Chapter

Linear Models and
Matrix Algebra

For the one-commodity model (3.1), the solutions P* and O* as expressed in (3.4)
and (3.5), respectively, arc relatively simple, cven though a number of parameters arc
involved. As more and more commodities are mcorporated into the model, such selution
formulas quickly become cumbersome and unwieldy. That was why we had to resort to a
little shorthand, even for the two-commodity case—in order that the solutions {3.14)
and (3.15) can still be written in a relatively concise fashion, We did not attempt to tackle
any three- or four-commodity models, even in the linear version, primarily because we did
not yet have at our disposal a method suitable for handling a large system of simultancous
equations. Such a method is found in marrix afgebra, the subject of this chapter and the next.

Matrix algebra can enable us to do many things. In the first place, 1t provides a compact
way of writing an equation system, even an cxtremely large ong. Sccond, it leads to a way
of testing the existence of a solution by cvaluation of a determinant—a concept closcly
related to that of a matrix. Third, it gives a method of finding that solution (if it exists).
Since equation systems are encountered not only in static analysis but also in comparative-
static and dynamic analyses and in optimization problems, you will [ind ample application
of matrix algebra in almost every chapter that is to follow. This is why it 1s desirabic to in-
troduce matrix algebra early.

However, ong slight catch is that matrix algebra is applicable only to /inear-cquation
systemns. How realistically linear equations can describe actual economic refationships de-
pends, of course, on the nature of the relationships in question. In many cases, even if some
sacrifice of rcalism is entailed by the assumption of lincarity, an assumed lincar relation-
ship can produce a sufficiently closc approximation ¢ an actual nonlinear relationship to
warrant its usc.

In other cases, while preserving the nonlinearity in the model, we can effect a transfor-
mation of variables so as to obtain a linear relation to work with. For example, the nonlinear
function

V= ax

can be readily transformed, by taking the logarithm on both sides, into the function

logy =loga + ~logx
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which is linear in the two variables (log y) and (log x). (Logarithms will be discussed in
more detail in Chap. 10.). More importantly, in many applications such as comparative-
static analysis and optimization problems, discussed subsequently, although the original
formuiation of the economic model is nonlincar in nature, linear equation systems will
emerge in the course of analysis. Thus the lincarity restriction is not nearly as restrictive as
it may first appear.

4.1 Matrices and Vectors

The two-commodity market model (3.12) can be written—afler eliminating the quantity
variables as a system of two linear equations, as in (3.13),

[ P] +(.";.'_P2 = —{y
nP+wnfr=-n

where the parameters ¢ and y, appear to the right of the equals sign. In general, a system
of m linear equations in » variables (xy, X2, ..., X,) can also be arranged into such a
format:

anxp Fapy: 4o b apx, = d

anX) Fanx:+ -4 anx, =db

(4.1)

.............................

A X] + UpaXs + -+ Qgp Xy = dm

[n (4.1), the variable x| appears only within the leftmost column, and in general the vari-
able x; appears only in the jth column on the left side of the equals sign. The double-
subscripted parameter symbol a;; represents the coefficient appearing in the ith equation
and attached to the jth variable. For example, a;; is the coefficient in the second equation,
attached to the variable x,. The parameter ¢; which is unattached to any variable, on the
other hand, represents the constant term in the ith equation. For instance, ¢| is the constant
term in the first equation. All subscripts are therefore keyed to the specific locations of the
variables and parameters in (4.1).

Matrices as Arrays

There are essentiaily three types of ingredients in the equation system (4.1). The first is the
set of coeflicients a;;; the sccond is the set of variables x|, . .., x,; and the last is the sct of
constant terms d, . .., 4, . If we arrange the three sets as three rectangular arrays and label
them, respectively, as 4, x, and 4 (without subscripts), then we have

an  diz e dy I di
e X3 o
dn iz [45] 2
A= y x=| . d=| . (4.2)

inl Um2 - dmp by dm
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As a simple example, given the linear-equation system
) + 3%+ x3=22
I tdr -2 =12 (4.3)
dx)— X345, =10

we can write
6 3 1 X 22
A=|1 4 =2 x=|x d=112 (4.4)
4 -1 3 X3 10

Each of the three arrays in (4.2) or (4.4) constitutes a mafrix.

A matrix is defined as a rectangular array of numbers, parameters, or variablcs. The
members of the array, referred to as the elements of the matrix, are usually enclosed in
brackets, as in (4.2), or sometimes in parentheses or with double vertical lines: |{ [|. Note
that in matrix 4 {the coefficient mairix of the equation system), the elements are separated
not by commas but by blank spaces only. As a shorthand device, the array in matrix 4 can

be written more simply as
A=1a] (r’:l,Q,.“,m
" j=1L2,....n

Inasmuch as the location ol each element in a matrix 18 unequivocally fixed by the sub-
script, cvery matrix 1s an ordered set.

Vectors as Special Matrices

The number of tows and the number of columns in a matrix together define the dimension
of the matrix. Since matrix 4 in (4.2) contains m rows and 1 columns, it 1s said to be of
dimension = x z (read “m by #”). Jtis important 1o remember that the row number always
precedes the column number; this is in line with the way the two subscripts n a;; are
ordercd. In the special case where m = r, the matrix is called a square matrix; thus the
matrix 4 in (4.4)1sa 3 x 3 square matrix.

Some matrices may contain only one column, such as x and d in (4.2) or (4.4). Such

matrices are given the special name column vectors. In (4.2), the dimension of x is 7 x 1,
and that of ¢ is m x 1; in (4.4) both x and d are 3 x 1. If we arranged the variables x; in o
horizontal array, though, there would resulta 1 x »# matrix, which s called a row vector. For
notation purposes, a row vector is often distinguished from a column vector by the use ofa
primed symbol:
x'= [x;) x2 - W]
You may observe that a vector (whether row or column) is merely an ordered #-tuple, and
as such it may sometimes be intcrpreted as a point in an n-dimensional space. In turn, the
m X # matrix 4 can be interpreted as an ordered set of m row vectors or as an ordered set
of n column vectors. These idcas will be followed up in Chap. 5.

An issue of more immediate interest is how the matrix notation can enable us, as
promiscd, to express an equation system in a compact way. With the matrices defincd in
(4.4), we can express the equation system (4.3) simply as

Ax=4d
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In fact, if 4, x. and ¢ are given the meanngs in {4.2), then even the general-equation
system In (4.1} can be written as 4x = «. The compactness of this notation is thus
unmistakablc,

However, the equation Ax = d prompts at least two questions. How do we multiply two
matrices 4 and x? What is meant by the equality of 4x and &7 Since matrices involve
whole blocks of numbers, the familiar algebraic operations defined for single numbers are
nat directly applicable, and there is a need for a new set of operational rules.

EXERCISE 4.1

1. Rewrite the market model (3.1) in the format of (4.7), and show that, if the three vari-
ables are arranged in the order GQq, Qs, and P, the coefficient matrix wili be

1 -1 0
1 0 b
0 1 —d

How would you write the vector of constants?

2. Rewrite the market model (3.12) in the format of {4.1) with the variables arranged in
the following order: Qa1, Qs1, Qu2, Qsz, P1, P2. Wiite out the coefficient matrix, the
variable vector, and the constant vector.

3. Can the market model (3.6) be rewritten in the format of (4.1)? Why?

4. Rewrite the national-income model (3.23) in the format of (4.1), with Y as the first vari-
able. Write out the coefficient matrix and the constant vector.

5. Rewrite the natienalincome model of Exercise 3.5-1 in the format of (4.1), with the
variables in the order ¥, T, and C. [Hint: Watch out for the multiplicative expression
b(Y — Ty in the consumption function.]

4.2 Matrix Operations

As a preliminary, let us first define the word eguality. Two matrices A = [o;; ] and B = [5;;]
are satd to be equal if and only if they have the same dimension and have identical elements
in the corresponding locations in the array, In other words, 4 = B if and only if a;; = h;,
for all values of / and 7. Thus, [or example, we find

4 3| _|4 3 y 20
2. 0] [2 0 4 3
As another example, 1f|:;:| = |:H , this will mean that x = 7and v = 4.

