Chapter

Comparative Statics and
the Concept of Derivative

This chapter and Chaps, 7 and 8 will be devoted to the methods of comparative-static
analysis,

6.1 The Nature of Comparative Statics

124

Comparative statics, as the name suggests, is concerned with the comparison of different
equilibrium states that are associated with different sels of values of parameters and ex-
ogencus variables. For purposes of such a comparison, we always start by assuming a given
initial equilibrium state. In the isolated-market modcl, for cxample, such an initial cqui-
librium will be represented by a determinate price P* and a corresponding quantity "
Similarly, in the simple national-income model of (3.23), the mitial equilibrium will he
specified by a determinate ¥* and a corresponding C*. Now it we let a disequilibrating
change accur in the model in the form of a change in the value of some parameter or
exogenous variable -(he initial equilibrium will, of course, be upset. As a result, the vari-
ous endogenous variables must undergo certain adjustments. If 1t 1s assumed that a new
equilibrium state relevant to the new values of the data can be defined and attained, the
question posed in the comparative-static analysis is: How would the new cquilibrium com-
pare with the old?

It should be noted that in comparative statics we still disregard the process of adjustment
of the variables; we mercly compare the initial ( prechange) equilibrium state with the final
( postchange) equilibrinm state. Also, we still preclude the possibility of instability of equi-
librium, for we assume the new equilibrium to be attainable, just as we do for the old.

A comparative-static analysis can be either qualitative or quantilative in nature. [fwe are
interested only in the question of, say, whether an increase in investment /o will increasc or
decrease the equilibrium income ¥*, the analysis will be qualitative because the direction
of change is the only matier considered. But if we are concemed with the magnifude of the
change in Y* resulting from a given change in J, (that is, the size of the investment mul(i-
plicr), the analysis will obviously be quantitative. By obfaining a quantitative answer, how-
ever, we can automatically tell the divection of change from its algebraic sign, Hence the
quantitative analysis always embraces the qualitative.
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It should be clear thal the problem under consideration is essentially one of finding a
rate of change: the rate of change of the equilibrium value of an endogenous variable with
respeci to the change in a particular parameter or exogenous variable. For this rcason, the
mathematical concept of derivative takes on preponderant significance in comparative
statics, because that concept -thc most fundamental one in the branch of mathematics
known as differential calculus -is dircetly concerned with the notion of rate of change!
Later on, moreover, we shall find the concept of derivative to be of extreme importance for
optimization problems as well.

of Change and the Derivative

Example 1

Even though our present contexi is concerncd only with the rates of change of the equilib-
rium values of the variables in a model, we may carry on the discussion in a more gencral
manner by considering the rate of change of any variable y in response to a change in
another variable x, where the two variables are related to each other by the function

y=fx)
Applicd to the comparative-static context, the variable v will represent the equilibrium
value of an endogenous variable, and x will be some parameter, Note that, for a start, we are
restricting ourselves to the simple case where there is only a single parameter or exogenous

variable in the moedel. Once we have mastered this simplified case, however, the extension
to the case of more parameters will prove relatively casy.

The Difference Quotient
Sincc the notion of “change” figures prominenily in the present context, 4 special symbol
is needed to represent it. When the variable x changes from the value x, to a new value x|,
the change is measured by the difference x| — x,. Hence, using the symbol A (the Greek
capital delta, for “difference”) to denote the change, we writc Ax = x; — x. Also needed
18 a way of denoting the value of the function f(x) at various values of x. The standard
praciice 15 to use the notation f(x;) to represent the value of f{x) when x = x;. Thus,
for the [unction f(x}=35+x% we have f(0) =540 =35; and similarly, f(2) =
5422 =9, et

When x changes front an initial value ¥, to a new value (xy + Ax}, the value of the fune-
tiony = f(x) changes from f{xg) to f(xy + Ax). The change in v per unit of change in x
can be represented by the difference guotient.

Ay _ flxo+ Ax) = flxy)

Ax Ax (6.1)

This quotient, which measures the average rate of change of v, can be calculated if we know
the intial valuc of x, or xo, and the magnitude of change in x, or Ax. That is, Ay/Ax isa
function of xg and Ax.

Given y = f(x) = 3x% — 4, we can write

flag) =300 -4  flxo+AX)=3(x+Ax)° — 4
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Thercfore, the difference quotient is

Ay 3o+ Ax) —4-(3xg —4) by Ax +3(Ax)]
Ax Ax B Ax
= 6xo+ 3 Ax (6.2)

which can be evalvated if we are given xo and Ax. Let xy = 3 and Ax = 4; then the aver-
age rate of change of y is 6(3) + 3(4) = 30. This means that, on the average, as x changes
from 3 to 7, the change in y is 30 units per unit change in x.

The Derivative

Frequently, we are interested in the rate of change of y when Ax is very small. In such a
case, it is possible to obtain an approximation of Ay /Ax by dropping all the terms in the
difference quotient invelving the expression Ax. In (6.2), for instance, if Ax is very small,
we may simply take the term 6xg on the right as an approximation of Ay/Ax. The smaller
the value of Ax, of course, the closer is the approximation to the true valuc of Ay/Ax.
As Ax approaches zero (meaning that it gets closer and closer to, but never actually

reaches, zero), (6xp + 3 Ax) will approach the value 6xg, and by the same token, Ay/Ax
will approach 6xy also. Symbolically, this fact is expressed either by the statement
Ay/Ax — b6xp as Ax — 0, or by the equation

Ay .

lim — = J:TU((}'W + 3Ax) = 6xy (6.3)

Ax—it ﬂx

where the symbel Alim0 is read as “The limit of ... as Ax approaches 0.” If, as Ax — 0,
X —
the limit of the difference quotient Av/Ax indeed exists, that limit is called the derivative
of the function y = f(x).
Several points should be noted about the derivative if it exists. First, a derivative 15 a

function; in fact, in this usage the word derivaiive really means a derived function. The

original fonction y = f(x) is a primitive function, and the derivative is another function
derived from it. Whereas the differcnce quotient is a function of xy and Ax, you should
observe—from (6.3), for instance- that the derivative is a function of xo only. This is
because Ax is already compelled to approach zero, and therefore it should not be regarded
as another variable in the function. Let us also add that so far we have uscd the subscripted
symbol xy only in order to stress the fact that a change in x must start from some specific
value of x. Now that this is understood, we may delete the subscript and simply state that
the derivative, like the primitive function, is itsclf a function of the independent variable x.
That is, for each value of x, there is a unique corresponding valuc for the derivative
function.

Second, since the derivative is merely a limit of the difference quotient, which measures
a ratc of change of y, the derivative must of necessity also be a measure of some rate of
change. In view of the fact that the change in x envisaged in the derivative concept is infin-
itesimal (that is, Ax — 0), the rate measured by the derivative is in the naturc of an
instantaneous rate of change.

