Chapter

Rules of Differentiation
and Their Use in
Comparative Statics

The central problem of comparative-static analysis, that of finding a rate of change, can be
identified with the problem of finding the derivative of some function y = f(x), provided
only an infinitesimal change in x is being considered. Even though the derivative dy/dx is
defined as the limit of the difference quotient ¢ = g(v) as v — 0, it is by no means neces-
sary to undertake the process of limit-taking each time the derivative of a function is
sought, for there exist various rules of differentiation (derivation) that will enable us to
obtain the desired derivatives directly. Instead of going into comparative-static models
immediately, therefore, let us begin by learning some rules of difterentiation.

7.1 Rules of Differentiation for a Function of One Variable
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First, let us discuss three rules that apply, respectively, to the following types of function of
a single independent variable: vy = k {constant function) and v = x* and y = cx" (powcr
functions). All these have smooth, continuous graphs and are therefore differcntiablc
everywhere.

Constant-Function Rule

The derivative of a constant function y = £, or f(x} = £, 1s identically zero, i.c., 18 zero
for all values of x. Symbolically, this rule may be stated as: Given y = f(x) =4, the
derivative is

dy  dk .
yelalrs or fixy=0
Alternatively, we may state the rule as: Given y = f(x) =k, the derivative is
d d d
—_—y = 3 = —k =
dx} dx /) dx 0
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where the derivative symbol has been separated into two parts, d/dx on the one hand, and
y [or fix} or &] on the other. The first part, d/dyx, is an operator symbal, which instructs us
to perform a particular mathematical operation. Just as the operator symbol .,/ instructs
us to take a square root. the symbol d/dx represents an instruction to take the derivative of|
or to differentiate, (some [unction) with respect to the variabie x. The function to be oper-
atcd on (to be differentiated) 1s indicated in the second part; here it is v = f{x) =
The proof of the rule is as follows. Given f(x) = &, we have f(N) =k for any »dlue
of N. Thus the value of /'(N)—the value of the derivative at x = ¥N—as delined in (6.13)
i8
f(f\»’)_l M = lim Kok =1lim0=20

X — =Ny — =N

Moreover, since N represents any value of x at all, the result £¢ N} = 0 can be immediately
generalized 1o f'(x} = 0, This proves the rule.

It 15 important to distinguish clearly between the statement f'(x) = 0 and the similar-
looking but different statement f*(xq) = 0. By f'(x) = 0, we mean that the derivative
function /" has a zero value for ¢/l values of x; in writing f”{x4} = 0, on the other hand, we
are merely associating the zero value of the derivative with a particulur value of x, namely,
X = Xp.

As discussed before, the denvative of a function has iis geometric counterpart in
the slope of the curve. The graph of a constant function, say, a fixed-cost function
Cr = f{Q) = 51,200, 15 a horizontal straight line with a zero slope throughout. Corre-
spondingly, the derivative must also be zero for all values of O

d

d
—(Cr=—12
20 r 20 00=20

Power-Function Rule
The derivative of a power fimction v = f(x) =x" is nx"~!. Symbolically, this is cx-
pressed as

d
E—XH = nx"! o flx)=mx"1 7.1
X
) d
The derivative of y = x> is d_i/ = aﬂ =3x%.

d
The derivative of y = x” is axg =98,

This rule is valid for any real-valued power of x; that is, the exponent can be any real
number. But we shall prove it only for (he case where # is some positive integer. In the
simplest case, that of # = 1, the function is fix} = x, and according to the rule, the
derivative 15

/m—j,‘i = 1" =1



150 Part Three Comparaiive-Static Analysis

Example 3

Example 4

The proof of this result follows casily from the definition of f(N) in (6.14'). Given
J(x) = x, the derivative valuc at any value of x, say, x = N, i8
. Jx)—f(N x-N
F(N) = lim J&) = /) = lim 2 = lim =1
TN X - x—n X — N =N

Since N represents any value of x, it is permissible to write f'(x) = L. This proves the rule
for the case of n = 1. As the graphical counterpart of this result, we see that the function
vy = f(x) = x plots as a 45° line, and it has a slope of +1 throughout.

For the cases of larger integers, n =2, 3, ..., let us first note the following identitics:

32— N? .
=x+N [2 terms on the right]
x—N
SN , i
= +Nx+N [3 terms on the right]
X —
no_ Nﬂ
* =l N g o]
x—N

[# terms on the right] (7.2)

On the basis of (7.2), we can cxpress the derivative of a power function f{x) = x" at
x = N as follows:
J(x) - f(N) x" - N7

FN = lim = =M S
= xlinll(x”_l + NP4 N [by (7.2)]
= ;;ILII;'I\-’ PSR J";n\, Nx" 24 4 ranl N* 1 [sum limit theorem]
=N N e [a total of n terms)
—pN" | (7.3)

Again, & is any value of x; thus this last result can be generalized to
S = nx"!

which proves the rule for 4, any positive integer.