Addition and Subtraction of Matrices

Two matrices can be added if and only if they have the same dimension. When this dimen-
sional requirement is met, the matrices are said to be conformable for addition. In that case,
the addition of 4 = [a;;] and B = [4;;] 1s delined as the addition of each pair of corre-
sponding ¢lements,
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Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

'49+20_4+29+0_69
(2 1 0 7] |2+0 14+7] |2 8

Ca oz b b2 a1+bn a2+ b
@ i+ | bn bn|=|on+bn aptbxn
| @ @z b3 b3z a3 + b1 a3+ by

In general, we may state the rule thus:
[a;1+[b] =[c;]  where ¢;j = a; + by
Note that the sum matrix [¢;;] must have the same dimension as the component matrices
[a;] and [5;].
The subtraction operation A4 — B can be similarly defined if and only i’ 4 and B have
the same dimension. The operation entails the result

[aij) — [by) = [d]  wheredyy = a;; — by

19 3] [6 8] _[19-6 3-8 _[13 -5
20 1 3] [ 2-1 0-3] [ 1 -3
The subtraction operation A — B may be considered alternatively as an addition operation

involving a matrix A and another matrix (—1)8. This, however, raises the question of what
is meant by the multiplication of a matrix by a single number (here, —1).

Scalar Multiplication

To multiply a matrix by a number—or in matrix-algchra terminology, by a scalar—is to
multiply every element of that matrix by the given scalar.

lo )=1% %)

1_ an | _
2o o
From these examples, the rationale of the name scalar should become clear, for it “scales

up (or down)” the matrix by a certain multiple. The scalar can, of course, be a negative
number as well,

(e o d ] - {—011 —t1z —a

a g b —an —Gp —&
Note that if the matrix on the left represents the coefficients and the constant terms in the
simultaneous equations

2

1
32

1
322

bl — bl —
o
]

X+ % =d
an X + ke =d

then multiplication by the scalar —1 will amount to multiplying both sides of bath equa-
tions by —1, thereby changing the sign of every term in the system.
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Multiplication of Matrices

Whereas a scalar can be used to multiply a matrix of any dimension, the multiplication of

two matrices 1s contingent upon the satisfaction of a different dimensional requirement.
Suppose that, given two matrices A and B, we want to find the product 48. The

conformability condition for multiplication 1s that the column dimension of A (the “lead”

matrix in the expression A 8) must be equal to the row dimension of B {the “lag” matrix).

For instance, if

bu b b

(1‘32; =lan ] ;2‘33} N [bzl 2 hzz;} 43)
the product 4 B then is defined, since A has swo columans and B has two rows --precisely the
same number.” This can be checked at a glance by comparing the second number in the
dimension indicator for 4, which is (1 x 2), with the /irsf number in the dimension indica-
tor for B, {2 x 3). On the other hand, the reverse product B4 is not defined in this case,
because B (now the lead matrix) has three columns while 4 (the lag matrix) has only one
row; hence the conformability cendition is violated.

In general, 1f 4 15 of dimension m x » and B is of dimension p x ¢, the matrix product
AR will be defined if and only if n = p. If defined, moreover, the product matrix A5 will
have the dimension m x ¢  the same number of rows as the lead matrix 4 and the same
number of cofumns as the lag matrix B. For the matrices given in (4.5), 48 will be | x 3.

[t remains to define the exact procedure of multiplication, For this purpose, let us take
the matrices 4 and B in (4.5) for illustration. Since the product 48 is defined and is
expected to be of dimension | x 3, we may writc in general (using the symbol C rather than
¢’ for the row vector) that

AB=C=[c; ¢z cnil

Each element in the product matrix C, denated by ¢, 1s defined as a sum of products, to he
computed from the elements in the ith row of the lcad matrix A, and those in the jth cofums
of the lag matrix 8. To find ¢y, [or instance, we should take the first row in A (since i = 1)
and the first column in B (since j = 1)-—as shown in the top pancl of Fig. 4.1—and then
pair the elements together sequentially, multiply out cach pair, and take the sum of the
resulting products, to get

o = anhn +anhy (4.6)

Similarly, for ¢, we take the first row in A (since i = 1) and the second column in B (since
7 = 2), and calculate the indicated sum of preducts——in accordance with the lower panel of
Fig. 4.1—as follows:

ciz = dnhiz + anhn (4.67)

By the same token, we should also have

ci3 = anbis +apb; (4.6")

" The matrix A, being a row vector, would normally be denoted by ¢'. We use the symbol A here to
stress the fact that the multiplication rule being explained applies to rnatrices in general, not only to
the product of one vector and one matrix.
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FIGURE 4.1

Example 7

Example 8

Forc First pair

Second pair

For ¢;: First pair

Second pair

It is the particular pairing requirement in this process which necessitates the matching of
the column dimension of the lead matrix and the row dimension of the lag matrix before
multiplication can be performed.

The multiplication procedure illustrated in Fig. 4.1 can also be described by using the
concept of the inner product of two vectors. Given two veetors w and v with 7 elements
each, say, (s, 2, ..., )} A0d (¥, ¥z, ..., v,), arranged either as two TOWS oF as Two
columns or as one row and one column, their inner product, written as u - # {with a dot in
the middle), is defined as

v =t Uy

This is a sum of products of corresponding clements, and hence the inner product of two
vectors 15 a scalar.

If, after a shopping trip, we arrange the quantities purchased of n goods as a row vector
Q'={Q1 Q - Qul and fist the prices of those goods in a price vector P'=
[Py Pz .- Py, then the inner product of these two vectors is

Q-P =P+ QP + -+ + QnPy = total purchase cost

Using this concept, we can describe the element ¢;; in the product matrix € = A B
simply as the inner product of the ith row of the lead matrix 4 and the jth column of the lag
matrix B. By examining Fig. 4.1, we can easily verify the validity of this description.

The rule of multiplication just outlined applies with equal validity when the dimensions
of A and B are other than those illustrated in Fig. 4.1; the only prerequisite is that the con-
formability condition be met.

Given

A and B = [5]
(3x2) ey |9

|
N
O 09 W



Example 9

Exampie 10

Example 11
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find AB. The product AB is indeed defined because A has twe columns and 8 has two rows,
Their product matrix should be 3 x 1, a column vector:

1(5) + 3(9) 17

AB = | 2(5)+8(9) | = | 82
4(5) + 0(9) 20
Given
3 -1 2 0 -3
3A3= 1 0 3 and 383 =11 % %
(3x3) 4 0 2 3= 3} 0 ;1
5 10

find AB. The same rule of multiplication now yields a very special product matrix:

0+140 —3-142 2 _7 2
ETEFTE WTWOW 100
AB=]0+0+0 -}+0+8% EH+0-3%(=|o 1 0
04040 —440+% 240~ 2| LO O

This last matrix—a square matrix with 1s in its principal diagonal (the diagonal running from
northwest to southeast) and 0s everywhere else—exemplifies the important type of matrix
known as the identity matrix. This will be further discussed in Section 4.5.

Let us now take the matrix A and the vector x as defined in (4.4) and find Ax. The product
matrixis a 3 x 1 column vector:

6 3 1 X1 6x1+3x4+ 13
Ax=11 _32 x| = x+4x—2x
4 -1 5 X3 4x1 — x2 4+ 5x3

{3=3) {(3=1) {3x1)

Note: The product on the right is a column vector, its corpulent appearance notwithstand-
ing! When we write Ax = d, therefore, we have

6x1 + 350+ X3 22
Xx1+4x;—-2x3 | =12
4X'| — X2 +5X3 10

which, according to the definition of matrix equality, is equivalent to the statement of the
entire equation system in (4.3).

Note that, to use the matrix notation Ax = d, it is necessary, because of the conforma-
bility condition, to arrange the variables x; into a cofumn vectar, even though these vari-
ables are listed in a horizontal order in the original equation systemn.

