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Forward Difference Approximation 
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x x+Δx
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Figure 1 Graphical Representation of forward difference approximation of first derivative. 

Graphical Representation Of 
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Example 1 

The velocity of a rocket is given by 
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where  ''ν is given in m/s and  ''t is given in seconds.  

a) Use forward difference approximation of the first derivative of        to 
calculate the acceleration at            . Use a step size of            . 

b) Find the exact value of the acceleration of the rocket. 
c) Calculate the absolute relative true error for part (b). 
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Example 1 Cont. 

Solution 
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Example 1 Cont. 
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Example 1 Cont. 
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The exact value of   16a can be calculated by differentiating  
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Example 1 Cont. 

Knowing that 
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Example 1 Cont. 
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The absolute relative true error is 
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Backward Difference Approximation of the 

First Derivative  

We know  
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Backward Difference Approximation of the 

First Derivative Cont. 

This is a backward difference approximation as you are taking a point 
backward from x. To find the value of   xf  at  

ixx  , we may choose another 

point  'Δ' x behind as  1 ixx .  This gives 
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x x-Δx 

x 

f(x) 

Figure 2 Graphical Representation of backward difference 
 approximation of first derivative 

Backward Difference Approximation of the 

First Derivative Cont. 
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Example 2 

The velocity of a rocket is given by 
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where  ''ν is given in m/s and  ''t is given in seconds.  

a) Use backward difference approximation of the first derivative of        
to calculate the acceleration at           . Use a step size of           . 

b) Find the absolute relative true error for part (a). 
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Example 2 Cont. 

Solution 
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Example 2 Cont. 
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Example 2 Cont. 

The absolute relative true error is 
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674.29

915.28674.29
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%5584.2

The exact value of the acceleration at            from Example 1 is 

  2m/s674.2916 a

s 16t
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Derive the forward difference approximation 

from Taylor series 

Taylor’s theorem says that if you know the value of a function  '' f at a point  

ix and all its derivatives at that point, provided the derivatives are 

continuous between 
ix and  1ix , then 
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Derive the forward difference approximation 

from Taylor series Cont. 

The   x0 term shows that the error in the approximation is of the order 

of   xΔ Can you now derive from Taylor series the  formula for  backward  

divided difference approximation of the first derivative? 

As shown above, both forward and backward divided  difference 

approximation of the first  derivative are accurate on the order of  
 x0

Can we get better approximations? Yes, another method to approximate    

the first derivative is called the Central difference approximation of  

the first derivative.  
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Derive the forward difference approximation 

from Taylor series Cont. 

From Taylor series 
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Subtracting equation (2) from equation (1) 
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Central Divided Difference 

Hence showing that we have obtained a more accurate formula as the   

error is of the order of           .  2Δ0 x

x 

f(x) 

x-Δx      x     x+Δx         

Figure 3 Graphical Representation of central difference approximation of first derivative  
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Example 3 

The velocity of a rocket is given by 
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where  ''ν is given in m/s and  ''t is given in seconds.  

(a) Use central divided difference approximation of the first derivative of 
to calculate the acceleration at           . Use a step size of           . 

(b) Find the absolute relative true error for part (a). 
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Example 3 cont. 

Solution 
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Example 3 cont. 
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Example 3 cont. 

The absolute relative true error is 

100
674.29
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The exact value of the acceleration at            from Example 1 is 

  2m/s674.2916 a
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Comparision of FDD, BDD, CDD 

The results from the three difference approximations are given in Table 1. 

Type of Difference 

Approximation 

Forward 

Backward 

Central 

30.475 

28.915 

29.695 

2.6967 

2.5584 

0.069157 

Table 1 Summary of a (16) using different divided difference approximations  

 16a

 2/ sm
%t
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Finding the value of the derivative 

within a prespecified tolerance 

In real life, one would not know the exact value of the derivative – so how   

would one know how accurately they have found the value of the derivative.   

A simple way would be to start with a step size and keep on halving the step    

size and keep on halving the step size until the absolute relative approximate  

error is within a pre-specified tolerance.  

Take the example of finding  for   tv
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Finding the value of the derivative 

within a prespecified tolerance Cont. 

   
Given in Table 2 are the values obtained using the backward difference 
approximation method and the corresponding absolute relative 
approximate errors.  

   

t  tv %a

Table 2 First derivative approximations and relative errors for 
             different Δt values of backward difference scheme 
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Finding the value of the derivative 

within a prespecified tolerance Cont. 

From the above table, one can see that the absolute relative  

approximate error decreases as the step size is reduced. At   125.0t

 the absolute relative approximate error is 0.16355%, meaning that   

at least 2 significant digits are correct in the answer.  
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Finite Difference Approximation of 

Higher Derivatives 

One can use Taylor series to approximate a higher order derivative.  

For example, to approximate   xf  , the Taylor series for  
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Finite Difference Approximation of 

Higher Derivatives Cont. 

Subtracting 2 times equation (4) from equation (3) gives 
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Example 4 

The velocity of a rocket is given by 
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Use forward difference approximation of the second derivative         

of to calculate the jerk at           . Use a step size of            .   
 tν
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Example 4 Cont. 

Solution 
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Example 4 Cont. 

 
 

 208.9
2021001014

1014
ln200020

4

4















m/s35.517

 
 

 188.9
1821001014

1014
ln200018

4

4















sm /02.453

 
 

 168.9
1621001014

1014
ln200016

4

4















m/s07.392



                                           Computational 
Physics  34 

Example 4 Cont. 
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The exact value of   16j can be calculated by differentiating  
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Example 4 Cont. 

Knowing that 
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Example 4 Cont. 
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The absolute relative true error is 
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Similarly it can be shown that 
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Higher order accuracy of higher 

order derivatives 

The formula given by equation (5) is a forward difference approximation of  

the second derivative and has the error  of the order of   xΔ . Can we get  

a formula that has a better accuracy?  We can get the central difference   

approximation of the second derivative.  

The Taylor series for  
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Higher order accuracy of higher 

order derivatives Cont. 
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Adding equations (6) and (7), gives 
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Example 5 

The velocity of a rocket is given by 
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Use central difference approximation of second derivative of        to 
calculate the jerk at               . Use a step size of           . 
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Example 5 Cont. 

Solution 
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Example 5 Cont. 
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Example 5 Cont. 
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THE END 
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