As mentioned previously, this rule applies even when the exponent » in the power ¢x-
pression x” is not a positive integer. The [ollowing examples serve to illustrate its applica-
tion to the latter cases.

Find the derivative of y = x°. Applying (7.1), we find

a%xD =0(x =0

Find the derivative of ¥ = 1/x>, This involves the reciprocal of a power, but by rewriting the
function as y = x3, we can again apply (7.1) to get the derivative:

d —3 4 "’3
'GEX =-3x [: _;(T]
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Find the derivative of y = \/x. A square root is invalved in this case, but since /x = x'/2, the
derivative can be feund as follows:
G Ve [0
dx 2 2% 2x
Derivatives are themselves functions of the independent variable x. In Example 1, for
instance, the derivative is dy/dx = 3x%, or f'(x) = 3x2, so that a different value of x will
result in a different value of the derivative, such as

f=3y=3  f@=32°=0n
These specific values of the derivative can be cxpressed alternatively as
dy dy
dx dx

but the notations (1} and f'(2) are obviously preferable because of their simplicity.

It is of the utmost importance to realize that, to find the derivative values (1), /7(2),
etc., we must first diffcrentiate the function f(x), to get the derivative function /"(x}, and
then let x assume specific values in f'(x). To substitute specific values of x into the primi-
tive function f(x) prior to differentiation is definitely not permissible. As an illustration, if
we let x = 1 in the function of Example 1 before differentiation, the function will degen-
erate into ¥ = x = 1—a constant function—which will vield a zero derivative rather than
the correct answer of f(x) = 3x”.

=3 =12

x=2

x=|

Power-Function Rule Generalized
When a multiplicative constant ¢ appears in the power function, so that f(x) = cx", its
derivative is

d ]

d—cx” = enx"” or  f(x)=cax""
x

This result shows that, in differentiating ex”, we can simply retain the multiplicative con-
stant c intact and then differentiate the term x” according to (7.1).

Given y = 2x, we have dyjdx = 2x° = 2,
Given f(x) = 4x3, the derivative is F(x) = 12x2,
The derivative of f(x) = 3x2is f'(x) = —6x 3.

For a proof of this new rule, consider the fact that for any value of x, say, x = ¥, the
value of the derivative of f(x) = cx" is

, : x)— f(N .ex? — N _ x*t = NT
SNy = lim M =m —— = lim¢ (—m—)
= xr— =k X — N =N
Ho_ an
= lim ¢ lim ———  [product limit theorem)
=N r=N oy — N
'rﬂ _ A ) . N
=¢lim —— [limit of a constant]
x—=N X — N

=caN"! [from {7.3)]
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In the view that N is any value of x, this last result can be gencralized immediately to
f(x) = enx""", which proves the rute.

EXERCISE 7.1

1. Find the derivative of each of the following functions:
(@ y= x'2 © y= 7x° (e w= _4y'/?
(b) y =63 @w=3u" (F) w=4u't4
2. Find the following:
d, 4 d, 4 d
(@) a( X7 (0) aTVSW (e) duau
d 1/3 d 2 E B h
(b} agx () dxcx (f il
3. Find (1) and f'(2) from the following functions:
(@) y= f{x) = 18x (@ F(x)=—5x72 (e) flw)=6w">
by y = f(x) = cx? (d) f(x) = ix*7? () f(w)=~3w 8

4. Graph a function f(x} that gives rise to the derivative function f'(x) = 0. Then graph a
function g(x) characterized by g'(x) = 0.

7.2 Rules of Differentiation Involving
Two or More Functions of the Same Variable

Example 1

The three rules presented in Sec. 7.1 arc cach concerned with a single given function f(x}.
Now suppose that we have two differentiable functions of the same variable x, say, f{x) and
g(x), and we want to differcntiate the sum, difterence, product, or quotient formed with
these two functions. In such circumstances, arc there appropriate rules that apply? Morc
coneretely. given two functions -say. f{x) = 3x* and g(x) = 9" how do we get the
derivative of, say, 3x2 + 9x'2, or the derivative of (3x2)(9x'2)?