The simple national-income model in two endogencous variables ¥ and C,
Y=C+fh+Gp
C=ag+b¥Y
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can be rearranged into the standard format of (4.1} as follows:

Y—C=1lp+Go
-b¥+C=a

Hence the coefficient matrix A, the vector of variables x, and the vector of constants ¢ are

IR Iy _[h+Go
(zfz;,_[w 1] tzfn'_[c] {zgn_[ g }

Let us verify that this given system can be expressed by the equation Ax = d.
By the rule of matrix multiplication, we have

Ax—{ T =17 [Y] B [1(Y)+(—1)(C)} B [ Y-C

I I 1 e O T S O [ (o N I R S

Thus the matrix equation Ax = d would give us

[ ¥-C 7 [f+Go

| —bY +C | a

Since matrix equality means the equality between corresponding elements, it is clear that

the equation Ax = d does precisely represent the original equation system, as expressed in
the {(4.1) format.

The Question of Division

While matrices, like numbers, can undergo the operations of addition, subtraction, and
multiplication—subject to the conformability conditions—it is not possible 1o divide onc
matrix by another. That is, we cannot write 4/58.

For two numbers a and b, the quotient ¢ /6 (with b # () can be written alternatively as
ah™ orb a, where b ! represents the inverse of reciprocal of b, Since ab™' = b~'a, the
quotient expression a/b can be uscd (o represent both ¢b ' and b 'a. The case of matrices
is difTerent. Applying the concept of inverses to matrices, we may in certain cases (dis-
cussed in Sec. 4.6) define a matrix B~ that is the inversc of matrix B. But [rom the dis-
cussion of the conformability condition it follows that, if A8 ! is defined, there can b no
assurance that 8! 4 is also defined. Even if 4 8~! and B~' 4 arc indeed both defined, they
still may not represent the same product. Hence the expression 4/ 8 cannot be used with-
out ambiguity, and it must be avoided. Instead, you must specify whether you are referring
to AB~" or B~ A— provided that the inverse 37" docs exist and that the matrix product in
question is defined. Inverse matrices will be further discusscd in Sec. 4.6.

The 3 Notation

The use of subscripted symbols not only helps in designating the locations of parameters
and variables but also lends itself to a flexible shorthand for denoting sums of terms, such
as thosc which arose during the process of matrix multiplication.

The summation shorthand makes use of the Greek letter T (sigma, (or “sum™). To
gxpress the sum of x|, x;, and x3, for instance, we may write

3
Xy +x+x= Z.‘Cj

j=1
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which is read as “the sum of x; as / ranges from 1 to 3.” The symbol j, called the summa-
tion index, takes only integer values. The expression x; represents the summand (that which
is to be summed), and it is in effect a function of ;. Aside from the letter 7, summation
indices are also commonly denoted by i or £, such as

7

Zx; =x3 + X4+ x5+ x5+ %7
i=3

#
Y me=xotx o+,
=0

The application of 3 notatien can be readily extended to cases in which the x term is
prefixed with a coefficient or in which each term in the sum 1s raised to some integer power.
For instance, we may write:

3 3
Zaxj =ax;taxrtan=axi+xn+x)=—a Zx,-
J= =l

[>~]-

apX; = q)x| + dzxXy + azx;
J=1

; bl
ax' =apx" +ax' + axt + -+ ax”

M:

i=0
=g+ ayx + x4 -+ a,x”

"
The last example, in particular, shows that the expression Z a;x" can in fact be used as a
=0
shorthand form of the general polynomial function of (2.4).
It may b¢ mentioned in passing that, whenever the context of the discussion leaves no
ambiguity as to the range of summation, the symbol 3 can be used alone, without an index
attached (such as ¥ x;), or with only the index letter underneath (such as Z Xi )

Let us apply the shorthand to matrix multiplication. In (4.6), (4.6"), aiad (4.6™), cach
glement of the product matrix ' = A# is defined as a sum of terms, which may now be
rewritten as follows:

2

ey =anbn +apby = Zalkbkl
=1
2

el =anbp +aphn = Zalﬁbﬁl
=1

2

ci3=aubiz +aphs = Zﬁ‘mbu
E=1

In each case, the first subscript of ¢{; is reflected in the first subseript of @4, and the sce-
ond subscript of ¢ is reflected in the second subscript of by, in the } expression. The

index 4, on the other hand, 1s a “dummy” subscript; it serves to indicate which particular
pair of elements 1s being multiplied, but it does not show up in the symbol ¢ ;.
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Extending this to the multiplication of an m x # matrix 4 = [¢5] and an 2 x p matrix
B = [by;]. we may now write the clemenis of the m x p product matrix 48 = C = |¢;] us
i i
€ = Zaubm ) = Z”lkh#;?.
k=1 f
or more generally.,
< i=1,2,....m
{'If-f — Zalffb;t,l - o]
: F=12.....p
k=1 )
This last equation represents yet another way of stating the rule of multiplication for the
matrices defined above.
EXERCISE 4.2

: 7 -1 D 4 8 31,
1.G|venA:{6 9],82[3 _2],andC=[6 1],ﬁnd.

o) A+8 (BIC-A {34 {d) 4B + 2C

2 8
2, CGvenA=13 0j,8= 20 Jand € = 72 :
[ 3 8 6 3

(a} Is AB defined? Calculate AB. Can you calculate 8A7 Why?
(b) s BC defined? Catculate 8C. Is C8 defined? If so, calculate CB. Is it true that BC = C8?

3. On the basis of the matrices given in Example 9, is the product BA defined? ¥f so,
calculate the product. In this case do we have Af = BA?

4, Find the preduct matrices in the following (in each case, append beneath every matrix
a dimension indicator):

0o 2 0][8 0 X
@3 0 4}{0 1] CYHE _2]{y}
2 3 0 3 5 Z
4 1 70
?g“lws 2} (d)[abc]{o 2}

L 0 1 1 4

5. In Example 7, if we arrange the quantities and prices as column vectors instead of row
vectors, is Q- P defined? Can we express the total purchase costas Q- P? As Q' - P7 As

(b)

Q-P7?
6. Expand the following summation expressions:
3 fl L
(@3 x (d) 2 aix'™
i==2 =1
8 3
b)Y ax (@ L (x+i)
i=5 i=0

4
(c} 2. bx,
i=1
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7. Rewrite the following in 3 notation:
(G} Xq (X1 — 1) + 2)(2{){2 - 1) + 3X3(X3 - 1]
{b) az(x3 + 2) + az(Xs + 3) + x5 +-4)

T 1 1
(C) ;’+;2++F (X-‘,EO)

T T ,
@1+-+5+ == (K£0)
8. Show that the following are true:

n -1
(a) (Z XI) +Xnp1 = Y K
i=0 i=0
n n
(b) z;; Ubj}’j =4 Zl bjy;'
= =

(© Z%(xwy;): 2%&2 Vi
j= j= f=

4.3 Notes on Vector Operations

Example 1

Example 2

In Secs. 4.1 and 4.2, vectors are considered as a special type of matrix, As such, they qual-
ify for the application of all the algebraic operations discussed, Owing to their dimensional
peculiarities, however, some additional comments on vector operations are useful.

Multiplication of Vectors

An m x 1 column vector &, and a | x # row vector v, yicld a product matrix @y’ of
dimension m x .

Given u = 3 andv' =[1 4 5], wecanget
V,_[S(U 34y 5] 3 12 15
V24 2(5)}_[2 8 10]

Since each row in 1 consists of one element only, as does each column in v/, each element
of uv’ turns out to be a single product instead of a sum of products. The product wv' is a
2 x 3 matrix, even though what we started out with are a pair of vectors.