Third, there is the matter of notation. Derivative functions are commonly denoted in two
ways. Given a primitive function y = f(x), one way of denoting its derivative (if it exists)
is to use the symbol f'(x), or simply f*; this notation is attributed to the mathematician
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Lagrange. The other common notation is dv/dx, devised by the mathematician Leibniz,
[Actually there is a third notatton, Dy, or Df(x), but we shall not use 1t in the following
discussion.] The notation f*{x), which resembtes the notation for the primitive function
J(x}, has the advantage of conveying the idea that the derivative is itself a function of x.
The reason for expressing it as f*{x)}—rather than, say, ¢(x)—is to emphasize that the
function f* is derived from the primitive function £, The alternative notation, dy/dx, serves
instead to emphasize that the value of a derivative measures a rate of change. The letter  is
the counterpart of the Greek A, and dv/dx differs from Ay/Ax chiefly in that the former is
the Iimit of the latter as Ax approaches zero. In the subscquent discussion, we shall use
both of these notations, depending on which seems the more convenient in a particular
contexl.

Using these twe notations, we may define the derivative of a given function y = f{x) as
follows:

dv — )= lim Ay

dx Al AX

Referring to the function y = 3x? — 4 again, we have shown its difference quotient to be
(6.2), and the limit of that quotient to be (6.3). On the basis of the latter, we may now write
(replacing xgp with x):

g—g:éx or f'{x)="6x

Note that different values of x will give the derivative correspondingly different values. For
instance, when x =3, we find, by substituting x =3 in the f(x) expression, that
f'(3) = 6(3) = 18; similarly, when x = 4, we have f'(4) = 6(4) = 24. Thus, whereas f'{x)
denotes a derivative function, the expressions f/(3) and f'(4) each represents a specific
derivative value,

EXERCISE 6.2

1. Given the function y = 4x2 +9:
(@) Find the difference guotient as a function of x and Ax. (Use xin lieu of xp.)
(b) Find the derivative dy/dx.
(0 Find £(3) and f'{4).

2. Given the function y = 5x% — 4x:

(a) Find the difference quotient as a function of x and Ax.
(b) Find the derivative dy/dx.
{c) Find f'(2) and F'(3).
3. Given the function y = 5x — 2:
(a) Find the difference quotient Ay/Ax, What type of function is it?

(b) Since the expression Ax does not appear in the function Ay/Ax in part (@), does it
make any difference to the value:of Ay/Ax whether Ax is large or small? Conse.
-quently, what is the limit of the difference guotient.as Ax approaches zero?
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6.3 The Derivative and the Slope of a Curve

FIGURE 6.1

Elemeniary economics tells us that, given a total-cost function C = f({J}. where C de-
notes total cost and ¢ the output, the marginal cost (MC) is defined as the change m total
cost resulting from 4 unit increase in output; that is, MC = AC/AQ. It is understood that
AQ is an extremely small change. For the case of a product that has discrete units (intcgers
only}, a change of one unit is the smallest change possible; but for the case of a product
whose quantity is a continuous variable, AQ can refer to an infinitesimal change. In this
latter case, it is well known that the marginal cost can be measured by the slope of the total-
cost curve, But the slope of the total-cost curve is nothing but the limit of the ratio
AC/AQ, when A () appreaches zero. Thus the concept of the slope of a curve 1s merely
the geometric counterpart of the concept of the derivative. Both have to do with the
“marginal” notion so extensively used in economics,

In Fig, 6.1, we have drawn a total-cost curve C, which is the graph of the {primitive)
function C = 7({). Suppose that we consider Qy as the initial output level from which an
increasc in output is measurcd; then the relevant peint on the cost curve is the point 4, If
output is to be raised to Oy + AQ = (7, the total cost will be increased from Cy 1o
Co+ AC = Cy; thus AC/AQD = (Cy — Cy)/(Q2 — Jg). Geometrically, this is the ratio
of two linc segments, £8/AE, or the slope of the line AB. This particular ratio measures an
average rate of change— the averuge marginal cost for the particular AQ pictured- and
represents a difference quotient. As such, it is a function of the initial value @y and the
amount of change A Q.

What happens when we vary the magnitude of AQ? If a smaller output increment 13
contemplated (say, from Oy to {1 only), then the average marginal cost will be measured
by the slope of the line 4D instead. Moreover, as we reduce the output increment further
and further, flatter and flatter lines will result until, in the limit (as A G — ), we obtain the
line KG (which is the tangent line to the cost curve at point 4) as the relevant line. The slope
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of KG (= HG /K H) measures the slope of the total-cost curve at point 4 and represents
the limit of AC/A(Q, as AQ — 0, when initial output is at O = Q4. Therefore, in terms
of the derivative, the slope of the C = f{ () curve at paint 4 corresponds to the particular
derivative value /'(Oy).

What if the initial output level is changed {rom (y to, say, (27 [n that case, point B on
the curve will replace point A as the relevant point, and the slope of the curve at the new
point B will give us the derivative value /°{ (). Analogous results are obtainable for alter-
native initial output levels. In general, the derivative /() - a function of OQ—will vary as
(} changes.

6.4 The Concept of Limit

The derivative dy/dx has been defined as the limit of the difference quotient Av/Ax as
Ax — 0, If we adopt the shorthand symbols ¢ = Av/Ax (g for quotient) and v = Ax
{v for variation in the value of x}, we have

dy

) . ¥
— = lim — = limg
dx Ar—=0 Ax n—=0

In view of the fact that the derivative concept relies heavily on the notion of limit, it is im-
perative that we get a clear idea about that notion.

Left-Side Limit and Right-Side Limit

The concept of limit is concerned with the question: “What value does onc variable (say, ¢)
approach as another variable (say, v) approaches a specific value {say, zero)?” In order for
this question to make sense, ¢ must, of course, be a function of v; say, g = g(v), Our
immediate intercst is in finding the limit of ¢ as v — 0, but we may just as easily explore
the more general casc of v — N, where A is any finite real numbcr. Then, “”}, g will be

metcly a special cuse of I1m g where ¥ = 0. In the course of the discussion, we shall

actually also consider the llmlt of ¢ as ¥ — +o0 (plus infinity) or as v — —20 (minus
infinity).

When we say v = N, the variable v can approach the number N cither from values
greater than N, or from values less than V. 1f, as v — N [rom the left side (from values less
than ), ¢ approaches a finite number L, we call L the fefi-side fimit of g. On the other hand,
if L 15 the number that g tends to as v — N from the right side {from valucs greater than V),
we call L the right-side limit of ¢, The left- and right-side limits may or may not be equal.