Sum-Difference Rule
The derivative of a sum (difference) of two functions is the sum (difference) of the deriva-
tives of the two functions:

d d . d , )

—[fyFgn)]= - fx) £ —glx) = [{x) £ x)

dx dx dx
The proof of this again involves the application of the definition of a derivative and of the
various limit theorems. We shall omit the proof and, instead, merely verify its validity and
illustrate its application,

From the function y = 14x®, we can obtain the derivative dy/dx = 42x. But 14x* =
5x% ~9x3, so that y may be regarded as the sum of two functions f(x) = 5x* and

g(x) = 9x*. According to the sum rule, we then have
d .
% = a(5x3 +9x%) = %sﬁ + [%wﬂ = 1557 +27x% = 424¢*

which is identical with aur earlier resuit.
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This rule, which we stated in terms of two functions, can easily be cxtended to more
functions. Thus, it 15 also valid to write

d
@ Eg) )] = f ()£ g h(x)

The function cited in Example 1, y = 14x°, can be written as y = 2x3 + 13x% — x*_ The
derivative of the fatter, according to the sum-difference rule, is

d
d—i’ = %(2;? + 133 — x%) = 6x7 4 39x% — 3x? = 4242

which again checks with the previous answer.

This rule is of great practical importance. With it at our disposal, it is now possible to
find the derivative of any pelynomial function, since the latter is nothing but a sum of power
functions.

—d—(axz—l—berc):Zax—l—b

dx
d s 3 3 2 3 2
—&;{h +2x° —3x+37)=2Bx>+6x" ~3+0=28x"+6x° -3

Note that in Examples 3 and 4 the constants ¢ and 37 do not really produce any effect on
the derivative, because the derivative of a constant term is zero. In contrast to the mdii-
plicative constant, which is retained during differentiation, the additive constant drops
out, This fact provides the mathematical explanation of the well-known economic principle
that the fixed cost of a firm does not affect its marginal cost. Given a short-run total-cost
function

C=0—40°+100+75

the marginal-cost function (for infinitesimal output change) is the limit of the quoticnt
AC/AQ, or the derivative of the € function:

whereas the fixed cost is represented by the additive constant 75, Since the latter drops cut
during the process of deriving C/d (), the magnitude of the fixed cost obviously cannot
affect the marginal cost,

In general, if 4 primitive function y = f{x) represents a tofal function, then the deriva-
tive function dy/dx is its marginal function. Both functions can, of course, be ploited
against the variable x graphically; and because of the correspondence between the deriva-
tive of a function and the slope of its curve, for each value of x the marginal function should
show the slope of the total function at that value of x. In Fig. 7.1a, a lincar (constant-slope)
fotal function is seen to have a constant marginal function. On the other hand, the nonlin-
ear (varying-slope) total function in Fig. 7.1b gives rise to a curved marginal function,
which lies below (above) the horizontal axis when the total function is negatively
(positively) sloped. And, firally, the reader may note from Fig. 7.1¢ (cf. Fig. 6,5) that



154 Part Three  Comparative-Static Analpsis
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“nonsmoothness” of a total function will result in a gap (discontinuity) in the marginal or
derivative function. This is in sharp contrast to the everywhere-smooth total function in
Fig. 7.1h which gives rise to a continuous marginal function. For this reason, the smooth-
ness of a primitive function can be linked to the continuity ol its derivative function. In par-
ticular, instead of saying that a certain function is smooth (and differentiable} everywhere,
we may alternatively characterize it as a function with a continuous derivative function. and
refer to 1t as a continuously differentiable function,

The following notations are often used to denote the continuity and the continuous
differeniiability of a function £

feC” o fecC { is continuous

e oor feCh { is continuously differentiable
. Y
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where C, or simply C, is the symbol for the set of all continuous functions, and C'", or
C’, is the symbol for the set of all continuously differentiable functions.

Product Rule

The denvative of the product of two {differentiable) functions is cqual to the first function
tumes the derivative of the second function plus the second function times the derivative
of the first function:

[f(x)gu)] = f(v g{AJ + g(x)— Hx)
= f (-1)g (x) + g{x) f'(x) (7.9)

It 1s also possible, of course, to rearrange the terms and cxpress the rule as

—[f( 0Og] = fixgle) + fx)g(x) (7.4))

Find the derivative of y = (2x + 3){3x%). Let f(x) = 2x 4+ 3 and g(x) = 3x2. Then it follows
that f{x) = 2 and g'(x) = 6éx, and according to (7.4) the desired derivative is

di;[(zx +3)(3%%)] = (2% + 346X + (3x)(2) = 18x% + 18«

This result can be checked by first multiplying out f(x}g{x) and then taking the deriva-
tive of the product polynomial. The product polynomial is in this case f(x)g(x}=
(2x + 3)(3x%) = 65> + 942, and direct differentiation does yield the same derivative,
18x% +18x.