On the other hand, given a 1 x » row vector 4’ and an n x| column vector v, the prod-
uct &'v will be of dimension 1 x 1.
, , 9
Givenu' =[3 4] andv= 7 [ we have

vy =[3(9) + 4(7)] = [55]

Ay writtern, &'v is a matrix, despite the fact that only a single element is present, However,
I x I matrices behave exactly like scalars with respect to addition and muldplication;
(4] +[8] = [12],justas 4 + & = 12;:and [3][7] = [21], justas 3(7) = 2|. Morcover, 1 x |
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Example 3

matrices possess no major properties that scalars do not have. In fact, there is a one-to-one
correspondence between the set of all scalars and the set of all 1 x 1 matrices whose cle-
mernts are scalars. For this reason, we may redefine u'v 1o be the scalar corresponding to the
1 x 1 product matrix. For Example 2, we can accordingly write z¢'v = 55. Such a product is
called a sealar pma’u(,'f.T Remember, however, that while a 1 x 1 matrix can be treated as a
scalar, a scalar cannot be replaced by 4 1 > 1 matrix at will if further calculation is to be
carried out, because complications regarding conformability conditions may arise.

Given a row vector &' =[3 & 9], find . Since u is merely the calumn vector with the
elements of & arranged vertically, we have

3
vu=[3 6 91| 6 | =0 +(67+(9)’
9
where we have omitted the brackets from the 1 x T product matrix on the right. Note that
the product u'u gives the sum of squares of the elements of 4.
Ingeneral, if &' =[w; wy -~ uy], then v'uwill be the sum of squares (a scalar) of the

elements u;:
nl

vu=w it ot =) u
=1
Had we calculated the inner product u- i {or v’ - u’), we would have, of course, abtained
exactly the same result,

2
j

To conclede, it is important to distinguish between the meanings of wv’ {2 matrix larger
than 1 x 1) and #'v (a 1 x 1 matrix, or a scalar). Observe, in particular, that a scalar
product must have a row vector as the lead matrix and a cofumn vector as the lag matrix;
otherwise the product cannot be 1 x 1.

Geometric Interpretation of Vector Operations

1t was mentioned carlier that a column or row vector with # clements (referred to hereafter
as an n-vector} can be viewed as an #-tuple, and hence as a point in an #-dimensional space
(referred to herealter as an #-space). Let us elaborate on this idea. In Fig. 4,24, a point (3, 2)
is plotted in a 2-space and is labeled w. This is the geometric counterpart of the vector

3 o o
= [2] or the vector ' = [3 2], both of which indicate in this context one and the

same ordered pair. 1f an arrow (a directed-ling segment) is drawn from the point ol origin
(0, 0) 10 the point », it will specify the unique straight route by which to reach the destina-
tion point « from the point of origin. Since o unique arrow exists for cach point, we can
regard the vector v as graphically represented either by the point (3, 2), or by the corre-
sponding arrow. Such an arrow, which emanates from the origin (0, 0) like the hand of a
clock, with a definite length and a definite direction, is called a radius vector

¥ The concept of scalar preduct is thus akin to the concept of inner product of two vectors with the
same number of elements in each, which also yields a scalar. Recall, however, that the inner product is
exempted from the conformability condition for multiplication, so that we may write it as ¢ - v. In the
case of scalar product (denoted without a dot between the two vector symbols), on the other hand,
we can express it only as a row vector multiplied by a column vector, with the row vector in the lead.
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Following this new interpretation of a vector, it becomes possible to give geometric
meanings to {«) the scalar multiplication of a vector, (5) the addition and subtraction of vec-
tors, and more generally, (¢} the so-called linear combination of vectors.

First, if we plot the vector = 2u in Fig. 4.2q, the resuiting arrow will overlap the

6
4
old one but will be twice as long. In fact, the multiplication of vector u by any scalar & will
praduce an overlapping arrow, but the arrowhead will be relocated, unless &£ = 1. 1f the
scalar multiplicr is & > 1, the arrow will be extended out {scaled up); if 0 < &k < 1, the

arrow will be shortened (scaled down), if & =0, the arrow will shrink into the point of

origin—which represents a sul! vector, . A negative scalar multiplier will even reverse

{0
0
the direction of the arrow. If the vector » 18 multiplied by —1, for instance, we get —u =
{:;] . and this plots in Fig. 4.25 as an arrow of the same length as # but diametrically

opposite in direction.
. .. 1 3
Next, consider the addition of two vectors, ¢ = l: 4] and u = [ 2] . Thesumv+u =

6 | Can be directly plotted as the broken arrow in Fig. 4.2¢. If we construct a parallelogram

with the two vectors » and v (solid arrows) as two of its sides, however, the diagonal of the
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Example 4

Example 5

parallclogram will turn out cxactly to be the arrow representing the vector sum v + w. In
general, a vector sum can be oblained geometrically from a parallclogram. Moreover, this
method can also give us the vector difference v — u, since the latter is equivalent to the sam
of v and (—Du. In Fig. 4,24, we first reproduce the vector v and the negative vector —u
from diagrams ¢ and &, respectively, and then construct a parallelogram. The resulting
diagonal represents the vector difference v — .

It takes only a simple extension of these results to interpret geometrically a linear
combination (i.e., a linear sum or differcnce) of vectors. Consider the simple case of

oo ]

The scalar multiplication aspect of this operation involves the relocation of the respective
arrowheads of the two vectors v and », and the addition aspect calls for the construction ol
a parallclogram. Beyond these two basic graphical operations, there is nothing new in a lin-
ear combination of vectors. This is true even if there are more terms in the linear combina-
tion. as in

N
Zkr'vi =k +hv +-- ke,
=]
where &; are a set of scalars but the subscripted symbols v; now denote a set of vectors. To
form this sum, the first two terms may be added first, and then the resulting sum 1s added to
the third, and so lorth, till all terms are included.

Linear Dependence

A set of vectors vy, .. ., ¥, 18 32id t0 be linearly dependent if {and only If) any one of them
can be expressed as 2 linear combination of the remaining vectors; otherwise they arc
linearly independent.

1 4 .
The three vectars v = ﬁ] , Vo= [8} ,and v = [5} are linearly dependent because v3

is a linear combination of v and vy:

e[ ]-{2)-

Note that this last equation is alternatively expressible as
3 —2va-w3=0

0
where 0 = [ 0} represents a null vector (also called the zero vector).

The two row vectors v; =[5 12] and v, =[10 24] are linearly dependent because
vi=2[5 12]=[10 24]=v,

The fact that one vector is a multiple of another vector illustrates the simplest case of linear
combination. Note again that this last equation may be written equivalently as

v —v, =0

where 0" represents the null row vector [0 0].
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With the introduction of null vectors, linear dependence may be redefined as follows. A
set of m-vectors vy, ..., v, 18 linearly dependent if and only if there exists a set of scalars
ki, ..., ky {not all zero) such that

M

Zkivi = 0
{mxl)

i=1
[f this equation can be satisfied onéy when k; = 0 for all 7, on the other hand, these vectors
are linearly independent.

The concept of linear dependence admits of an easy geometric interpretation also. Two
veetors ¢ and 2u—one being a multiple of the other—are obviously dependent. Geometri-
cally, in Fig. 4.24, their arrows lic on a single straight line. The same is true of the two
dependent vectors u and —u in Fig. 4,24, In contrast, the two vectors « and v of Fig. 4.2¢
are linearly independent, because it 1s impossible to express one as a multiple of the other.
Geometrically, their arrows do not lic on a single straight line.

When more than two vectors in the 2-space are considered, there emerges this significant
conclusion: onee we have found two linearly independent vectors in the 2-space (say, w and v),
all the other vectors in that space will be expressible as a lingar combination of these (¢ and v).
[nFig. 4.2c and 4, it hag already been illustrated how the two simple linear combinations v +
and v — u can be found. Furthermore, by cxtending, shortening, and reversing the given vec-
tors # and v and then combining these into various parallelograms, we can generate an infinite
number of new vectors, which will exhaust the set of all 2-vectors. Because of this, any set of
three or more 2-vectors (three or more vectors in a 2-space) must be inearly dependent. Two
of them can be independent, but then the third must be a lingar combination of the first two,

Vector Space

The totality of the 2-vectors generated by the various linear combinations of two indepen-
dent vectors  and v constitutes the two-dimensional vector space. Since we are dealing
only with vectors with real-valued elements, this vector space is nonc other than R?, the
2-space we have been referring to all along. The 2-space cannot be gencrated by a single
2-vector, because linear combinations of the latter can only give rise to the set of vectors
lving on a single straight line. Nor does the generation of the 2-space require meore than two
lingarly independent 2-vectors—at any rate, it would be impossible to find more than two.