The left-side limit of ¢ is symbolized by hm g {the minus sign significs from values

less than &), and the right-side limat is wnuen aq llrn q. When—and only when—the two
tl

limits have a common finite value (say, L}, we mnslder the limit of ¢ to exisr and write il as

Imﬁu\ ¢ = L. Note that £. must be a finite number. If we have the situation of ]1[’]1 4 =

v+ g

(or —oc), we shall consider ¢ to possess #o limit, because lun\g = oc means that g — oo
LI B .

as v — N, and if ¢ will assumc ever-increasing values as v tends to , it would be contra-

dictory to say that ¢ has a limit. As a converient way of expressing the fact that ¢ — 00 as

v — N, however, some people do indeed write lim ¢ = oo and speak of ¢ as having an
“infinite limit.” e
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FIGURE 6.2

Comparative-Static Analysiy

In certain cases, only the limit of one side needs to be considered. In taking the limit of
g asv —» +00, for instance, only the left-side limit of ¢ is relevant, becausc v can approach
+00 only from the left. Similarly, for the case of v — —co, only the right-side limit is
relevant, Whether the limit of ¢ exists in these cases will depend only on whether ¢
approaches a finite value as v = 400, oras v — —o¢.

It is important to realize that the symbol co (infinity) is not a number, and therefore it
cannot be subjected to the usual algebraic operations. We cannot have 3 + 20 or 1/00; nor
can we write ¢ = o0, which is not the same as ¢ — oo, However, it is acceptable to express
the fimit of g as “="(as against —) oc, for this merely indicates that ¢ — oc.

Graphical lllustrations
Let us illustrate, in Fig. 6.2, several possible situations regarding the limit of a function
g = g(v).

Figure 6.2a shows a smooth curve. As the variable v tends to the value ¥ from either
side on the horizontal axis, the variable g tends to the value L. In this case, the left-side limit
is identica! with the right-side limit; therefore we can write lILmN g=1L.
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The curve drawn in Fig. 6.256 1s not smooth; it has a sharp turning point dircctly above
the point N, Nevertheless, as v tends to ¥ from either side, ¢ again lends to an identical
value L. The limit of ¢ again exists and is equal to L.

Figure 6.2¢ shows what is known as a step function.” In this case, as v tends to N, the
left-gide limit of ¢ 15 £, but the right-side limit is Z,, a different number. Hence, ¢ does not
have a limitas v — N,

Lasily, in Fig. 6.24, as v tends to V, the left-side limit of ¢ is —o0, whereas the right-side
linit 15 +-0c, because the two parts of the (hyperbolic) curve wiil fall and rise indefinitely
while approaching the broken vertical line as an asymptote. Again, lim ¢ does not exist.

S

On the other hand, if we are considering a different sort of limit in diagram o, namely,
lim g, then only the left-side limit has relevance, and we do find that limit to exist:

r—+400

11111 g = M. Analogously, you can verify that lim ¢ = M as well.
=0 = =0

[t is also possible to apply the concepts of left-side and right-side limits to the discussion
of the marginal cost in Fig. 6.1. In that context, the variables ¢ and v will refer, respectively,
to the quotient AC/AQ and to the magnitude of AQ, with all changes being measured
from point A on the curve. In other words, ¢ will refer to the slope of such lines as 45, 412,
and K(r, whereas v will refer to the length of such lines as Oy {; (=line AE) and
(o0 (= linc AF), We have already seen that, as v approaches zero from a positive valuc,
¢ will approach 4 value equal to the slope of line K. Similarly, we can establish that, if
A () approaches zero from a negative value (1.e., as the decrease in output becomes less and
less), the quotient AC/AQ, as measured by the slope of such lines as R4 (not drawn), will
also approach a valuc cqual to the slope of line KG. Tndeed, the situation here is very much
akin to that illustrated in Fig. 6.2a. Thus the slope of K in Fig. 6.1 (the counterpart of £ n
Fig. 6.2) 1s indeed the limit of the quotient ¢ as v (ends to zero, and as such it gives us the
marginal cost at the output level Q0 = Qg.

Evaluation of a Limit
Let us now illustrate the algebraic evaluation of a limit of a given function ¢ = g(v).

Giveng = 2 + vZ, ﬂnd Ilm g. To take the left-side limit, we substitute the series of negative

values -1, -, — 1l .. (m that order) for v and find that (2 + v?) will decrease steadily
and approach 2 (because v* will gradually approach 0). Next, for the right-side limit, we
substitute the series of positive values 1, 1 07 wo, ... {in that order} for v and find the same
limit as before. Inasmuch as the twe limits are identical, we consider the limit of g to exist
and write }Im}q =2.

" This name is easily explained by the shape of the curve. But step functions can be expressed
algebraically, too. The one illustrated in Fig. 6.2¢ can be expressed by the equation

{1 (or0=va A
Ly (forN=¥v)

Note that, in each subset of its domain as described, the function appears as a distinct constant
function, which constitutes a “step” in the graph.

In economics, step functions can be used, for instance, to show the various prices charged for
different quantities purchased {the curve shaown in Fig. 6.2¢ pictures quantity discount) or the various
tax rates applicable to different income brackets.
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Example 2

Example 3

It is tempting to regard the answer obtained in Example | as the outcome of setting

v = 0 inthe equation ¢ = 2 + v2, but this temptation should in gencral be resisted. In eval-

uating lirr]qvq, we only let v tend fo N, but, as a rule, do not let v == N. Indeed, we can quitc
v/

Iegitimatély speak of the limit of ¢ as v — N, even if N'is ot in the domain of the function
q = g(v). In this latter case, if we try to set v = N, ¢ will clearly be undefined.

Given g = (1 = v)/(1 =), find Iirq g. Here, N =1 is not in the domain of the function,
p—

and we cannot set v =1 because that would involve division by zero. Moreover, even the
limit-evaluation procedure of letting v — 1, as used in Example 1, will cause difficulty, for
the denominator {1 — v) will approach zero when v — 1, and we will still have no way of
performing the division in the limit.

One way out of this difficulty is te try to transform the given ratio to a form in which v
will not appear in the denominator. Since v— 1 implies that v# 1, so that (1 -} is
nonzero, it is legitimate to divide the expression (1 — vZ) by {1 —v), and write’

1-v? : :
g=5—, =14y (1)
In this new expression for g, there is no longer a denominator with vin it. Since (1 +v) — 2
as v — 1 from either side, we may then conclude that lm g=2.