The important point to remember is that the derivative of a product of two functions is
nof the simple product of the two scparate derivatives. Instead, it is a weighted sum of f'(x)
and g'(x), the weights being g(x) and f(x), respectively. Since this difTers [rom what intu-
itive generalization leads one to expeet, let us produce a proof for (7.4). According to
(6.13), the value of the derivalive of f(x)g{x) when x = & should be

%[f(x)g('x)] — lim Jx)glx) — f(N)g(N)

=N =N A — A‘F

(7.5)

But, by adding and subtracting f(x)g(N) in the numerator (thereby leaving the original
magnitude unchanged), we can transform the quotient on the right of (? 3) as follows:

Slegl) — fx)g(N) + f(x)g(N) = f(M)g(N

I - 1'\"‘
glx) — g(N) fx) -
= e/ SVl Nyl LA
FF==E 4 g(y: _N
Substituting this for the quoticnt on the right of (7.5) and taking its limit, we then get

g(x) ~ g(N)
x—N

(x)— f(N
+ lim g(N) lim fx) = 7N
I— .'\'l T .'I\'l x - Jl\'r

d : i
L) | = lim /) lim

(7.5"
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The four limit expressions in (7.5') arc casily evaluated, The first one is f(V), and the third
is g(&) (limit of a constant). The remaining two are, according to (6.13), respectively,
2'(N) and f/(N). Thus (7.5") reduccs to

d - L ~f LE
fgl| = SN g M SN (757

And, since N represents any value of x, (7.5") remains valid if we replace every N symbol
by x. This proves the rule.
As an extension of the rule 1o the case of three functions, we have

d N
Gy L x)gkx)] = S x)glx)h(x) + flx)g'(x)h(x)
+ (g’ (x) - [ef. (74Y] (7.6)

In words, the derivative of the product of three functions is equal to the product of the sec-
ond and third functions times the derivative of the first, plus the product of the first and third
functions times the derivative of the second, plus the product of the first and second func-
tions times the derivative of the third. This result can be derived by the repeated application
of (7.4). First trcat the product g{(x}2(x) as a single function, say, ¢(x), so that the original
product of three functions will become a product of twe functions, f(x)¢{x). To this, (7.4)
is applicable. After the derivative of f(x)¢(x) is obtained, we may reapply (7.4) to the
product g(x)A{x) = P(x) to get ¢'(x). Then (7.6) will follow. The details are left 1o you as
an exercisc.

The validity of a rule is one thing; its serviceability is something else. Why do we need
the product rule when we can resort to the alternative procedure of multiplying out the two
functions f(x) and g(x} and then taking the derivative of the product directly? One answer
to this question is that the alternative procedure is applicable only to specific (numerical or
parametric) functions, whereas the product rule is applicable even when the functions are
given in the general form. Let us illustrate with an economic example.

Finding Marginal-Revenue Function from
Average-Revenue Function
If we arc given an average-revenuc (AR) function in specific form,

AR=15-0Q

the marginal-revenue (MR) function can be found by first multiplying AR by Q to get the
total-revenue (R) function;

R=AR-Q=(15-0)0 =150 ¢’
and then differentiating R:

Mr = 28 1 20
== ,

But it the AR function is given in the gencral form AR = f( (), then the total-revenue
function will also be in a general form:

R=AR Q= f(O)-0
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and therefore the “multiply out” approach will be to no avail. However, because R is a prod-
uct of two functions of ¢, namely, f(Q) and Q itself, the product rule can be put to work,
Thus we can differentiate R to get the MR function as follows:

iR ) ,
MR = a0 JQ)-1+0- (1= IO+ 210y (7.7
However, can such a general result tell us anything significant about the MR? Indeed it
can, Recalling that f( Q) denotes the AR function, let us rearrange (7.7) and write

MR — AR=MR ~ f(Q) = 0f(Q) (7.7)

This gives us an important relationship between MR and AR: namely, they will always
differ by the amount @7*( ).

It remains to examine the expression Q77'( Q). Its first component Q denotes output and
1s always nonnegative, The other component, /(). represents the slope of the AR curve
plotted against €. Since “average revenue™ and “price” are but different names for the same
thing:

the AR curve can also be regarded as a curve relating price P to output @8 P = £(Q).
Viewed In this light, the AR curve is simply the inverse of the demand curve for the prod-
uct of the firm, 1.e., the demand curve plotted after the P and O axes are reversed. Under
pure competition, the AR curve 13 a horizontal straight line, so that /{() = 0 and, from
(7.7, MR — AR = 0 for all possible values of (0, Thus the MR curve and the AR curve
must coincide. Under imperfect competition, on the other hand, the AR curve is normally
downward-sloping, as in Fig. 7.2, so that /() < 0 and, from {7.7"), MR — AR < { {or all
positive levels of output. In this case, the MR curve must lie below the AR curve.