The two linearly independent vectors # and v are said to span the 2-space. They are also
said to constitute a basis for the 2-space. Note that we said ¢ basis, not the basis, because
any pair of 2-vectors can serve in that capacity as long as they are linearly independent. In
particular, consider the two vectors [1 0] and [0 1], which are called unif veciors. The
first onc plots as an arrow lying along the horizontal axis, and the second, an arrow lying
along the vertreal axis, Because they are linearly independent, they can serve as a basis for
the 2-space, and we do in fact ordinarily think of the 2-space as spanned by its two axes,
which are nothing but the extended versions of the two unit vectors.

By analogy, the three-dimensional vector space is the totality of 3-vectors, and it must
be spanned by exactly three lingarly independent 3-vectors. As an illustration, consider the
set of three unit vectors

1 0 0
e =10 €2 1 ex= | 0 (4.7)
0 0

fa—
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where each ¢; is a vector with 1 as its ith element and with zeros elscwhere.” These three
vectors are obviously lincarly independent; in fact, their arrows lie on the three axes of the
3-space in Fig, 4.3. Thus they span the 3-space, which implies that the entire 3-space (R,
!
in our framework) can be generated from these unit vectors. For example, the vector | 2
2
can be considered as the linear combination e, + 2y + 2¢;. Geomctrically, we can first
add the vectors ¢ and 2e; in Fig. 4.3 by the parallelogram method, n order o get the vee-
tor represented by the point {1, 2, 0) in the xyx; plane, and then add the latter vector to
2e1—via the parallclogram constructed in the shaded vertical plane—to ebtain the desired
final result, at the point {1, 2, 2).

The further extension to n-space should be obvious. The #-space can be defined as the
totality of n-vectors. Though nongraphable, we can still think of the n-space as being
spanned by a total of n (n-element) unit veclors that are all linearly independent. Each
n-vector, being an ordered n-tuple, represents a peiar in the a-space, or an arrow extending
from the point of origin (i.e., the n-clement null vector) to the said point. And any given sct
of # linearly independent s-vectors is, it [act, capable of gencrating the entire #-space.
Since, in our discussion, each element of the r-vector is restricted to be a real number, this
n-space 1s in fact R™.

The n-space we have referred to is sometimes more specifically called the Euclidean
n-space (named after Euclid). To explain this latter concept, we must first comment briefly
on the concepl of distance between two vector points. For any pair of vector points # and v
in a given space, the distance from u to v 1s some real-valucd function

d =d(u. v)

with the following propertics: {1) when iz and v coincide, the distance is zero; (2) when the
two points are distinct, the distance from # to v and the distance from v to « are represented

T The symbol e may be associated with the German word eins, for "one.”
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by an identical positive real number; and (3) the distance between u and v is never longer
than the distance from » to w (a point distinct from ¢ and v) plus the distance from w to x.
Expressed symbolically,

diu,v) =1 (foru = v}
diu, vy =d{v,u) > 0 {foru # v)
di, v) < d(u, wy =+ diw, v) (for w £ u, v)

The last property is known as the frianguiar inequality, because the three points i, v, and
w together will usually define a triangle.

When a vector space has a distance function defined that fulfills the previous three prop-
erties, it1s called a mervic space. However, note that the distance o{#, v} has been discussed
only i general terms, Depending on the specific form assigned to the o function, there may
result a varicty of metric spaces. The so-called Euclidean space is one specilic type of
metric space, with a distance function defined as follows. Let point u be the n-tuple
(ay,ds. ..., a,) and point v be the s-tuple {h. b1, ..., &,); then the Euclidean distance
[unction is

A, vy = V(@ — b2+ (a0 — )+ -+ (a4, — by )

where the square root is taken to be positive, As can be easily verified, this specific distance
function sauislies all three propertics previously enumerated. Applied to the two-
dimensional space in Fig. 4.2a. the distance between the two points (6. 4) and (3, 2} is
found to be

Ve33R +@d -2 =y3+2=V13

This result is seen 1o be consistent with Puthagorasy theorem, which slates that the tength
of the hypotenuse of a right-angled tnangic is cqual to the (positive) square root of the sum
of the squares of the lengths of the other two sides. For if we take (6. 4 and (3, 2) to be u
and », and plot a new point w at (6, 2), we shall indeed have a nght-angled triangle with the
lengths of 1ts horizontal and vertical sides cqual to 3 and 2, respectively, and the length of
the hypotenuse (the distance between ¥ and v) equal to +/32 + 22 = /13,

The Euclidean distance function can also be expressed in terms of the square root of
a scalar product of two vecters. Since v and v denote the two s-tuples {ay, ..., 4,) and
{b1,....by), we can write a columa vector ¥ — v, with clements a; — by, a2 — ba, ...,
@, — b,. What goes under the square-root sign m the Euclidean distance function is, of
course, simply the sum of squares of these 2 elements, which, in vicw of Example 3 of this
section, can be written as the scalar product {(x — v)'(x — v). Henee we have

diu, v) = -\g‘f(u —v){u—u)

EXERCISE 4.3

LGvenu =[5 1 3, v=[3 T -1, w=[7 5 8,and x =[x x x3] write
out the column vectors, u, v, w, and x, and find
(@) uv’ () xx’ {e) u'v (g) v'u
(b} v’ (d) v'u () wx (M x'x
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. Having sold n items of merchandise at quantities Qy, ..

Static {or byuilibrim) Analysiy

3
. Given w = 2 'X:[XI:|’YZ1:y1}’andzz|:z.l:l:
16 X2 ¥ Z

(@) Which of the following are defined: w'x, x'y', xy', y'y, 2z', yw', x - y?

(b) Find all the products that are defined.

., Qp and prices Py, ..., Pp,
how would you express the total revenue in (a) 3 notation and (b) vector notation?

. Given two nonzero vectors wy and ws, the angle ¢ {0° < 6 < 180") they form is related

to the scalar product wiw; (= wywy) as follows:

acute e
& is a{n) { right ] angle if and only if wyw;z § = ] 0
obtuse <

Verify this by computing the scalar product for each of the following pair of vectors (see
Figs. 4.2 and 4.3):

- (1] o
@w=|3|w l] @w=]0]w=2
- 0] 0
- 1] 1
By =, | w j] (@ wi=|2]|w= 2}
- 2] 0
El [-3
(@ Wl—&z_,wz-__z}

. Given v = ﬁ] and v= [g] , find the following graphicaliy:

(@) 2u+3v
(f) 4u— 2v

(a) 2v
Bu-v

(&) u-v

(d) v—u

. Since the 3-space is spanned by the three unit vectors defined in (4.7), any other

3-vector should be expressible as a linear combination of €, ez, and e, Show that the

following 3-vectors can be 5o expressed:
-1 2
| 6 (@ |0
g 8

4 25
(@7 b | -2
10 1

. In the three-dimensional Euclidean space, what is the distance between the following

points?

{0} (3, 2, 8) and {0, -1, 5} () (9, 0, 4)and {2, 0, —4)

. The triangular inequality is written with the weak inequality sign <, rather than the

strict inequality sign <. Under what circumstances would the “=" part of the inequal-
ity apply? o

. Express the length of a radius vector v in the Euclidean r-space (i.e., the distance from

the origin to point v) by using each of the following:
(@) :scalars (b) a scalar product (¢} an inner product
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4.4 Commutative, Associative, and Distributive Laws

Example 1

Example 2

In ordinary scalar algebra, the additive and muitiplicative operations obey the commuta-
tive, associative, and distributive laws as follows:

Commutative law of addition: at+b=b+a
Comnuatative law of multiplication: ab = ba
Associative law of addttion; (a+bd)+e=a+ih+o)
Associative law of multiplication: (ab)e = a(be)
Distributive law: alb+cy=ab+ac

These have been referred to during the discussion of the similarly named laws applicable to
the union and intersection of sets. Most, but not all, ofl these laws also apply to matrix
operations—the significant exception being the commutative law of muitiplication.