Given ¢ = (2v+ 5)/{v + 1), find . IiTﬁ_q. The variable v again appears in hoth the numerator

and the denominator. If we let v — ¢ in both, the result will be a ratic between two infi-
nitely large numbers, which does not have a clear meaning. To get out of the difficulty, we
try this time to transform the given ratio to a form in which the variable v will not appear in
the numerator.* This, again, can be accomplished by dividing out the given ratio. Since
(2v -+ 5) is not evenly divisible by (v + 1), however, the resuit will contain a remainder term
as follows:

_2v+5_2Jr 3
Tyl T v+ 1

But, at any rate, this new expression for g no longer has a numerator with v in it. Noting
that the remainder 3/{v + 1) — @ as v — +20, we can then conclude that V"T.o q=2

There also exist several useful thcorems on the evaluation of limits. These will be
discussed in Scc. 6.6,

! The division can be performed, as in the case of numbers, in the following manner:

T+v¥
1-vlh 2
1-v
v—y2
y— ve

Alternatively, we may resort to factoring as follows:

1-v2 14+l —v
____.=w:1_” (v£1)

T—v T-v
* Note that, unlike the v — 0 case, where we want to take v out of the denominator in order to
avoid division by zero, the v — oo case is better served by taking v out of the numeralor. As v -+ xc,
an expression containing v in the numerator will become infinite but an expression with vin the

denominator will, more conveniently for us, approach zero and quietly vanish from the scene.
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Formal View of the Limit Concept

The previous discussion should have conveyed some general ideas about the limit concept.
Let us now give it a more precise definition. Since such a definition will make use of the
concept of neighborhood of a point on a line (in particular, a specific number as a point on
the line of real numbers), we shall first explain the latter term.

For a giver number L, there can always be found a mumber (L — a;) < L and another
number (L +a;) > L, where a) and ¢y arc some arbitrary positive numbers. The set of
all numbcrs falling between (L — «) and (L + @) is called the inferval between those two
numbers. If the numbers (L — &} and {L + «3) arc included in the set, the sel is a closed
interval; i they arc excluded, the set 18 an open interval. A closed interval between
(L —ay)and (L + ay) is denoted by the bracketed cxpression

[L—ua, L+a]={g|l—a <qg=<L+a)
and the corresponding open interval is denoted with parentheses:
(L—a,Lt+a)=lg|l—a; <g < L+a) (6.4)

Thus, [ ]relate to the weak inequality sign <, whereas { ) relate to the strict inequality sign
<. But in both types of intcrvals, the smaller number (L — a1} is always listed first. Later
on, we shall also have occasion to refer to half-open and half-closed intervals such as (3, 5]
and [6, o), which have the following meanings:

(3,5]={x|3 <ux <5} [6,x)={x[6<x <o}

Now we may define a neighborhood of L to be an open interval as defined in (6.4),
which is an interval “covering” the number L." Depending on the magnitudes of the arbi-
trary numbers @) and ay, it is possible to construct various neighborhoods for the given
number £.. Using the concept of neighborhood, the limit of a function may then be defined
as follows:

As v approaches a number N, the limit of ¢ = g{v} is the number L, if, for every
neighborhood of L that can be chosen, Aowever small, there can be found a corresponding
ncighborhood of N (excluding the point v = N) in the domain of the function such that, for
every value of v in that N-neighborhood, its image lies in the chosen L-ncighborhood.

This statement can be clarified with the help of Fig, 6.3, which resembles Fig. 6.24.
From what was learncd about Fig. 6.2a, we know that lim ¢ = . in Fig. 6.3. Lct us show

=N

that £ doecs indeed fulfill the new definition of a limit. As the first step, select an arbitrary
small neighborhood of L, say, (L —ay, L 4+ a3). (This should have been made even
smaller, but we are keeping it relatively large to facilitate exposition.) Now construct a
neighborhood of N, say, (N — b1, N + #), such that the two neighborhoods (when ex-
tended into quadrant 1) will together define a rectangle (shaded in diagram) with two of its
corners lying on the given curve. It can then be verified that, for every value of v in this
neighborhood of N {not counting v = N), the corresponding value of ¢ = g(v) lies in the

' The identification of an open interval as the neighborhood of a point is valid enly when we
are considering a point on a line (one-dimensional space). In the case of a point in a plane
(two-dimensional space), its neighborhood must be thought of as an area, say, a circular area
that includes the point.
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FIGURE 6.3
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chosen neighborhood of L. In fact, no matter how smail an L-neighborhood we choose, a
(correspondingly small) N-neighborhood can be found with the property just cited. Thus 1.
fulfills the definition of a limit, as was to be demonstrated.

We can also apply the given definition to the step function of Fig, 6.2¢ in order to show
that neither £, nor L, qualifies as lm}~ g . If we choose a very small neighborhood of £|—

say, just a hair’s width on each side of L;—then, no matter what neighborhood we pick for
N, the rectangle associated with the two neighborhoods cannot possibly enclose the lower
step of the function. Consequently, for any value of v > A, the corresponding value of ¢
(located on the lower step) will not be in the neighborhood of L, and thus £, fails the test
for a limit. By similar reasoning, L» must also be dismissed as a candidate for lim ¢ . In
fact, in this case no limit exists for g as v — N. vy

The fulfillment of the definition can also be checked algebraically rather than by graph.
For instance, consider again the function

1 —1?

g = =1+ (v #1} (6.5)

1—w

it has been found in Example 2 that llm g = 2; thus, here we have N = land L = 2. To

verify that L = 2 is indeed the limit of g, we must demonstrate that, for every chosen
neighborhood of £, (2 — a1, 2 + ay). there exists a neighborhood of N, (1 — by, 1 4 by},
such that, whenever i is in this neighborhood of N, ¢ must be in the chosen neighborhood
of L. This means essentially that, for given values of @, and a2, however small, two num-
bers b; and b must be found such that, whenever the mequality

f=h <v=<l+b (v#1) (6.6)
is satisfied, another inequality of the form

2—ay<g<2+a (6.7)
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must also be satisfied. To find such a pair of numbers by and by, let us first rewrite (6.7) by
substituting (6.5):
2—ay<l+v<2+a (6.7
This, in turn, can be transformed (by subtracting 1 from each side) into the inequality
l—qy <v<l+a (6.7")

A comparison of {6.7")—a variant of (6.7} with (6.6} suggests that if we choosc the two
numbers & and b, to be b =« and b» = 4y, the two inequalitics (6.6) and (6.7} will
always be satisfied simultaneously. Thus the neighborhood of A, (1 —b), | + /), as
required 1n the definition of a limit, can indeed be found for the case of /. = 2, and this
gstablishes L = 2 as the limit,