The conclusion just stated is gualitative in nature; it concerns only the relative positions
of the two curves. But (7.7') also furnishes the guantizative information that the MR curve
will fall short of the AR curve at any output level O by precisely the amount O /(). Let
us look at Fig. 7.2 again and consider the particular output level V. For that output, the

AR=P= f(()

S SR S ——————
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expression Q/(() specifically becomes N7'(N): if we can find the magnitude of Nf'(N)
in the diagram, we shall know how far below the average-revenue point G the correspond-
ing marginal-revenuc poin{ must lie.

The magnitude of N is already specificd. And /() is simply the slope of the AR curve
at point G (where Q = N), that is, the slope of the tangent line JM measured by the ratio
of two distances O.J/OM. However, we sce that OJ/OM = HJ/HG: besides, distance HG is
precisely the amount ol output under consideration, N. Thus the distance N f( ¥}, by which
the MR curve must lie below the AR curve at cutput N, 1s

NfUN) = HG
. ! — T HG

= HJ

Accordingly, if we mark a vertical distance KG = H./ directly below point G, then point &
must be a point on the MR curve. {A simple way of accuratcly plotting KG 1s to draw a
straight line passing through point / and parallel to JG; point K is where that line intersects
the vertical line NG)

The same procedurc can be used to locate other points on the MR cueve. All we must do.
for any chosen point G on the curve, is first to draw a tangent to the AR curve at &7 that
will meet the vertical axis at some point .J*. Then draw a horizontal line from ' (o the ver-
tical axis, and label the intersection with the axis as H'. Il ' we mark a vertical distance
K'G' = H'J' dircetly below point ¢/, then the point K will be a point on the MR curve.
This is the graphical way of deriving an MR curve from a given AR curve. Strictly speak-
ing, the accurate drawing of a tangent line requires a knowledge of the value of the deriva-
tive at the rclevant output, that is, /°(¥): hence the graphical method just outlined cannot
quite exist by itself. An important exception is the case ol a linear AR curve, where the tan-
gent to any point on the curve is simply the given line itself, so that there is in effect no need
to draw any tangent at all. Then the graphical method will apply in a straightforward way.

Quotient Rule
The derivative of the quotient of two functions, f(x)/g(x), Is

d flx)  flxglx) — fxg'(x)

dx g(x) g(x)
In the numerator of the right-hand expression, we find two product terms, cach involving
the derivative of only one of the two original functions. Note that f'(x) appcars in the pos-
itive term, and g'(x) in the negative term. The denominator consists of the square of the
function g(x); that is, g2(x) = [g(x)].

d {2x-3\  2Ax+N—(2x-M) 5
a(xﬂ)_ (x +1)2 T (x+1)?

d ( 5x Y S(x2+1)-5x(20 500 -%%)
a(xzqﬂ)_ (x2 + 1) (X2 +1)2

d fax2+bY\  2ax(ex) ~ (ax? + b))

dx (_*cx ) - (cx)?
Cda?-b)  ax’—b
T (e T o2
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This rule can be proved as follows. For any value of x = &, we have

4 fw _ . f)iglo - fV)/gV)

= 7.
dx glx)|,_y *oN x—N 78

The quotient expression following the limit sign can be rewritten in the form
S()g(N) - f(N)glx) i
g(x)g(N) x - N

By adding and subtracting f(N)g(N) in the numerator and rearranging, we can further
transform the expression to

1 [f(x)g(N) — J(N)g(N) + f(N)g(N) - fl N)g(x)]

gx)g(N) x—N
_ f) = SN ) — g(V)
~ g [g“‘” P }
Substituting this result into (7.8) and taking the limit, we then have
4 fix fx) = fIN)

= lim ——— | lim g(N) li
y=n N glx)g(N) [xlﬂ'g( ) coN x—N

. . glx) — g(N)
— lim f(N) lim =0 ]
_ |
T gH(N)

which can be generalized by replacing the symbol ¥ with x, because N represents any valug
of x. This proves the quotient rule.

dx glx)

[N} (N) = fIN)g{N)] [by (6.13)]

Relationship Between Marginal-Cost and
Average-Cost Functions
As an economic application of the quoticnt rule, let us consider the rate of change of aver-
age cost when output varies.

