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Figure 1 False-Position Method 
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False-Position Method 

Based on two similar triangles, shown in Figure 1,  
one gets: 
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The signs for both sides of Eq. (4) is consistent, since: 
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From Eq. (4), one obtains 

The above equation can be solved to obtain the next  
predicted root 
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The above equation, 
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Step-By-Step False-Position  
Algorithms 

as two guesses for the root such 1. Choose Lx Uxand 

that     0UL xfxf

2. Estimate the root,  
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3. Now check the following 

, then the root lies between  (a) If 

and ; then 

    0mL xfxf
Lx

mx LL xx  and mU xx 

, then the root lies between  (b) If 

and ; then 

    0mL xfxf
mx

Ux mL xx  and UU xx 



                                           Computational 
Physics  7 

, then the root is (c) If     0mL xfxf .mx

Stop the algorithm if this is true. 

4. Find the new estimate of the root 
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Find the absolute relative approximate error as 
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where 

= estimated root from present iteration 

= estimated root from previous iteration 

new

mx
old

mx

.001.010 3  

ssay5. If sa  , then go to step 3, 

else stop the algorithm. 

Notes: The False-Position and Bisection algorithms are  
quite similar. The only difference is the formula used to  
calculate the new estimate of the root ,mx shown in steps 
#2 and 4! 



                                           Computational 
Physics  9 

Example 1 
The floating ball has a specific gravity of 0.6 and has a  
radius of 5.5cm.  
You are asked to find the depth to which the ball is  
submerged when floating in water. 

The equation that gives the depth  x to which the ball is 
submerged under water is given by 

010993.3165.0 423  xx

Use the false-position method of finding roots of  
equations to find the depth     to which the ball is  
submerged under water. Conduct three iterations to  
estimate the root of the above equation. Find the  
absolute relative approximate error at the end of each  
iteration, and the number of significant digits at least  
correct at the converged iteration. 

x
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Solution 

From the physics of the problem 
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Let us assume 

11.0,0  UL xx
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Iteration 1 
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Iteration 2 
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Iteration 3 
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  7101313.1 mxf

           00624.00611.0  ffxfxf mL

Hence, 
0624.0,0611.0  UL xx
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Iteration 

1 0.0000 0.1100 0.0660 N/A -3.1944x10-5 

2 0.0000 0.0660 0.0611 8.00 1.1320x10-5 

3 0.0611 0.0660 0.0624 2.05 -1.1313x10-7 

4 0.0611 0.0624 0.0632377619 0.02 -3.3471x10-10 

Lx
Ux mx %a  mxf

  010993.3165.0 423  xxxfTable 1: Root of 

for False-Position Method. 
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The number of significant digits at least correct in the  
estimated root of 0.062377619 at the end of 4th iteration  
is 3. 
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