Matrix Addition

Matrix addition is commutative as well as associative. This follows {rom the fact that ma-
trix addition calls only for the addition of the corresponding etements of two matrices, and
that the order in which cach pair of corresponding elements is added is immaterial. [n this
context, incidentally, the subtraction operation 4 — B can simply be regarded as the addi-
tion operation 4 + (—B), and thus no scparate discussion is necessary.

The commutative and associative laws can be stated as follows:

Commutative law A+ B=8+4
PrOOF A+ B =la;]l+ bl =[ay;+ bl =[by +a;] =B+ 4

GIvenA=[3 1]and:ﬁi‘:[é 2],weﬁndthat

0 2 3 4
9 3
A+B_B+A_[3 6]
Associative law {(A+B)+C=4A+(B+0C)
Proor {4+ B)+C =[a; + byl + [cy] = lay; + by + 3]

= [af),-] + [bf'j + CE'_J,'] = A -+ (B + C)

Given v, = [3],1@ = [ﬂ and vy = E],we find that

(V|+V2)"V3:[1§:r*|:§ = 13

. EMEE:

which is equal to

Applied ta the linear combination of vectors kv + - - - + ksv,, the associative law per-
mits us to select any pair of termns for addition {or subtraction) first, instead of having to fol-
low the sequence in which the n terms are listed.
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Example 3

Example 4

Example 5

Static for Equilibrivm) Anahsis

Matrix Multiplication

Matrix multiplication is not commutative, that 15,
AB # BA

As explained previously, even when 4B is defined, 84 may not be; but even if both prod-
ucts are defined, the general rule is still A8 # B4,

1 2 0 11,
Letﬂ«_[3 4]and8=[6 7.],then

#[1(0)+2(5) 1(—1)+2(7)]_[12 13
T3 +46) A-D+4] |24 25]
bt BA:[0(1)—1(3) 0(2)_1(4)]:[—3 —4]

6(1)+7(3) 6(2) + 7(4) 27 40

Let & be 1 x 3 (a row vector); then the corresponding column vector v must be 3 x 1. The
product o'u will be 1 x 1, but the product uw’ will be 3 x 3. Thus, obviously, v'u # w'.

In vicw ol the general rule 48 # BA, the lerms premultiply and postmudtiply are often
used to specify the order of multiplication. In the product 45, the matrix 8 is said to be
premultiplied by 4, and 4 to be pasmultiplied by 5.

There do exist interesting exceptions to the rule A B # BA, however. One such casc 1s
when 4 is a square matrix and B 15 an identity matrix. Another is when A4 is the inverse of
B, that is, when A = B~'. Both of these will be taken up again later. It should also be
remarked here that the scalar multiplication of a matrix does obey the commutative law;
thus, if & is a scalar, then

kA = Ak

Although it is not in general commutative, matrix multiplication is associative.

Associative law {(ABYC = A(BCYy= ABC

in forming the product ABC, the confermability condition must naturally be satisfied by
each adjacent pair of matrices. If 4 ism x nandif C'is p x g, then conformability requires
that Bbe n x p: 4 B C

{mxn) {nxph (pey)

Note the dual appearance of # and p in the dimension indicators. If the conformability con-
dition is met, the associative law states that any adjacent pair of matrices may be multiplied
out first, provided that the product is duly inscried in the exact place of the original pair.

Ifx:[h}andA:[a” O}Jhen
X3 Q0 a»

anx
X Ax =X {(Ax) =[x x] AT 011)(12 + azzxf
Q2: X2
Exactly the same result comes from

A1 2
(¥A)x=[on1x1 @axl LJ = a1 X2 4 i
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In Exampte 5, the square matrix 4 has nonzero elements @, and a»; in the principal
diagonal, and zeros everywhere else. Such a matrix 1s called a diagonal matrix. When a
diagonal matrix 4 appears in the product x’4x, the resulting product gives g “weighted”
sum of squares, the weights for the x7 and the x3 terms being supplicd by the clements in
the diagonal of 4, This result is in contrast to the scalar product x'x, which yictds a simple
(unweighted) sum of squares.

Let the economic ideal be defined as the national-income tevel ¥? coupled with the inflation
rate p°. And suppose that we view any positive deviation of the actual income ¥ from ¥? to
be equally undesirable as a negative deviation of the same magnitude, and similarly for
deviations of the actual inflation rate p fram p° Then we may write a social-loss function
such as

A=alY =Y 1 plp— P

where « and g are the weights assigned to the two sources of social loss. If deviations of ¥
are considered to be the more serious type of loss, then « should exceed A. Note that the
squaring of the deviations produces two effects. First, upon squaring, a positive deviation
will receive the same loss value as a negative deviation of the same numerical magnitude.
Second, squaring causes the larger deviations to show up much more significantly in the
social-loss measure than minor deviations. Such a social-loss function can be expressed, if
desired, by the matrix product

w0 _ 0 o 0 Y---YO}

Mairix multiplication is also distributive.

Distributive law  4(8+ () = A8+ AC [premultplication by 4]
(B+C)A=BA+CA [postmultiplication by 4]

In each case, the conformability conditions for addition as well as for multiplication must,
of course, be observed.

EXERCISE 4.4

, 36 -1 7 _ 3 4 ,
1.G|venAm[2 4],B=m[ 8 4},-mmi.{::[1 9],venfythat

(@ (A+B)+C=A+(B+0)
BY(A+-B)—C=A+{B-0)
2. The subtraction of a matrix 8 may be considered as the addition of the matrix (~1)8.

Does the commutative law of addition permit us to state that A— B = 8 — A7 If not,
how would you correct the statement?

3. Test the associative law of multiplication with the foilowing matrices:

1 0
5 3 8 0 7
A=[o 5] B=[132] C=gi’
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4. Prove that for any two scalars g and k

(a) k(A -+ B)=kA+kB

(b) {(g+ kYA = gA+ kA

(Note: To prove a result, you cannot use specific examples.)
5. For (o) through (d) find C = AB.

12 14 39
(")A:[zo 5] B:{o 2}

4 7 385
(b)’qzb 1} 32[2 6 7}

7 M
©a=| 2 9| 8= 7]
10 6
o 10 1
{d) A= g g i] B=111 3
- 2 9
(e) Find (i) C = AB, and (i) D = BA, if
[ _2
A=| 4 =13 6 -2
| 7

6. Prove that (A + B)}((C + D)= AC - AD+ BC +8D.
7. If the matrix A in Example 5 had all its four elements nonzero, would x'Ax still give a
weighted sum of squares? Would the assaciative law still apply?

8. Narme some situations or contexts where the notion of a weighted or unweighted sum
of squares may be relevant.

4,5 Identity Matrices and Null Matrices

identity Matrices

We have referred carlier to the term identity matrix. Such a matrix is defined as a syuare
(repeat: square) matrix with 1s in its principal diagonal and Os cverywhere else. Tt is de-
noted by the symbel 7, or I, in which the subscript # serves to indicate its row (as well as

column) dimension, Thus,

1 0 0

f:Zl:(} 0:| L=10 1 0
b

0 0 |

But both of these can also be denoted by /.

The importance of this special type of mairix lics in the fact that it plays a role similar
to that of the number 1 in scalar algebra. For any number @, we have l{a) = a( 1) = a. Sim-
Harly, for any matrix 4, we have

i1=A47=4 {4.8)



Example 1

Chapter 4 Linear Models and Matriz Algebra 71

123
Letﬂt:[2 0 3:|,then
1T 071 2 3 1 2 3
’A:{o 1“2 0 3]:[2 0 3}2‘4
1203 123
’”‘[20 3] 2[20 3]:'4

Because Ais 2 » 3, premultiplication and postmultiplication of A by { would call for identity
matrices of different dimensions, namely, {3 and /3, respectively. Butin case Ais it x n, then
the same identity matrix /, can be used, so that (4.8) becomes {, A = Af,, thus illustrating
an exception to the rule that matrix multiplication is not commutative.