Given a total-cost function C = C({)), the average-cost {AC) function is a quotient of
two functions of (J, since AC = C(()/ O, defined as long as Q = (. Therefore, the rate of
change of AC with respect to O can be found by differentiating AC:

d C(0) _[C(Q)-0-C(D-1] 1 [ y C(Ql]
“ — _ ——|C - = 7.9
00 i 0 (@) 0 (7.9)
From this it follows that, for { > 0,
d Q) = : v = E(Q)
0 g = 0 it C(E)= 0 {7.10)

Since the derivative C'(Q) represents the marginal-cost {MC} function, and C{Q}/
represents the AC function, the cconomic meaning of (7.10) is: The slope of the AC
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curve will be positive, zcro, or negative if and only il the marginal-cost curve lies above,
intersects, or lies below the AC curve. This is illustrated in Fig. 7.3, where the MC and AC
functions plotted are based on the specific total-cost function

C=0 - 1207 + 600

To the left of Q = 6, AC is declining, and thus MC lies below it; to the right, the opposite
is true. At O = 6, AC has a slope of zero, and MC and AC have the same value.!

The qualitative conclusion in (7.10) is stated explicitly in terms of cost functions. How-
ever, its validity remains unaffected if we interpret C'( Q) as any other differentiable total
function, with C(@)/0 and () as its corresponding average and marginal functions.
Thus this result gives us a general marginal-average relationship. In particular, we may
point out, the fact that MR lies below AR when AR is downward-sloping, as discussed in
connection with Fig. 7.2, is nothing but a special case of the general result in (7.10).

f Note that (7.10) does not state that, when AC is negatively sloped, MC must also be negatively
sloped; it merely says that AC must exceed MC in that circumstance. At Q = 5in Fig. 7.3, for
instance, AC is declining but MC is rising, so that their slopes will have opposite signs.

EXERCISE 7.2

1. Given the total-cost function C = Q3 — 507 +12Q + 75, write out a variable-cost
(VC) function. Find the derivative of the VC function, and interpret the economic
meaning of that derivative.

2. Given the average-cost function AC = Q? ~ 4Q + 174, find the MC function, Is the
given function more appropriate as a long-run or a short-run function? Why?
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3. Differentiate the following by using the product rule;
(@) (9x% - 2)(3x ~1) (€ x*(4x +6) () (Z2-30001+x}x+2)
(B) (3x + 10)(6x% — 7x) (d) (ax - B)(cx?) (F) (x% —3x
4. (g} Given AR = 60 — 3 Q, plot the average-revenue curve, and then find the MR curve
by the method used in Fig. 7.2.
() Find the total-revenue function and the marginal-revenue function mathemati-
cally from the given AR function.
{¢) Does the graphically derived MR curve in (@) check with the mathematically
derived MR function in (#)?
(dy Comparing the AR and MR functions, what can you conclude about their relative
slopes?

5. Provide a mathematical proof for the general result that, given a finear average curve,
the correspanding marginal curve must have the same vertical intercept but will be
twice as steep as the average curve,

6. Prave the result in (7.6) by first treating g(x)h(x) as a single function, g(x)h{x) = ¢(x},
and then applying the product rule (7.4).

7. Find the derivatives of:

(a) {x% +3)/x () 6x/(x+5)
(b) (x+9)/x () (0% + ) f{cx + d)
8. Given the function f(x} = ox + b, find the derivatives of:
{0} f{x} (b) xf(x) @ 1/f(x) (d) f(x)/x

9. (@) Isittruethat f e O'= f e (7
{by Isittruethat fe C = fe (7?7

10. Find the marginal and average functions for the following total functions and graph
the results.

Total-cost function:

(@) C=3Q*+7Q+12

Total-revenue function:

() R=30Q- @7

Total-product function:

() Q=0al +0L2-ct® (g b5c>0)

7.3 Rules of Differentiation
Involving Functions of Different Variables

In Sec. 7.2, we discussed the rules ol dilterentiation of a sum, difference, product, or quo-
tient of two {or more) differentiable funciions of the same variable. Now we shall consider
cases where there are two or more differentiable functions, cach of which has a distnct
independent variable.

Chain Rule
[t we have a differentiable function = = f(v), where vis in turn a differentiable function of
another vanable x, say, v = gix), then the derivative of z with respect 10 x 15 cqual to the
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Example 1

Example 2

Example 3

derivative of z with respect to y, times the derivative of y with respect to x. Expressed
symbolically,
dz dz dy

ds dy dx g’ x) (7.11)

This rule, known as the chain rule, appeals easily to intuition. Given a Ax, there must result
a corresponding Ay via the function y = g(x}, but this Ay will in turn bring about a Az
via the function z = f(y). Thus there is a “chain reaction” as follows:
Ax 28 Ay Ap

The two links in this chain entail two difference quotients, Ay/Ax and Az/Ay, but when
they are multiplied, the Ay will cancel itsell out, and we end up with

Az Ay Az

Ay Axr  Ax
a differcnce quotient that relates Az to Ax. If we take the limit of these difference quoticnts
as Ax — 0 (which implies Ay — 0), each difference quotient will turn into a derivative;
i.e., we shall have (dz/dv)(dy/dx) = dz/dx. This is precisely the result in (7.11).

