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Forward Difference 
Approximation 
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Figure 1 Graphical Representation of forward difference approximation of first derivative. 

Graphical Representation Of 
Forward Difference 

Approximation 
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Example 1 

The upward velocity of a rocket is given as a function of time in Table 1. 

Using forward divided difference, find the acceleration of the rocket at              . 

t v(t) 

s m/s 

0 0 

10 227.04 

15 362.78 

20 517.35 

22.5 602.97 

30 901.67 

Table 1 Velocity as a function of time 

s 16t
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Example 1 Cont. 
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To find the acceleration at             , we need to choose the two values 
closest to            , that also bracket              to evaluate it. The two 
points are              and            . 
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Solution 
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Example 1 Cont. 
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Direct Fit Polynomials 
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In this method, given   data points  

 one can fit a   order polynomial given by 
 

To find the first derivative, 

 

Similarly other derivatives can be found. 
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Example 2-Direct Fit Polynomials 

The upward velocity of a rocket is given as a function of time in Table 2. 

Using the third order polynomial interpolant for velocity, find the 
acceleration of the rocket at              . 

t v(t) 

s m/s 

0 0 

10 227.04 

15 362.78 

20 517.35 

22.5 602.97 

30 901.67 

Table 2 Velocity as a function of time 

s 16t
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Example 2-Direct Fit Polynomials cont. 

For the third order polynomial (also called cubic interpolation), we choose the velocity given by 

  3

3

2

210 tatataatv 

Since we want to find the velocity at              , and we are using third order polynomial, we need 
to choose the four points closest to               and that also bracket               to evaluate it.   

The four points are 

  04.227,10  oo tvt

  78.362,15 11  tvt

  35.517,20 22  tvt

  97.602,5.22 33  tvt

Solution 

s 16t
s 16t s 16t
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Example 2-Direct Fit Polynomials cont. 

such that 

Writing the four equations in matrix form, we have 
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Example 2-Direct Fit Polynomials cont. 

Solving the above four equations gives 

3810.40 a

289.211 a

13065.02 a

0054606.03 a

Hence 
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Example 2-Direct Fit Polynomials cont. 

        Figure 1 Graph of upward velocity of the rocket vs. time. 
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Example 2-Direct Fit Polynomials cont. 

, 

The acceleration at t=16 is given by 
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Given that  

  5.2210,0054606.013065.0289.213810.4 32  ttttt

   tv
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d
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 32 0054606.013065.0289.213810.4         ttt
dt

d


5.2210,016382.026130.0289.21    2  ttt

     216016382.01626130.0289.2116 a

2m/s664.29
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Lagrange Polynomial 
   nn yxyx ,,,, 11   thn 1In this method, given  , one can fit a   order Lagrangian polynomial 

given by 
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Then to find the first derivative, one can differentiate   xfn

for other derivatives. 

For example, the second order Lagrange polynomial passing through  

     221100 ,,,,, yxyxyx is  
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Differentiating equation (2) gives 

once, and so on 

Lagrange Polynomial Cont. 
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Differentiating again would give the second derivative as 

Lagrange Polynomial Cont. 
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Example 3 

Determine the value of the acceleration at               using the second 
order Lagrangian polynomial interpolation for velocity. 

t v(t) 

s m/s 

0 0 

10 227.04 

15 362.78 

20 517.35 

22.5 602.97 

30 901.67 

Table 3 Velocity as a function of time 

s 16t

The upward velocity of a rocket is given as a function of time in Table 3. 
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Solution 

Example 3 Cont. 
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     35.51714.078.36208.004.22706.0 

2m/s784.29



THE END 
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