Let us now utilize the definition of a Himit in the opposite way, to show that another value
(say, 3) cannot qualify as Tl1_1;rt g for the function in (6.5). I3 were that limit, it would have

to be true that, for every chosen neighborhood of 3, (3 —ay, 3 4 a7), there exists a neigh-
borhood of 1, (1 — by, | + b1}, such that, whenever v is in the fatter neighborhood, g must
be in the former neighborhood. That is, whenever the inequality

l—bh <v=l+bh
is satisfied, another inequality of the form
- < l4+v<3+ta
or 22— =v<ltan

must also be satisfied. The only way to achieve this result is to choose A = ¢y — 1 and
by = as + 1. This would mmply that the neighborhoed of 1 is to be the open interval
(2 —m, 24+ a2). According to the definition of a limit, however, @, and > can be made
arbitrarily small, say, ¢ = a; = 0.1. In that case, the last-mentioned interval will turn out
to be (1.9, 2.1) which lies entirely to the right of the point ¢ = | en the horizontal axis and,
henee, does not even qualify as a neighborhood of 1. Thus the definition of a limit cannot
be satisfied by the number 3. A similar procedure can be employed (o show that any num-
ber other thun 2 will contradict the definition of a limit in the present case.

In general, if one number satisfies the definition of a limit of ¢ as v — N, then no other
number can. If a limit exists, it is unique.

EXERCISE 6.4

1. Given the function g = (v2 + v=56)/{v— 7), (v£ 7}, find the left-side limit and the
right-side limit of g as v approaches 7. Can we conclude from these answers that q has
a limit as v approaches 77

2. Given g = [(v+2)% — 8]y, (v £ 0), find:

(@) limgq (b) img (@ limgq
v w2 Y—3
3. Giveng=15—1/v,(v#0), find:
@ lim, 4 ) fm_q

4. Use Fig. 6.3 to show that we cannot consider the number (1 + a;) as the limit of g as v
tends to N.
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6.5 Digression on Inequalities and Absolute Values

We have encountered inequality signs many times before. In the discussion of Sec. 6.4, we
also applied mathematical operations to inequalities. In transforming (6.7") into (6.7"), for
example, we subtracted 1 from each side of the inequality. What rules of operations are

generally applicable 10 inequalities {as opposed to equations)?

Rules of Inequalities

To begin with, let us state an important property ol inequalities: inequalitics are transitive.
This means that, it @ > d and if & > ¢, then a > ¢. Since equalities (equations) arc also
transitive. the transitivity property should apply to “weak™ inequalities (> or <) as well as

to “strict” ones (> or <). Thus we have
a=hb>c=a>c

a=bb>zc = axc

This property is what makes possible the writing of a continued ineguality, such as
J<ag<b<Bor?<x <24 (Inwrting a continued incquality, the inequality signs are
as a rule arranged in the same direction, usually with the smallest number on the left.)

The most important rules of inequalities are those governing the addition {subtraction)
of 2 number to (from) an inequality, the multiplication or division of an incquality by a
number, and the squaring of an inequality. Specifically, these rulcs are as follows.

Rulel (addition and subtraction) ¢ >b=>uthi=>btk

An incquality will continue to hold if an equal quantity is added to or subtracted from each
side. This rule may be generalized thus: [fa > b > ¢, thena £k > b £k > ¢ £ k.

Rule 11 (multiplication and division)

ka > kb (k=)

a»b= ka < kb (A<

The multiplication of both sides by a positive number preserves the inequality, but a nega-
tive multiplier will cause the sense (or direction) of the inequality to be reversed.

Example 1 Since 6 > 5, multiplication by 3 will yield 3(6) > 3(5), or 18 = 15; but multiplication by —3
——————  willresultin (=3)6 < (—3)5, or —18 < —15.
Division of an inequality by a number # is cquivalent to multiplication by the nurmber
1 /m; thercfore the rule on division is subsnmed under the rule on multiplication.
Rule ITT  (squaring) a=>b(b=0)=a’>4
If its two sides are both nonnegative, the incquality will continue to hold when both sides
are squared.
Example 2 Since 4 = 3 and since both sides are positive, we have 4% = 32, or 16 > 9. Similarly, since

2 = 0, it follows that 22 = 07, or 4 = Q.

Rules | through 111 have been stated in terms of strict incqualities, but their validity 1s

unaffected if the > signs are replaced by > signs.
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Absolute Values and Inequalities

When the domain of a variable x is an open interval (a, b}, the domain may be denoted by
the set {x | & < x < b} or, more simply, by the inequality @ < x < b, Similarly, if it is a
closed interval [, A], it may be expressed by the weak incquality a < x = b, In the special
case of an interval of the form (—a, a)—say, (—10, 10) it may be represented either by
the inequalily — 10 < x < 10 or, alternatively, by the inequahity

lx] = [0

where the symbol |x| denotes the absolute value (or numericaf value) of x.
For any real number a, the absoluie value of » is defined as follows:’

n (iftw = 0)
n|=1—n (ifn <) (6.8)
0 (ifn = 0)

Notc that, ifu = 15, then |15

= 15;butif'# = —15, we find
|—15] = —{(~15) =15

also. In efleet, therefore, the absolute value of any real number is simply its numerical value
after the sign is removed, For this reason, we always have [#| = |—n|. The absolute vaiue
of n 15 also called the modulus of n.

Given the expression |x| = 10, we may conclude from (6.8) that x must be either
10 or —10. By the samc token, the expression [x| < 10 means that (1) if x = 0, then
¥ = |x| = 10, so that x must be less than 10; but also (2) il x < 0, then according o (6.8)
we have —x = [x| < 10, 0r x = —10, so that x must be greater than —10. Tlence, by com-
bining the two parts of this result, we see that x must lie within the open interval ( — 10, 10).
In general, we can write

X|<H& —n=<x=<n {r =10 (6.9)
which can also be extended to weak inequalities as follows:
x| <ne —n<x<n (120 (6.10)

Because they are themselves numbers, the absolute values of two numbers s and #
can be added, subtracted, multiplied, and divided. The following properties characterize
absolute values;

|| + [n| = [m + n|
lml - |al = |m-n|

tm| HH

%]

n
The first of these, interestingly, involves an incquality rather than an equation. The reason
for this is casily seen: whereas the left-hand expression [m| + [n| is definitely a sam of two

PWe caution again that, although the absolute-value notation is similar to that of a first-order
determinant, these two concepts are entirely different. The definition of a first-order determinant is
ai;| = &, regardless of the sign of a;;. In the definition of the absolute value |ni, on the other hand,
the sign of n wiil make a difference. The context of the discussion should normally make it clear
whether an absclute value or a first-order determinant is under consideration,
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Example 3

Example 4

Example 5

Example 6

numerical values (both taken as positive), the expression |m + r/ is the numerical value of
either a sum (if m and # are, say, both positive) or a difference (if m and » have opposite
signs). Thus the left side may cxceed the right side.

fm=>5andn=3, then|m +|nj=|m+n =8 Butif m=5andn= -3, then |mi+|n =
5+ 3 = 8, whereas

m+n=15—3=2

is a smaller number.