In view of the function y = g(x), we can express the functionz = f(vyasz = f[g(x)],
where the contiguous appearance of the two function symbols f'and g indicates that this is
a compusite function (function of a function), 1t is for this reason that the chain rule is also
referred to as the compasite-function rule or function-of-a-function rule.

The extension of the chain rule to three or more functions is straightforward. Tf we have
2= f{y),y = glx}), andx = h(w), then

dz  dz dy dx

dw - dy dx T F g (xR (w)

and similarly for cases in which more functions are involved.

If z= 3y?, where y = 2x + 5, then
dz dz dy
21 _5 =12y =12(2x+5
dx ~ dy dx oY@ =12y =122k 5)

If 2= y — 3, where y = x3, then

daz _ 13x%) = 3x°

dx

The usefulness of this rule can best be appreciated when we must differentiate a function
such as z= (%% + 3x — 2)!7, Without the chain rule at our disposal, dz/dx can be found
only via the laborious route of first multiplying out the 17th-power expression, With the
chain rule, however, we can take a shortcut by defining a new, intermediate variable
y = x% + 3x — 2, so that we get in effect two functions linked in a chain:

r=y7  and  y=x*+3x-2

The derivative dz/dx can then be found as follows:
dz _ dz dy

< _ _ 17,16 _ 2 _ )16
0" dy ax 17y °2x+3) = 17(x" +3x - 2)"°(2x + 3)
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Given a total-revenue function of a firm R = f(Q), where output Q is a function of labor
input £, or Q = g(L), find dR/dL. By the chain rule, we have

dR  dR dQ
di — dQ dt
Translated into economic terms, dR/dQ is the MR function and dQ/d{ is the marginal-
physical-preduct-of-labor (MPP,) function. Similarly, dR/d! has the connotation of the

marginal-revenue-product-gf-tabor (MRP, } function. Thus the result shown constitutes the
mathematical statement of the well-known result in economics that MRP; = MR - MPP; .

= fF(Qg'(L)

Inverse-Function Rule

If the function ¥ = f(x} represents a one-to-one mapping, i.e., if the function is such that
each value of y is associated with a unique value of x, the function f'will have an inverse

function x = f~Y(y) (read: “x 15 an inverse function of ). Here, the symbol /=" is a func-

tion symbol which, like the derivative-function symbol £, signifies a function related (o
the function £ it does not mean the reciprocal of the function f(x).

What the existence of an inverse funetion essentially means is that, in this case, not only
will a grven value of x yield a unique value of v [that is, y = F(x)], but also a given value
of y will yield a unigue value of x. To take a nonnumcrical instance, we may exemplify the
one-to-one mapping by the mapping from the set of all husbands to the set of all wives in a
monogamous society. Each husband has a unique wifc, and cach wifc has a unique hus-
band. In contrast, the mapping from the set of all fathers to the sct of all sons is not one-to-
ong, because a father may have more than one son, albeit cach son has a unique father,

When x and y refer specifically to numbers, the property of one-to-one mapping is seen
to be unique to the class of functions known as strictly monotonic (or monotone) functions.
Given a function f(x), if successively larger values of the independent variable x afwavs
lead to successively larger values of f(x}, that s, i

x> x:= flx) = f(x2)

then the function fis said to be a strictly increasing function. If successive increases in x
always lead to successive decreases in f(x), thatis, if

Xp = xz = fx) < f(n)

on the ather hand, the function is said to be a strictly decreasing function. In either of these
cases, an inverse function ! exists.|

A practical way of ascertaining the strict monotonicity of a given function y = f{x) is
to check whether the derivative f'(x) always adheres to the same algebraic sign {not zero)
for all values of x. Geometrically, this means that its slope is either always upward or always

T By omitting the adverb strictly, we can define monotonic {or monotone) functions as follows: An
increasing function is a function with the property that

1= x22 f(n) = f(x)  [with the weak inequality =]
and a decreasing function is one with the property that
x =122 flxy) = f(x2)  [with the weak inequality =]
Note that, under this definition, an ascending {descending} step function qualifies as an increasing

{(decreasing) function, despite the fact that its graph contains horizontal segments. Since such
functions do not have a one-to-cne mapping, they do net have inverse functions.
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Example 5

Example 6

downward. Thus a firm’s demand curve @ = f{ ) that has a negative slope throughout s
strictly decreasing. As such, it has an inverse function £ = /' (), which, as mentioned
previously, gives the average-revenue curve of the firm, since P = AR.

