

The values are not converging.

Does this mean that the Gauss-Seidel method cannot be used?

Computational

The Gauss-Seidel Method can still be used

The coefficient matrix is not diagonally dominant

$$[A] = \begin{bmatrix} 3 & 7 & 13 \\ 1 & 5 & 3 \\ 12 & 3 & -5 \end{bmatrix}$$

But this is the same set of equations used in example #2, which did converge.

$$\begin{bmatrix} 12 & 3 & -5 \end{bmatrix}$$
$$\begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

If a system of linear equations is not diagonally dominant, check to see if rearranging the equations can form a diagonally dominant matrix.

Computational

Not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.

Observe the set of equations

$$x_1 + x_2 + x_3 = 3$$

$$2x_1 + 3x_2 + 4x_3 = 9$$

$$x_1 + 7x_2 + x_3 = 9$$

Which equation(s) prevents this set of equation from having a diagonally dominant coefficient matrix?

Computational

-Advantages of the Gauss-Seidel Method

-Algorithm for the Gauss-Seidel Method

-Pitfalls of the Gauss-Seidel Method

Computational

Questions?

Computational

THE END

Computational Physics