In the other two properties, on the other hand, it makes no difference whether m and n
have identical or opposite signs, since, in taking the absolute valuc of the product or
quotient on the right-hand side, the sign of the latter term will be removed in any case.

f m=7 and n=28, then |m|-|nl = |m-n| = 7(8) = 56. But even if m=—7 and n=28
{opposite signs), we still get the same result from
Iml - |n) = |=71- 18] = 7(8) = 56
and lm-nl=|—7(8B) = 7(8) = 56

Solution of an Inequality

Like an equation, an inequality contaming a variable (say, x) may have a solution; the solu-
tion, if it exists, is a sct of values of x which make the inequality a true statement. Such 4
solution will itself usually be in the form of an mequality.

Find the solution of the inequality
Ix—3=x+1

As in solving an equation, the variable terms should first be collected on one side of the
inequality. By adding (3 — x) to both sides, we obtain

3x—34+3-x>x+1+3-%
ar 2x = 4

Multiplying both sides by % (which does not reverse the sense of the inequality, because

1 > 0) will then yield the solution

X =2

which is itself an ineguality. This solution is not a single number, but a set of numbers.
Therefore we may also express the solution as the set {x | x > 2} or as the open interval
(2, o).

Solve the inequality |1 — x| = 3. First, let us get rid of the absolute-value notation by utiliz-
ing {6.10). The given inequality is equivalent to the statement that

—3=1-x=3
or, after subtracting 1 from each side,

—4<—x=2
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Multiplying each side by (-1), we then get
4>x=-=2
where the sense of inequality has been duly reversed. Writing the smaller number first, we
may express the salution in the form of the inequality
-2<x=4
or in the form of the set {x | —2 = x = 4} or the closed interval [-2, 4].
Sometimes, a problem may calt for the satisfaction of several incqualities in several vari-

ables simultaneously; then we must solve a system of simultaneous incqualities. This prab-
lem arises, for example, in nonlinear programming, which will be discussed in Chap. 13.

EXERCISE 6.5

1. Solve the following inequalities:
(@) 3x—1 <7x+2 (O 5x+T<x+3
(b) 2x +5 < x—4 (d)2x -1 <6x+5

2. If8x~3 < 0and 8x = 0, express these in a continued inequality and find its solution.
3. Solve the following:
(@) [x+11 <6 () 14— 3x| < 2 {Q12x+3)1=5

6.6 Limit Theorems

Example 1

Our intercst in rates of change led us to the consideration of the concept of derivative,
which, being in the nature of the limit of a difference quotient, in turn prompted us to study
questions of the existence and evaluation of a limit. The basic process of limit evaluation,
as 1llustrated n Sec, 6.4, involves letting the variable v approach a particular number
(say, N') and observing the value that ¢ approaches. When actually evaluating the limit of a
function, hewever, we may draw upon certain established limit theerems, which can mate-
rially simplify the task, cspecially for complicated functions.

Theorems Involving a Single Function
When 4 single function ¢ = g(v) 18 involved, the following theorems are applicable.

Theorem I Ifg =au+ b, then im ¢ = aN + b (@ and b are constants).

i—

Given g = 5v+ 7, we have Iimzq = 5(2)+ 7 =17. Similarly, Iirrg}q =50+7=7.
Vo [T

Theorem I f ¢ = g{v) = b, then _llm g=h

This theorem, which says that the limit of a constant functlon is the constant in that func-
tiom, 1s merety a special case of Theorem I, with @ = 0. (You have atready encountered an
cxample of this case in Exercise 6.2-3.)

Theorem III  If g = v, then llm g=N,
Hg =1f, thi.,n hm g = N*.

U= N
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Example 2 Giveng=v’ wehave limg=(2)° =38.

Example 3

You may have noted that, in Theorems I through 111, what is done to find the limit of g
as v — N is indced to let v = N. But these are special cases, and they do not vitiate the
general rule that “v — N does not mean “v = N

Theorems Involving Two Functions

If we have two functions of the same independent variable v, ¢ = g(v) and g> = A(v), and
if both functions possess limits as follows:

lim ¢ = I, hm gy =L,
p— N Uos i

where L and £ are two finite numbers, the following theorems are applicable.

Theorem IV (sum-ditference limit theorem)
li%(ql +ag:) =L L2

The limit of a sum (dilference) of two functions is the sum (diffcrence) of their respective
limits,

In particular, we note that

Tim 2q1 = lim(qi +q0) = Ly + 11 = 2L
which is in lin¢c with Theorem .
TheoremV  (product limit theorem})
vlin_}",(q:@‘z) = L1y

The limit of a product of two functions is the preduct of their limits.

Applied to the square of a function, this gives

lim{qig) =Ll =1,

which is in tine with Theorem III.

Theorem VI (quotient limit theorem)

g
lim — = — L;#0
Rl (L2
The limit of a quotient of two functions is the quotient of their limits. Naturally, the kmit
L5 is restricted to be nonzero; otherwisc the quotient 1s undefined.

Find lin?)(l +v)/{2 4 ). Since we have here Iin‘(n}(1 +v=1and Iin?)(z + v} = 2, the desired
¥or Y3 =t
limit is 3.

Remember that 7, and L represent finitc nurmbers; otherwise these theorems do not
apply. In the case of Theorem VI, furthermore, L, must be nonzero as well. If these re-
strictions are not satisfied, we must fail back on the method of limit evaluation illustrated
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in Examples 2 and 3 in Sec. 6.4, which relate to the cases, respectively, of L1 being zero
and of £, being infinite.

Limit of a Polynomial Function

With the given limit theorems at our disposal, we can casily evaluate the limit of any poly-
nomial function

g=gy=ay+av+ar’+ - +a" {6.11)
as v tends to the number N. Since the limits of the separate terms are, respectively,
lim ay = ay lim qjv =y N lim a;0° = @y N* {etc.)
n— N i Y b= N

the limit of the polynomial function is (by the sum limit theorem)
lim g =ag+aN+aN 4+ g, N (6.12)
I—
This limit is also, we note, actually equal to g(N ), that is, equal to the valuc of the function

in (6.11) when v = ¥. This particular result will prove important in discussing the concepl
of continuity of the polynomial function.