- Qo

0
1
0

Lo I )

The special nature of identity matrices makes it possible, during the multiplication
process, to insert or delete an identity matrix without affecting the matrix product. This
follows directly from (4.8). Recalling the associative law, we have, for instance,

A I B =(4Ad} 8= 4 B

() {rsen) (mxp) {mxn) (nxp)

which shows that the presence or absence of 7 does not aftect the product. Obscrve that
dimension conformability is preserved whether or not / appears in the product.
An interesting case of (4.8} occurs when 4 = /,,, for then we have

AL = (I =1,
which states that an identity matrix squared 1s equal to itsell. A generalization of this result
is that
GY=1 (k=12..)

An identity matrix remains unchanged when it is multiplied by itself any number of times.
Any matrix with such a property (namely, 44 = 4)is referred to as an idempotent matrix.

Null Matrices

Just as an identity matrix / plays the role of the number |, a mulf matrix—or zero matriv—
denoted by 0, plays the role of the number 0. A null matrix is simply a matrix whose
elements are all zero. Unlike /, the zero matrix is not restricted to being square. Thus it 15

possible to write
00 0 0 0
= and =
(292} |:0 U] (2931 {0 0 U]

and so forth. A square null matrix is idempotent, but a nonsquare one is not, (Why?)
As the counterpart of the number 0, null matrices obey the foliowing rules of operation
(subject to conformability} with regard to addition and multiplication:
4+ 0 =0+ 4 =4

(m=nh  (mxn) i) (mXxA) fm=n)

A 0 =0 and 0 4 =10

(mxnbinxp)  imxp) (gxm) (”?‘;X'ﬂ (g =n}
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Note that, in multiplication, the null matrix to the left of the equals sign and the one to the
right may be of difterent dimensions.

Example 2 4. |9 G12}+[0 0] _[an fnz}zijL
— an G 0 0] |an o

Example 3 4 0 _[an a2 013} g :[0]:

(Zx3) 3x1) G0 Q22 a3 0 0] @«
L

To the left, the null matrix is a 3 x 1 null vector; to the right, it is a 2 x 1 null vector.

Idiosyncrasies of Matrix Algebra
Despite the apparent similaritics between matrix algebra and scalar algebra, the case of
matrices does display certain idiosyncrasies that serve to warn us not to “borrew” from
scalar algebra too unquestioningly. We have alrcady seen that, in gencral, 4B # B4 in
matrix algebra. Let us look at two more such idiosyncrasies of matrix algebra.

For one thing, in the case of scalars, the equation ah = 0 always implics that either @ or
b is zero, but this is not so in matrix multiplicatron. Thus, we have

2 411 -2 4 0 0
o[ 0 T8 2o

although neither A nor B is itself a zero matnx,
As another illustration, for scalars, the cquation cd = ce (with ¢ # 0) implies that
d = e. The same docs not hold for matrices. Thus. given

e=[s5] =[] ==[31]

CD=CE = { ; 8}

we find that

15 24

cven though D # E.

These strange resulls actually pertain only to the special class of matrices known as
singular matrices, of which the matrices 4, £, and C are examples. {(Roughly, these tnatti-
ces contain a row which is a multiple of another row.) Nevertheless, such cxamples do
reveal the pitfalls of unwarranted extension of algebraic theorems to matrix operations.

EXERCISE 4.5

9
Gvend=]"V 2 7| p=|6| andx=]"|
0 -2 4 0 X2
1. Calcuiate: (@) Al iA (O ix (d} X1

Indicate the dimension of the identity matrix used in each case.
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2, Calculate: (@ Ab (B Alb (O x'IA (d) x'A
Does the insertion of 1 in (b} affect the result in (a}? Does the deletion of {in {(d) affect
the result in {()?
3. What is the dimension of the null matrix resulting from each of the following?
(@) Premultiply A by a 5 x 2 null matrix.
(b) Postmultiply A by a 3 x 6 nuil matrix.
(¢) Premultiply b by a 2 x 3 nult matrix.
{d) Postmultiply x by a 1 x 5 nult matrix.
4. Show that the diagonal matrix

o ¢ - 0
0 tzz - 0
0 9 (o 198

can be idempotent only if each diagonal element is either 1 or 0. How many different
numerical idempotent diagonal matrices of dimension nx n can be constructed alto-
gether from such a matrix?

4.6 Transposes and Inverses

Example 1

Example 2

When the rows and columns of a matrix 4 are interchanged - se that its first row becomes
the first column, and vice versa—we obtain the franspose of 4, which is denoted by 4" or
AT The prime symbol is by no means new to us; it was used earlier to distinguish a row
vector from a column vector. In the newly introduced terminology, a row vector x' consti-
tutes the franspose of the column vector x. The superscript 7 in the alternative symbol s
obviously shorthand for the word transpose.

. 3 8 -9 3 4 .
Given (zfz}_ {1 0 4] and (zgzj_ |:1 7], we can interchange the rows and

columns and write
31
£ =] 80| and zs’zz[i ”
G2 | _g (2x2)

By definition, if a matrix A is mx n, then its transpase A" must be nx m. An n x n square
matrix, however, possesses a transpose with the same dimension.

IfC = ? - and D = é then
“l2 0 = , INE

4
1T 0 4
c*:[_? ﬂ and D’:{o 3 ?}
4 7 2

b O
[ R [ N

Here, the dimension of each transpose is identical with that of the original matrix.
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Example 3

Example 4

In D', we also note the remarkable result that D' inherits not only the dimension of D
but also the original array of clements! The fact that D' = D 1s the result of the symmetry
of the elements with reference to the principal diagonal. Considering the principal diago-
nal in D as a mirror, the ¢lements located to its northcast are exact images of the clements
to its southwest; hence the first row reads identically with the first column, and so forth. The
matrix D exemplifies the special class of square matrices known as symmetric matrices.
Another example of such a matrix is the identity matrix /, which, as a symmetric matrix,
has the transpose ' = 1.

Properties of Transposes
The following properties characterize transposes:

(A" = 4 (4.9)
(A+B)) =4+ 58 (4.10)
(AB) = B'A (4.11)

The first says that the transpose of the transpose is the original matrix—a rather sclf-
cvident conclusion.

The second property may be verbally stated thus: The transpose of a sum is the sum ol
the transposes.

IfA=[4 ‘} andfsz[2 O}Jhen

9 0 7 1
. [ 617 _[6 16
(AJ“B)‘[M 1}_[1 1}
ca 400 271 _[6 16
and A+B_{.I 0}4—[0 1]—[1 1]

The third property 1s that the transpose of 4 product is the product of the transposes in
reverse order. To appreciate the necessity for the reversed order, let us examine the dimen-
sion conformability of the two products on the two sides of (4.11). [f we let A bem x n and
Bben x p,then 48 will be m x p, and (AB)" will be p x m. For equality to hold, it is
necessary that the right-hand expression B'4" be of the identical dimension. Since 8 is
px nand A" s n x m, the product B'4" is indeed p x m, as required. The dimension of
B’ 4" thys works out. Note that, on the other hand, the product 4'B8" is not cven defined
uniess m = p.

. 1 2 0 1
GwenA_[3 4]and8_[6 ?],wehave
. 12 137 [12 24
(AB)—[M' 25]—[13 25]
oo [0 8111 3] [12 24
and “{-1 7][2 4]‘[13 25]

This verifies the property.
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Inverses and Their Properties

For a given matrix A, the transpose A’ is always derivable. On the other hand, ity inverse
matrix—another type of “derived” matrix—may or may not exist. The inverse of matrix A,
denoted by 471, is defined only if 4 is a square matrix, it which casc the inverse is the
matrix that satisfies the condition

A4 =47 4 =17 (4.12)

That is, whether 4 is pre- or postmultiplied by 4™, the product will be the same identity
matrix. This is another ¢xception to the rule that matrix multiplication is not commutative.
The following points are worth noting;

1. Not every square matrix has an inverse—squareness 1is a necessary condition, but rot a
sufficient condition, for the existence of an inverse. If a square matrix A has an inverse,
A is said to be nonsingular; if A possesses no inverse, it is called a singelar matrix.

