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Optimization: A Special
Variety of Equilibrium
Analysis

When we first introduced the term equilibrium in Chap. 3, we made a broad distinction
between goal and nongoal cquilibrium. 1n the fatter type, exemplified by our study of mar-
ket and national-income models, the interplay of certain opposing forces in the model—
e.1., the forces of demand and supply in the market models and the forces of leakages and
injcctions in the income models—dictates an equilibrium state, if any, in which these
opposing forces are just balanced against each other, thus obviating any further tendency
to change. The attainment of this type of equilibrium is the outcome of the impersonal bal-
ancing of these forces and does not require the conscious effort on the part of anyone to
accomplish a specified goal. True, the consuming households behind the (orces of demand
and the firms behind the forees of supply are each striving for an optimal position under
the given circumstances, bul as far as the market itself is concerned, no one is aiming at
any particular equilibrium price or equilibrium quantity (unless, of course, the govern-
ment happens to be trying Lo peg the price). Similarly, in national-income determination,
the impersonal balancing of leakages and injections is what brings about an equilibrium
state, and no conscious effort at reaching any particular goal (such as an attempt to altet
an undesirable income level by means of monetary or fiscal policies) needs to be involved
at all.

In the present part of the book, however, our attention will be tutned to the study of goal
equilibrium, in which (he equilibrium state is defined as the optimum position for 4 given
economic unit (a household, a business firm, or even an entire cconomy) and in which the
said economic unit will be deliberately striving for attainment of that equilibrium, As a
result, in this context— but only in this context—our earlier warning that equilibrium does
not imply desirability becomes irrelevant and immaterial. In this part of the book, our pri-
mary focus will be on the classical techniques for locating optimum positions—thosce using
differential calculus. More modern developments, known as mathematical programming.
will be discussed in Chap. 13.
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9.1 Optimum Values and Extreme Values

Economics 1s essentially a science of choice. When an cconomic project is to be carried
out, such as the production of a specified level of output, there are normally a number of
alternative ways of accomplishing it. One (or more) of these alternatives will, however, be
more desirable than others from the standpoint of some criterion, and it is the essence of
the optimization problem to choose, on the basis of that specified criterion, the best alter-
native available.

The most commaon criterion of choice ameng alternatives in economics is the goal of
maximizing something (such as maximizing a firm’s profit, a consumer’s utility, or the rate
of growth of a firm or of a country’s cconomy) or of minimizing something (such as mini-
mizing the cost of producing a given output). Economically, we may categorize such max-
imization and minimization problems under the general heading of opiimization, meaning
“the quest {or the best.” From a purely mathematical point of view, however, the terms max-
imum and minimum do not carry with them any connotation of optimality. Therefore, the
collective term for maximum and minimum, ag mathematical concepts, is the more matter-
of-fact designation exfremum, meaning an extreme value,

In formuiating an optimization preblem, the first order of business is to delineate an
objective function in which the dependent variable represents the object of maximization
or minimization and in which the set of independent varigbles indicates the objects whose
magnitudes the economic unit in question can pick and choose, with a view to optimizing.
We shall therefore refer to the independent variables as choice variables.” The essence of
the optimization process is simply to find the sct of values of the choice variables that will
lead us to the desired extremum of the objective function,

For example, a business {irm may scck to maximize profit sz, that is, to maximize the dif-
ference between total revenue R and total cost C, Singe, within the framework of a given
state of technology and a given market demand for the firm’s product, £ and C are both
functions of the cutput level @, it follows that 7 is also expressible as a function of -

7 =R - Q)

This equation constitutes the relevant objective function, with & as the object of maxi-
mization and { as the (only) choice variable. The optimization problem is then that of
choosing the level of O that maximizes . Note that while the optimal level of 7 1 by
defimition its maximal level, the optimal level of the choice variable () s itself not required
to be either 4 maximum or a minimum.

To cast the problem into a more general mold for further discussion (though still con-
fining oursefves to objective functions of one variable only), let us consider the general
function

y=f{x)
and attempt to develop a procedure for finding the level of .« that will maximize or minimize

the value of v. It will be assumed in our discussion that the function f is continuously
differentiable.