EXERCISE 6.6
1. Find the limits of the function g = 7 — 9v 4+ vZ;
(a) Asv— 0 (b) Asv— 3 () Asv— —1
2. Find the limits of ¢ = (v+ 2){v - 3):
(@) Asv— —1 (b) Asv— 0 () Asv— 5
3. Find the limits of g = (3v+ S)/(v+ 2):
(o) Asv—> 0 (0) Asv-+5 (¢) Asv— —1

6.7 Continuity and Differentiability of a Function

The preceding discussion of the concept of limit and its evaluation can now be used to
define the continuity and differentiability of a function, These notions bear directly on the
derivative of the function, which is what interests us.

Continuity of a Function

When a tunction ¢ = g(v) possesses a limit as v tends to the point N in the domain, and
when this limit is also equal to g(V)—that is, equal to the value of the function aty = N —
the function is said to be continuous at N. As defined here, the term continuity involves no
less than three requircments; (1) the point N must be in the domain of the function: i.¢.,
g(Ny1s defined; (2) the function must have a limit us v — N ie.. lim g(v) exists; and
(3) that limit must be equal in value to g(NY; i.e., ;-lin}u gy =g(N). " &

[t is important to note that while the point (N, L) was excluded from consideration in
discussing the limit of the curve in Fig. 6.3, we arc no longer excluding it in the present
context. Rather, as the third requirement specifically states, the point (N, L) must be on the
graph of the function beforc the function can be considered as continuous at point A,
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Example 1

Let us check whether the functions shown in Fig. 6.2 are continuous. [n diagram a, all
three requirements are met at point &, Point N is in the domain; g has the limit L as v — N;
and the limit £ happens aiso to be the value of the functien at ¥. Thus, the function repre-
sented by that curve is continuous at N. The same is truc of the function depicted in
Fig. 6.24, since L is the limit of the function as v approaches the value N in the domain, and
since £ is also the value of the function at N. This last graphic example should suffice to es-
tablish that the continuity of a function at point N does rot necessarily imply that the graph
of the function is “smooth” at v = N, for the point (¥, L) in Fig. 6.2b is actually a “sharp”
point and yet the function is continuous at that value of v.

When a function ¢ = g{v) is continuous at all values of v in the intcrval {a, &), it 1s said
to be continuous in that interval. If the functien is continuous at all points in a subset S of
the domain (where the subset S may be the union of several disjoint intervals), it is said to
be continuous in . And, finally, if the function is continuous at ail points in its domain, we
say that it is continuous in its domain. Even in this latter case, howcver, the graph of the
function may nevertheless show a discontinuity (a gap) at some value ol v. say, atv = 5,11
that value of v is rof in its domain.

Again referring to Tig. 6.2, we see that in diagram ¢ the function is discontinuous al N
because a limit does not exist at that point, in violation of the sccond requirement of conti-
nuity. Nevertheless, the function does satisfy the requirements of continuity in the interval
(0, N) of the domain, as well as in the interval [¥, oo}, Diagram o obviously is also dis-
continuous at v = N. This time. discontinuity emanates from the fact that NV is excluded
from the domain, in violation of the first requirement of continuity.

On the basis of the graphs in Fig. 6.2, it appears that sharp points are consistent with
continuity, as in diagram b, but that gaps are taboo, as in diagrams ¢ and . This is indeed
the case. Roughly speaking, therefore, a function that is continuous in a particular interval
is one whose graph can be drawn for the said interval without lifting the pencil or pen [rom
the paper—a feat which is possible even if there are sharp points, but impossible when gaps
oceur.

Polynomial and Rational Functions

Lct us now consider the coniinuity of certain frequently encountered functions. Fer any
polynomial function, such as ¢ = g(v) in (6.11), we have found from (6.12} that Tlgn\ g
exists and is equal to the value of the function at V. Since & is a point {any point} in the
domain of the function, we can conchide that any polynomial function is confinuous in its
domain. This is a very useful piece of information, because polynomial functions will be
encountered very often.

What about rational functions? Regarding continuity, there cxists an interesting theorem
(the continuity theorem) which states that the sum, difference, product, and quotient of any
finite number of functions that are continugus in the domain are, respectively. also contin-
uous in the domain. As a result, any rational function (a quotient of two polynomial func-
tions) must also be continuous in its domain.

The rational function

qg=g(v)= "
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is defined for all finite real numbers; thus its domain consists of the interval (—ac, o). For
any number N in the domain, the limit of q is (by the quotient limit theorem)

: 2
. Jim (4v5 4N?
lim g = ——- =
N I'”L(V +1) N+
k-

which is equal to g(N}. Thus the three requirements of continuity are all met at N. More-
over, we note that N can represent any point in the domain of this function; consequently,
this function is centinuous in its domain,

The rational functicn

Vv 4y —4
v — 4

is not defined at v = 2 and at v = —2. Since those two values of v are not in the domain, the
function is discontinuous at v=—2 and v = 2, despite the fact that a limit of g exists as
v— —2 or 2. Graphically, this function will display & gap at each of these two values of v.
But for other values of v (those which are in the domain), this function is continuous,

Differentiability of a Function

The previous discussion has provided us with the tools for ascertaining whether any fune-
tion has a limit as its independent variable approaches some specific value. Thus we can try
to take the limit of any function y = f(x) as x approaches some chosen value, say, xg.
However, we can also apply the “limit” concept at a diflerent level and take the limit of the
difference quotient ol that function, Ay/Ax, as Ax approaches zero. The outcomes of
limit-taking at these two diffcrent levels relate to two diflerent, though related, properties
of the function f.

Taking the limit of the function y = f(x) itself, we can, in line with the discussion of
the preceding subsection, examine whether the function /'is continuous at x = xy. The con-
ditions for centinuity are (1) x = x, must be in the domain of the function £, (2} y must have
a limit as x — xy, and (3) the said limit must be equal 1o £(xp). When these are satisfied,
we can write

lim f(x) = f(x) [continuity condition] (6.13)

In contrast, when the “limit™ concept is applicd to the difference quotient Ay/Ax as
Ax — 0, we deal instead with the question of whether the function f'is differentiable uat
x = xg, 1.c.,, whether the derivative dv/dx exists at x = xy, or whether f{xy) exists. The
term differentiable 15 used here because the process of obtaining the derivative dy/dx is
known as differentiation (also called derivation). Simce f'(xy) exists if and oniy if the limit
of Ay/Ax exists at x = x as Ax — 0, the symbolic expression of the differentiabilily of

fis

flxo) = lim —

i SO0 A0 = f0)

Ax—l) Ax

[differentiability condition]  {6.14)
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FIGURE 6.4