The function
y=5x+25

has the derivative dy/dx = 5, which is positive regardless of the value of x; thus the function
is strictly increasing. It follows that an inverse function exists. in the present case, the inverse
function is easily found by solving the given equation y = 5x + 25 for x. The result is the
function

x:%y—.’i

it is interesting to note that this inverse function is also strictly increasing, because
dx/dy = ¢ > 0 for all values of y.

Generally speaking, if an inverse function exists, the original and the inverse functions
must both be strictly monotonic. Moreover. if £! is the inverse function of £, then f must
be the inverse function of £~ that is, fand f ! must be inverse functions of each other.

It is easy to verify that the graph of v = f(x) and that of x = f~'{y) arc one and the
same, only with the axcs reversed. If one lays the x axis of the f~! graph over the x axis of
the f graph (and similarly for the v axis), the two curves will coincide, On the other hand, 1f
the x axis of the /! graph is laid over the y axis of the £ graph (and vice versa), the two
curves will become mirror images of each other with reference to the 45° line drawn
through the origin. This mirror-image relationship provides us with an casy way of graph-
ing the inverse function /™', once the graph of the original function fis given. (You should
try this with the two functions in Example 5.)

For inverse functions, the rule of differentiation is

dc ]
dy  dv/dx

This means that the derivative of the inverse function is the reciprocal of the derivative of
the original function; as such, dx /dv must take the same sign as dy/dx, so that 1f £ 15 strictly
increasing (decreasing), then so must be £~

As a verification of this rule, we can refer back to Example 3, where dy/dx was found to
be 3, and dx /dv equal to %.These two derivatives are indeed reciprocal to each other and
have the same sign.

In that simple exampic, the inverse function is relatively easy to obtain, so that its
detivative dx /dy can be found directly from the inverse function, As Example 6 shows,
however, the inverse function is sometimes difficult to express explicitly, and thus direct
differentiation may not be practicable. The uscfulness of the inverse-funciion rule then
becomes more fully apparent.

Given y = x> + x, find dx/dy. First of all, since

dy

dx=SX4+1 =0
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for any value of x, the given function is strictly increasing, and an inverse function exists. To
solve the given equation for x may not be such an easy task, but the derivative of the inverse
function can nevertheless be found quickly by use of the inverse-function rule:

d« 1 1
dy  dyjdx  5x* +1

The inverse-function rule is, strictly speaking, applicable only when the function involved
is a one-to-one mapping. in fact, however, we do have some leeway. For instance, when
dealing with a U-shaped curve {not strictly monotonic), we may consider the downward-
and the upward-sloping segments of the curve as representing two separate functions, each
with a restricted domain, and each being strictly monotonic in the restricted domain. To
each of these, the inverse-function rule can then again be applied.

EXERCISE7.3

1. Given y = u® + 2u, where u = 5 — 2, find dy/dx by the chain rute,

2. Given w = ay? and y = bx? + cx, find dw/dx by the chain rule,

3. Use the chain rufe to find dy/dx for the following:
(@ y=(3x*-13)} by y=(7x* = 55° Q) y=(ax+b)y°

4. Given y = (16x + 3)72, use the chain rule to find dy/dx. Then rewrite the function as
y = 1/(16x + 3)? and find dy/dx by the quotient rule. Are the answers identical?

5. Given y = 7x + 21, find its inverse function. Then find dy/dx and dx/dy, and verify the
inverse-function rule, Also verify that the graphs of the two functions bear a mireor-
image relationship to each other,

&. Are the following functions strictly monotonic?
@y=-x+5 (x>0
®) y=4% + x>+ 3x
For each strictly monotonic function, find dx/dy by the inverse-function ruie,

7.4 Partial Differentiation

Hitherto, we have considered only the derivatives of functions of a single independent vari-
able. In comparative-static analysis, however, we are likely to encounter the situation in
which several parameters appear in a model, so that the equilibrium value of cach endoge-
nous vartable may be a function of morg than one parameter. Therefore, as a final prepara-
tion for the application of the concept of derivative to comparative statics, we must learn
how to find the derivative of a function of more than one variable.

Partial Derivatives
Let us consider a function

v= f{x0, X, o, X) (7.12)

where the variables x; (i = 1, 2, ..., #) are all independent of one another, so that each can
vary by itself without affecting the others. If the variable x; undergoes a change Ax| while