T They can also be called decision variables, or policy variables.
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9.2 Relative Maximum and Minimum: First-Derivative Test

FIGURE 9.1

Since the objective function y = f(x)} is stated in the general form, there is no restriction as
to whether it is linear or nonlinear or whether it is monotonic or contains both increasing and
decreasing parts. From among the many possible types of function compatible with the
objective-function form discussed in Sec. 9.1, we have selected three specific cases to be
depicted in Fig. 9.1. Simple as they may be, the graphs in Fig. 9.1 should give us valuable in-
sight into the problem of locating the maximum or minimum value of the function ¥ = f(x).

Relative versus Absolute Extremum

If the objective function is a constant function, as in Fig. 9.1a, all values of the choice
variable x will result in the same value of y, and the height of each point on the graph of
the function (such as 4 or B or ) may be considered a maximum or, for that matter, a
minimum—or, indeed, neither. In this case, there i3 in effect no significant choice to be
made regarding the value of x for the maximization or minimization of y.

In Fig. 9.1, the function is strictly increasing, and there is no fintte maximum if the set
of nonnegative real numbers is taken to be its domain, However, we may consider the end
point D on the left (the y intercept) as representing a minimum; in fact, it is in this case the
absolute (or glebal) minimum in the range of the function.

The points E and F in Fig. 9.1c, on the other hand, are examples of a relative (or local)
extremum, in the sense that each of these points represents an extremum in the immediate
neighborhood of the point only. The fact that point F is a relative minimum is, of course, no
guarantee that it is also the global minimum of the function, although this may happen to
be the case. Similarly, a relative maximum point such as £ may or may not be a global max-
imum. Note also that a function can very well have several relative extrema, some of which
may be maxima while others are minirma.

In most economic problems that we shall be dealing with, our primary, if not exclusive,
concern will be with extreme values other than end-point values, for with most such prob-
lems the domain of the objective function is restricted to be the set of nonnegative real
numbers, and thus an end point (on the left) will represent the zero level of the choice van-
able, which is often of no practical interest. Actually, the type of function most frequently
encountered in economic analysis is that shown in Fig. 9.l¢, or some variant thereof that
contains only a single bend in the curve. We shall therefore continue our discussion mainly
with reference to the search for relative extrema such as points £ and F. This will, however,
by no means foreclose the knowledge of an absolute maximum if we want it, because an
absolute maximum must be either a relative maximum or one of the end peints of the
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FIGURE 9.2

Chapter 9 Optimizarion: A Special Variery of Equilibrium Analpsis 223

¥

¥y =l

i

{u) (b}

function. Thus if we know all the relative maxima, it is necessary only to select the largest
of these and compare it with the end points in order to determine the absolute maximum.
The absolute minimum of a function can be found analogously. Hereafter, the extreme val-
ves considered will be relative or local ones, unless indicated otherwise.

First-Derivative Test

As a matter of terminclogy, from now on we shall refer to the derivative of & function
alternatively as its first derivative (short for first-order derivative), The reason for this will
become apparent shortly.

Given a function v = f{x), the first derivative f*(x) plays a major role in our search for
its extreme values. This is due to the fact that, if a relative extremum of the function occurs
at x = xq, then either (1) f'(xg)} does not exist, or (2) f'(x4) = 0. The first eventuality is
illustrated in Fig. 9.2a, where both points 4 and & depict relative extreme values of v, and
vet no derivative is defined at etther of these sharp points. Since in the present discussion
we are assuming that y = f{x) is continuous and possesses a continuous derivative, how-
ever, we are in effect ruling out sharp points. For smooth functions, relative extreme values
can occur only where the first derivative has a zero value. This is illustrated by points Cand
D in Fig, 9.25, both of which represent extreme values, and both of which are characterized
by a zcro slope— f'(x1) = 0 and f'(xy) = 0. Tt is also easy to see that when the slope 15
nonzero we cannot possibly have a relative minimum (the bottom of a valley) or a relative
maximum {the pcak of a hill). For this reason, we can, in the context of smooth functions,
take the condition f'{(x) = 0 to be a necessary condition for a relative extremum (either
Maximum or minimum}.