These two properties, continuity and differentiability, are very intimately related to each
other- -the confinuity of fis a necessary condition for its ditferentiability (although, as we
shall see latcr, this condition is not sufficiens). What this means is that, to be differentiable
at x = xg, the function must first pass the test of being continuous at x = xp. To prove this,
we shall demonstrate that, given a function y = f(x), its continuity at x = xq follows from
its differcntiability at x = xg; L.e., condition {6.13) follows from condition (6.14). Before
doing this, however, let us simplify the notation somewhat by (1) replacing xy with the
symbol N and (2) replacing (xp + Ax) with the symbol x. The latter is justtfiable becausc
the posichange valuc of x can be any number {depending on the magnitude of the change)
and hence is a variable denotable by x. The equivalence of the two notation systems 15
shown in Fig. 6.4, where the old notations appear (in brackets) alongside the new. Note that,
with the notational change, Ax now becomes (x — N), so that the expression “Ax — 07
becomes “x -+ N.” which is analogous t¢ the expression v — N used before in connection
with the function ¢ = g{v). Accordingly, (6.13) and (6.14) can now be rewritten, respcc-
tively, as

lim f(x)= f(N) (6.13)

) = iy LS

=N x— N

(6.14")

What we want to show is, therefore, that the continuity condition (6.13°) follows from
the differentiability condition (6.14"). First, since the notation x — N implies that x # N,
so that x — V is a nonzero number, it is permissible to write the lollowing identity:

{x N _
&J{-r(—)-(.r - N) (6.15)

x——

flx) = Ny =

¥=f{x)

Fin
Pfxpt Ax)]

FiN)
(FEE]
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Taking the limit of each side of (6.15) as x — N yiclds the following results:

Lefi side = Ilm flx) — Ilm J(N) [dillerence limit theorem)

= ]m‘{! f{x) - _f(N) [f(N) 15 a constant]
‘Y — f(N
Right side = 1in‘{’ M linl(.x — N)  [product limit thcorem]
x—=! X — ! y-r N
= F(NX limvx — _lirrllvN) [by (6.14") and difference limit theorem]
= SNV =N} =

Note that we could not have written these results, if condition (6,14") had not been granted,
for if f"(N) did not exist, then the right-side expression (and hence also the lefi-side
expression) in (6.15) would not possess a limit. If f'(N) does exist, however, the two sides
will have limits as shown in the previous equations. Morcover, when the left-side resuli and
the right-side result are equated, we get llm f(x)— f({N) =0, which is identical wilh

(6.13"). Thus we have proved that contmully, aq shown in {6.13'), follows from differentia-
bility, as shown in (6.14°). In general, if a function is differentiable at every point in its
domain, we may conclude that it must be continuous in its domain,

Although differentiability implies continuity, the converse is not true, That is, continu-
ity 1s a necessary, but not 8 sufficient, condition for differentiability. To demonstrate this,
we merely have to produce 4 counterexample. Let us consider the function

y=flx)=lx—2/+1 (6.16)

which is graphed in Fig. 6.5. As can be readily shown, this function is not differentiable,
though continuous, when x = 2. That the function is continuous at x = 2 is easy to estab-
lish. First, x = 2 is in the domain of the function. Sccond, the limit of v exists as x tends
to 2; to be specific, hm y= 11m y = L. Third, f{2) is also found to be 1. Thus all three

requirements of contmmty are mcl To show that the function [ is nof differentiable at

yoix—2|+1
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¥ = 2, we must show that the limit of the difference quotient

lip £ & = () f(2) liml-‘f—2|+1—1=Hmlx—2|

x—2 x—2 =2 x—2 =2 x —2

does not exist. This involves the demonstration of a disparity between the left-side and the
right-side Hmits. Since, in considering the right-side limit, x must exceed 2, according to the
definition of absolute value in (6.8) we have |x — 2| = x — 2. Thus the right-side limit is

= lm]=1
=2 X = g2ty — 2 N2

On the other hand, in considering the left-side limit, x must be less than 2; thus, according
to (6.8), |x — 2| = —(x - 2). Consequently, the Jeft-sidc limit is

TR ek T Bk SO RPN (G

r-a2 x—2 =2 x =2 x—=2
which is different from the right-side limit. This shows that continuity does not guarantee
differentiability. In sum, all differentiable functions arc continuous, but not all continuous
functions are differentiable.

In Fig. 6.5, the nondifferentiability of the function at x = 2 is manifest in the {act that
the point (2, 1) has no tangent line defined, and hence no definite slope can be assigned to
the point. Specifically, to the left of that point, the curve has a slope of — 1, but 1o the right
it has a slope of 41, and the slopes on the two sides display no tendency to approach a
common magnitude at x = 2. The point (2, 1) is, of course, a special point; it is the only
sharp point on the curve. At other points on the curve, the derivative is defined and the
function is ditferentiable. More specifically, the function in (6.16) can be divided into two
lingar functions as follows:

Left part: y=—(x-2)+1=3—-x (x<2)
Right part: y= {(x—=2)+1=x—-1 (x>2)

The left part is differentiable in the interval (—o0, 2), and the right part is differentiable in
the interval (2, o¢) 1n the domain.

Tn general, differentiability is a more restrictive condition than continuity, because it re-
quires sormething beyond continuity. Continuity at a point only rules out the presence of a
gap, whereas differentiability rules out “sharpness” as well. Therefore, differentiability
calls for “smoothness” of the function (curve) as well as its continvity. Most of the specific
functions cmployed in economics have the property that they are differentiable cverywhere.
When general functions are used, moreover, they are often assumed 1o be cverywhere
differentiable, as we shall in the subsequent discussion.

EXERCISE 6.7

1. Afunction y = f(x} is discontinuous at x = x; when any of the three requirements for
continuity is violated at x = xp. Construct three graphs to illustrate the violation of each
of those requirements.
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. Taking the set of all finite real numbers as the domain of the function g = g(v) = v* -

S5v— 2

() Find the limit of g as v tends to N (a finite real number).

(b) Check whether this limit is equal to g{N).

(¢ Check whether the function is continuous at N and continuous in its domain.
v+2

vig2

{a) Use the limit theorems to find Jlﬂk g, N being a finite real number.

(b) Check whether this limit is equal to g(N).

(¢} Check the centinuity of the function g(v) at N and in its demain {—og, 00).

. Given the functiong = g(v) =

x? —9x+20
. Gi = )= ——
iveny = f(x} <4
{0) Is it possible to apply the quotient limit theorem to find the limit of this function as
x - 47

{(£) Is this function continuous at x = 47 Why? .

{¢) Find -a function which, for x # 4, is equivalent to the given function, and obtain
from the equivalent function the limit of y.as x — 4.

- In the rational function:in Example 2,:the numerator is evenly divisible by the denomi-

nator, and the quotient is v +- 1, Can we for that reason replace that function outright

by g = v+ 1?7 Why or why not?

.-On the basis of the graphs of the six functions in Fig. 2.8, would you conclude that

-each such function is differentiable at every point in its domain? Explain.



