Differentiation -Discrete Functions

Computational Physics

Forward Difference Approximation

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

For a finite ' Δx '

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Graphical Representation Of Forward Difference Approximation

Figure 1 Graphical Representation of forward difference approximation of first derivative.

Example 1

The upward velocity of a rocket is given as a function of time in Table 1.
Table 1 Velocity as a function of time

\mathbf{t}	$\mathbf{v}(\mathbf{t})$
s	m / s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Using forward divided difference, find the acceleration of the rocket at $t=16 \mathrm{~s}$.

Example 1 Cont.

Solution

To find the acceleration at $t=16 \mathrm{~s}$, we need to choose the two values closest to $t=16 \mathrm{~s}$, that also bracket $t=16 \mathrm{~s}$ to evaluate it. The two points are $t=15 \mathrm{~s}$ and $t=20 \mathrm{~s}$

$$
\begin{aligned}
a\left(t_{i}\right) & \approx \frac{v\left(t_{i+1}\right)-v\left(t_{i}\right)}{\Delta t} \\
t_{i} & =15 \\
t_{i+1} & =20 \\
\Delta t & =t_{i+1}-t_{i} \\
& =20-15 \\
& =5
\end{aligned}
$$

Example 1 Cont.

$$
\begin{aligned}
a(16) & \approx \frac{v(20)-v(15)}{5} \\
& \approx \frac{517.35-362.78}{5} \\
& \approx 30.914 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Direct Fit Polynomials

In this method, given ' $n+1$ ' data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ one can fit a $n^{\text {th }}$ order polynomial given by

$$
P_{n}(x)=a_{0}+a_{1} x+\ldots \ldots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

To find the first derivative,
$P_{n}^{\prime}(x)=\frac{d P_{n}(x)}{d x}=a_{1}+2 a_{2} x+\ldots \ldots+(n-1) a_{n-1} x^{n-2}+n a_{n} x^{n-1}$
Similarly other derivatives can be found.

Example 2-Direct Fit Polynomials

The upward velocity of a rocket is given as a function of time in Table 2.
Table 2 Velocity as a function of time

\mathbf{t}	$\mathbf{v}(\mathbf{t})$
s	m / s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at $t=16 \mathrm{~s}$.

Example 2-Direct Fit Polynomials cont.

Solution

For the third order polynomial (also called cubic interpolation), we choose the velocity given by

$$
v(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}
$$

Since we want to find the velocity at $t=16 \mathrm{~s}$, and we are using third order polynomial, we need to choose the four points closest to $t=16 \mathrm{~s}$ and that also bracket $t=16 \mathrm{~s}$ to evaluate it.

The four points are $t_{o}=10, t_{1}=15, t_{2}=20$, and $t_{3}=22.5$.

$$
\begin{aligned}
& t_{o}=10, v\left(t_{o}\right)=227.04 \\
& t_{1}=15, v\left(t_{1}\right)=362.78 \\
& t_{2}=20, v\left(t_{2}\right)=517.35 \\
& t_{3}=22.5, v\left(t_{3}\right)=602.97
\end{aligned}
$$

Example 2-Direct Fit Polynomials cont.

such that

$$
\begin{aligned}
& v(10)=227.04=a_{0}+a_{1}(10)+a_{2}(10)^{2}+a_{3}(10)^{3} \\
& v(15)=362.78=a_{0}+a_{1}(15)+a_{2}(15)^{2}+a_{3}(15)^{3} \\
& v(20)=517.35=a_{0}+a_{1}(20)+a_{2}(20)^{2}+a_{3}(20)^{3} \\
& v(22.5)=602.97=a_{0}+a_{1}(22.5)+a_{2}(22.5)^{2}+a_{3}(22.5)^{3}
\end{aligned}
$$

Writing the four equations in matrix form, we have

$$
\left[\begin{array}{cccc}
1 & 10 & 100 & 1000 \\
1 & 15 & 225 & 3375 \\
1 & 20 & 400 & 8000 \\
1 & 22.5 & 506.25 & 11391
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
227.04 \\
362.78 \\
517.35 \\
602.97
\end{array}\right]
$$

Example 2-Direct Fit Polynomials cont.