We must hasten to add, however, that a zero slope, while necessary, s not sufficient to
establish a relative extremum. An example of the case where a zero slope is not associated
with an extremum will be presented shortly. By appending a certain proviso to the zero-
slope condition, however, we can obtain a decisive test for a relative extremum. This may
be stated as follows:

First-derivative test for relative extremum [f the first derivative of a function f{x) at
x = xg is f'{xy) = 0, then the value of the function at x4, f{xy)}, will be

a. A relative maximum if the derivative /"(x) changes its sign from positive to negative
from the immediate left of the point xy to 1ts immediate right.
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FIGURE 9.3

b. A relative minimum if f'(x) changes its sign from negative to positive from the imme-
diate left of x; to its immediate right.

¢. Neither a relative maximum nor a relative minimum if f”(x) has the same sign on both
the immediate left and the immediate right of point xg.

Let us call the value xq a critical value of x if f'(x¢) = 0, and refer to f{xo) as a sia-
tionary value of y (or of the function f). The point with coordinates xp and f{x) can,
accordingly, be called a stationary point. (The rationale for the word stationary should be
self-evident—wherever the slope is zero, the point in question is never situated on an
upward or downward incline, but is rather at a standstill position.} Then, graphically, the
first possibility listed in this test will establish the stationary point as the peak of a hill, such
as point D in Fig. 9.2b, whereas the second possibility will establish the stationary point as
the bottom of a valley, such as point € in the same diagram. Note, however, that in view of
the existence of a third possibility, yet to be discussed, we are unable to regard the condi-
tion f'(x) = 0 as a sufficient condition for a relative extremum. But we now see that, if the
necessary condition f'(x) = 0 is satisfied, then the change-of-derivative-sign proviso can
serve as a sufficient condition for a relative maximum or minimum, depending on the
direction of tue sign change.

Let us now explain the third possibility. In Fig. 9.3a, the function f is shown to attain
a zero slope at point J (when x = f). Even though f'(;) is zero—which makes f(;) a
stationary value—the derivative does not change its sign from one side of x = j to the
other; therefore, according to the first-derivative test, point ./ gives neither a maximum nor
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Example 1
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a minimum, as is duly confirmed by the graph of the function. Rather, it cxemplifies what
1s known as an inflection point.

The characteristic feature of an inflection point is that, at that point, the derivative (as
against the primitive) function reaches an extreme value. Since this extrere value can be
either a maximum or a minimum, we have two types of inflection points. In Fig. 9.3«
where we have plotted the derivative f'{x), we see that its value is zcro when x = J (see
point /') but is positive on both sides of point ./’; this makes ./ a minimum point of the
derivative function f(x).

The other type of inflection point is portrayed in Fig, 9,3b, where the slope of the func-
tion g(x) increases till the point & is reached and decreases thereafter. Consequently, the
graph of the dertvative function g'(x) will assume the shapc shown in Fig. 9.3, where
point K' gives a maximum value of the derivative function g'(x).

To sum up: A relative extremum must be a stationary valuc, but a stationary value may
be associated with either a refative extremum or an inflection point. To find the relative
maximum or minimum of a given function, therefore, the procedure should be first to find
the stai.onary values of the function where the condition f/(x) = 0 is satisfied, and then to
apply the first-derivative test to determine whether each of the stationary values is a relative
maximum, a relative minimum, or neither.

Find the relative extrema of the function
y=fO)=x-12x" +36x+8
First, we find the derivative function to be
F(x) = 3x% — 24x 4 36

To get the critical values, i.e., the values of x satisfying the condition f'(x) = 0, we set the
quadratic derivative function equal to zero and get the quadratic equation

352 - 24x + 36 =0

By factoring the polynomial or by applying the quadratic formula, we then obtain the
following pair of roots (solutions):

xy =46  [at which we have f'(6) = 0 and f(6) = 8]
x;=2 [at which we have f'(2) = 0 and f(2) = 40]

Since f/{6) = f'(2) = 0, these two values of x are the critical values we desire,

It is easy to verify that, in the immediate neighborhood of x = 6, we have f'(x) < 0 for
x < 6,and f'(x) > 0 forx > 6; thus the value of the function f(6) = 8 is a relative min-
imum. Similarly, since, in the immediate aeighborhood of x =2, we find f'(x) = 0 for
x <2, and f{x) <0 for x » 2, the value of the function f(2) =40 iz a rclative
maximuim.