2. If 47" does exist, then the matrix 4 can be regarded as the inverse of 47", just as 4~
is the inverse of A. In short, 4 and 4~ are inverses of each other.

3. If disn x n,then A~" must also be # x n; otherwise it cannot be conformable for bork
pre- and postmultiplication. The identity matrix produced by the multiplication will also
be n x n.

4. If an inverse exists, then 1t 15 unique. To prove 1ts uniqueness, let us supposc that B has
been found to be an inverse for A, so that

AB=84=17

Now assume that there 18 another matrix C such that AC = C4 = /. By premultiplying
both sides of A8 = [ by (, we find that

CAB=CH=0C) [by (4.8)]
Since C4 = / by assumption, the preceding equation is reducible to
iB=C or B=C
That is, 8 and { must be one and the same inverse matrix. For this reason, we can speak
of the (as against gn) inverse of A,

5, The two parts of condition (4.12)—namely, A4~ = / and 4~'4 = I—actually imply
each other, so that satisfying either equation is sufficient to establish the inverse rela-
tionship between 4 and 4", To prove this, we should show that if 447" =/, and
if there is a matrix B such that B4 = 7, then B = A~ (sothat B4 = / must in effect be
the cquation 4714 = 7). Let us postmultiply both sides of the given equation 84 = /
by 47!; then

(BA)A™ = 47"
B(A47"Yy = 147" [associative law]
Bl =147 [44"1 =T by assumption]

Therefore, as required,

B=A""  [by(4.8)]
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Example 5

Analogously, it can be demonstrated that, if 4 '4 = 7, then the only matrix ' which
yields CA4~' =TisC = 4.

31 112 7, : i
let A = [0 2] and 8 = 7 [0 3:| ; then, since the scalar multiplier () in B can be

moved to the rear {commutative law), we can write

AB—31 2—11_601_10
|0 2[|0 3|6 |0 66 |0 1
This estabtishes 8 as the inverse of 4, and vice versa. The reverse multiplication, as expected,
also yields the same identity matrix:

=5 ][5 2=sls 6l-o ¥

The following three properties of inverse matrices are ol interest. [f 4 and B ar¢ nonsin-
gular matrices with dimension # x #, then

(A7) =4 (4.13)
(ABy "= B'47 (4.14)
(4) =4y (4.15)

The first says thal the inverse of an inversc is the original matrix. The sccond staies that
the inverse of a product is the product of the inverses in reverse order And the last one
means that the inverse of the transpose is the transpose of the inverse. Notc that m (hese
statements the existence of the inverses and the satisfaction of the confarmahility condition
are presupposcd.

The validity of (4.13) is fairly obvious, but let us prove (4.14) and (4.15). Given the
product 4B, et us find its inverse—call it C. From (4.12) we know that CAB = I thus.
postmultiplication of both sides by B 14 ! will yleld

CABR™ "4 ' =ip 'a l(=B747Y (4.16)
But the left side is reducible to

CA(BBNA ' =Cald™ [by (4.12)]
= (A4 =CI=C  [by{4.12)and (4.8)]

Substitution of this into (4.16) then tells us that C = B~ 4~! or, in other words, that the
inverse of A8 is equal to B '47", as alleged. In this proof, the equation A4~ =
474 = I was utilized twice. Note that the application of this cquation 1s permissible if
and only if @ matrix and its inverse are strictly adjacent to cach other in a product. We may
write AA~'B =18 = B, but never ABA™' = B.

The proof of (4.15) is as follows. Given A’, let us find its inverse—call it . By defini-
tion, we then have D 4" = I. But we know that

(AdA WY =ID=1
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produces the same identity matrix, Thus we may write
DA =447
=474 [y @1)]
Postmultiplying both sides by (4")™7, we cbtain
DA(AY "= (47 AA)!
or D=(A""Y [by (4.12)]

Thus, the inverse ol A" is cqual to (4 '), as alleged.

In the proofs just presented, mathematical operations were performed on whole blocks
of numbers. If those blocks of numbers had not been treated as mathematical entitics (ma-
trices), the same operations would have been much more lengthy and involved. The beauty
of matrix algebra lics precisely in its simplification of such operations.

Inverse Matrix and Solution of Linear-Equation System

The application of the coneept of inverse matrix to the solution of a simultaneous-cquation
system is immediate and direct. Referring to the cquation system in (4.3}, we pointed out
earlier that it can be writlen in matrix notation as

. r = 4 (4.17)
(3x3) 3% (3l
where A, x, and  arc as defined in (4.4), Now if the inverse matrix A~ exists, the premul-
tiplication of both sides of the cquation (4.17) by 4~ will yield

AV Ax = A7 d

or x =47 ¢ {(4.18)
(x1) (3x3) (3x1)

The left side of (4.18) is a column vector of variables, whereas the right-hand product is a
column vector of certain known numbers. Thus, by definition of the equality of matrices or
vectors, (4.18) shows the set of values of the variables that satisfy the cquation system, i.e.,
the solution valugs, Furthermore, since 4~ is unique if'it exists. A~'d¢ must be & unique
vector of selution values. We shall therefore write the x vector in (4.18) as x*, to indicate
its status as a (uniqug) solution,

Methods of testing the existence of the inverse and of its calculation will be discussed in
Chap. 5. It may be stated here, however, that the inverse of the matrix 4 in (4.4) i

[ 18 16 -0

A= -13 26 13
7 s 2
Thus (4.18) will turn out to be
5T [ 8 -6 -0 [22] T2
X3 =5 -3 2 13 12]=]3
X3 —17 18 21| 10 1

which gives the solution: x7 = 2, x] = 3,and x] = 1.
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The upshot is that, as one way of finding the solution of a linear-equation system
Ax = d, where the coefficient matrix A is nonsingular, is to [irst find the inverse 4 =1 and
then postmultiply 4~" by the constant vector d. The product A” ld will then give the solu-
tion values of ihe variables.

Example 6 As shown in Example 11 of Sec. 4.2, the simple national-income model
Y=C+ g+ Gp
C=a-b¥Y
can be written in matrix notation as Ax = d, where
I Y |+ Go
A_{_b 1] x_[c] and d_[ a }

The inverse of matrix A is (see explanation in Sec. 5.6)

T (11
-1 _
A _'I—b[b 1}

Thus the solution of the model is x* = A 'd, or

| Aol 1 1 1 fo—Gg _ 1 g+ G+
C*| " 1=b|b 1 a T1_bp|b{lo+Go)ta

EXERCISE 4.6

. 0 4 3 -8 1 0 9] . o .
1.(?-|~.renAI[_1 3jI,B:L} ]}andcz[ﬁ 1 1},ﬁndﬁ\,&',andc.

2. Use the matrices given in Prob. 1 to verify that
(@ (A+BY=A+8 (DAY =CA

3. Generalize the result (4.11) to the case of a product of three matrices by proving that,
for any conformable matrices A, B, and C, the equation (ABC) = C'B°A" holds.

4, Given the following four matrices, test whether any one of them is the inverse of
another:

1 12 11 1 —4 4 -3
N I P e I
5. Generalize the result (4.14) by proving that, for any conformable nensingular matrices
A, B and C, the equation (ABC) ' =C~'8-14"" holds.
6. Let A= 1~ X(X'X) X,
{g) Must A be square? Must {X'X) be sguare? Must X be square?

{b) Show that matrix A is idempotent. [Note: f X' and X are not square, it is inappro-
priate to apply (4.14).]

4.7 Finite Markov Chains

A common application of matrix algebra is found in what is known as Markov processes or
Markov chains. Markov processes arc used 10 measure or estimate movements over time.
This involves the use of a Markov transition matrix, where cach value in the transition