Solving the above four equations gives

$$
\begin{aligned}
& a_{0}=-4.3810 \\
& a_{1}=21.289 \\
& a_{2}=0.13065 \\
& a_{3}=0.0054606
\end{aligned}
$$

Hence

$$
\begin{aligned}
v(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \\
& =-4.3810+21.289 t+0.13065 t^{2}+0.0054606 t^{3}, \quad 10 \leq t \leq 22.5
\end{aligned}
$$

Example 2-Direct Fit Polynomials cont.

Figure 1 Graph of upward velocity of the rocket vs. time.

Example 2-Direct Fit Polynomials cont.

The acceleration at $\mathrm{t}=16$ is given by

$$
a(16)=\left.\frac{d}{d t} v(t)\right|_{t=16}
$$

Given that

$$
\begin{aligned}
v(t) & =-4.3810+21.289 t+0.13065 t^{2}+0.0054606 t^{3}, 10 \leq t \leq 22.5 \\
a(t) & =\frac{d}{d t} v(t) \\
& =\frac{d}{d t}\left(-4.3810+21.289 t+0.13065 t^{2}+0.0054606 t^{3}\right) \\
& =21.289+0.26130 t+0.016382 t^{2}, \quad 10 \leq t \leq 22.5 \\
a(16) & =21.289+0.26130(16)+0.016382(16)^{2} \\
& =29.664 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Lagrange Polynomial

In this method, given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, one can fit a $(n-1)^{\text {th }}$ order Lagrangian polynomial given by

$$
f_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)
$$

where ' n ' in $f_{n}(x)$ stands for the $n^{\text {th }}$ order polynomial that approximates the function $y=f(x)$ given at $(n+1)$ data points as $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots \ldots,\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)$, and $L_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}$
$L_{i}(x)$ a weighting function that includes a product of $(n-1)$ terms with terms of $j=i$ omitted.

Lagrange Polynomial Cont.

Then to find the first derivative, one can differentiate $f_{n}(x)$ once, and so on for other derivatives.

For example, the second order Lagrange polynomial passing through

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \text { is }
$$

$$
f_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left.\left(x_{2}-x_{0}\right)\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

Differentiating equation (2) gives

Lagrange Polynomial Cont.

$f_{2}^{\prime}(x)=\frac{2 x-\left(x_{1}+x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{2 x-\left(x_{0}+x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{2 x-\left(x_{0}+x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)$

Differentiating again would give the second derivative as

$$
f_{2}^{\prime \prime}(x)=\frac{2}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{2}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{2}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

Example 3

The upward velocity of a rocket is given as a function of time in Table 3.
Table 3 Velocity as a function of time

\mathbf{t}	$\mathbf{v (t)}$
s	m / s
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67

Determine the value of the acceleration at $t=16 \mathrm{~s}$ using the second order Lagrangian polynomial interpolation for velocity.

Example 3 Cont.

Solution

$$
\begin{aligned}
v(t) & =\left(\frac{t-t_{1}}{t_{0}-t_{1}}\right)\left(\frac{t-t_{2}}{t_{0}-t_{2}}\right) v\left(t_{0}\right)+\left(\frac{t-t_{0}}{t_{1}-t_{0}}\right)\left(\frac{t-t_{2}}{t_{1}-t_{2}}\right) v\left(t_{1}\right)+\left(\frac{t-t_{0}}{t_{2}-t_{0}}\right)\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right) v\left(t_{2}\right) \\
a(t) & =\frac{2 t-\left(t_{1}+t_{2}\right)}{\left(t_{0}-t_{1}\right)\left(t_{0}-t_{2}\right)} v\left(t_{0}\right)+\frac{2 t-\left(t_{0}+t_{2}\right)}{\left(t_{1}-t_{0}\right)\left(t_{1}-t_{2}\right)} v\left(t_{1}\right)+\frac{2 t-\left(t_{0}+t_{1}\right)}{\left(t_{2}-t_{0}\right)\left(t_{2}-t_{1}\right)} v\left(t_{2}\right) \\
a(16) & =\frac{2(16)-(15+20)}{(10-15)(10-20)}(227.04)+\frac{2(16)-(10+20)}{(15-10)(15-20)}(362.78)+\frac{2(16)-(10+15)}{(20-10)(20-15)}(517.35) \\
& =-0.06(227.04)-0.08(362.78)+0.14(517.35) \\
& =29.784 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

THE END

Computational Physics