" Note that a zero derivative value, while a necessary condition for a relative extremum, is not
required for an inflection point; for the derivative g'(x) has a pesitive value at x = k, and yet point K is
an inflection point.
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FIGURE 9.4

Example 2

50+ y=x —12¢* + 365 + 8

Figure 9.4 shows the graph of the function of this exampte. Such a graph may be used
to verify the location of extreme values obtained through use of the first-derivative test.
But, in reality, in most cases “helpfulness” flows in the opposite direction—the mathemat-
ically derived extreme values will help in plotting the graph. The accurate plotting of a
graph ideally requircs knowledge of the value of the function at every point in the domain;
but as a matter of actual practice, only a few points in the domain are selected for purposes
of plotting, and the rest of the peints typically are filled in by interpolation. The pitfall of
this practice is that, unless we hit upon the stationary point(s} by coincidence, we shall miss
the exact location of the turning point(s) in the curve. Now, with the first-derivative test at
our disposal, it becomes possible to locate these turning points precisely.

Find the relative extremum of the average-cost function
AC=F(Q=0Q*-5Q+8

The derivative here is f'(Q) = 2Q — 5, alinear function. Setting '( Q) equal to zero, we get
the linear equation 2Q — 5 = 0, which has the single roat Q* = 2.5. This is the only critical
value in this case, To apply the first-derivative test, let us find the values of the derivative
at, say, Q=24 and Q = 2.6, respectively. Since f(24)=-02<0 whereas '{2.6) =
0.2 > 0, we can conclude that the stationary value AC = f{2.5) = 1.75 represents a refative
minimum. The graph of the function of this example is actually a U-shaped curve, so that
the relative minimum already found will also be the absolute minimum, Qur knowledge of
the exact location of this point should be of great help in plotting the AC curve.

EXERCISE 9.2

1. Fing the stationary values of the following (check whether they are relative maxima or
minima or inflection points), assuming the demain to be the set of all real numbers:

(@) y=-2x2+8x+7 (B y=5xt=x (©Qy=3x24+3 (d)y=3x*-6x+2
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2. Find the stationary values of the following {check whether they are relative maxima or
minima or inflection points), assuming the domain to be the interval [0, 20):
(@) y=x>—3x45
(B y=1 -2+ x+10
() y=—x>+45x2—6x+6
3. Show that the function y = x+ 1/x (with x s 0) has two relative extrema, one a
maximum and the other a minimum. Is the “minimum” larger or smaller than the
“maximum”? How is this paradoxical result possible?
4. Let T = ¢(x) be a total function (e.g., total product or total cost):
(@} Write out the expressions for the margino! function M and the average function A,
(b} Show that, when A reaches a relative extrernum, M and A must have the same
value,
(& What general principle does this suggest for the drawing of a marginal curve and
an average curve in the same diagram?
(d) What can you conclude about the elasticity of the totaf function T at the peint
where A reaches an extreme value?

9.3 Second and Higher Derivatives

Hitherto we have considered only the first derivative 7'(x) of a function y = f{x}: now let
us introduce the concept of second derivative (short for second-order derivative), and
derivatives of even higher orders. These will enable us to devclop alternative criteria for
locating the relative extrema of a function.

Derivative of a Derivative

Since the first derivative f*(x)} is itself a function of ¥, it, too, should be differentiable with
respect to x, provided that it is continuous and smooth. The result of this differentiation,
known as the second derivative of the function £, is denoted by

F7 ) where the double prime indicates thal f{x) has been differentiated with
respect to x twice, and where the expression (x) following the double
prime suggests that the second derivative is again a function of x
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witere the notation stems {rom the consideration that the second derivative
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means, in fact, o (d_ » hence, the o (read: “d-two™) in the numerator
X \dx

and 'x? (read: “dx squarcd”) in the denominator of this symbol.

If the second derivative f*(x) exists for all x values in the domain, the function £(x) is said
to be twice differentiable; if, in additon, f”(x) is continuous, the function fi(x) Is said to
be twice coniinnously differentiable. Just as the notation # € C' or £ € (" is often used
to indicate that the function fis continuously differentiable, an analogous notation

fe At or fec”

can be used to signify that f'is twice continuously differentiable.



