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2. Find the stationary values of the following {check whether they are relative maxima or
minima or inflection points), assuming the domain to be the interval [0, 20):
(@) y=x>—3x45
(B y=1 -2+ x+10
() y=—x>+45x2—6x+6
3. Show that the function y = x+ 1/x (with x s 0) has two relative extrema, one a
maximum and the other a minimum. Is the “minimum” larger or smaller than the
“maximum”? How is this paradoxical result possible?
4. Let T = ¢(x) be a total function (e.g., total product or total cost):
(@} Write out the expressions for the margino! function M and the average function A,
(b} Show that, when A reaches a relative extrernum, M and A must have the same
value,
(& What general principle does this suggest for the drawing of a marginal curve and
an average curve in the same diagram?
(d) What can you conclude about the elasticity of the totaf function T at the peint
where A reaches an extreme value?

9.3 Second and Higher Derivatives

Hitherto we have considered only the first derivative 7'(x) of a function y = f{x}: now let
us introduce the concept of second derivative (short for second-order derivative), and
derivatives of even higher orders. These will enable us to devclop alternative criteria for
locating the relative extrema of a function.

Derivative of a Derivative

Since the first derivative f*(x)} is itself a function of ¥, it, too, should be differentiable with
respect to x, provided that it is continuous and smooth. The result of this differentiation,
known as the second derivative of the function £, is denoted by

F7 ) where the double prime indicates thal f{x) has been differentiated with
respect to x twice, and where the expression (x) following the double
prime suggests that the second derivative is again a function of x
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witere the notation stems {rom the consideration that the second derivative
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means, in fact, o (d_ » hence, the o (read: “d-two™) in the numerator
X \dx

and 'x? (read: “dx squarcd”) in the denominator of this symbol.

If the second derivative f*(x) exists for all x values in the domain, the function £(x) is said
to be twice differentiable; if, in additon, f”(x) is continuous, the function fi(x) Is said to
be twice coniinnously differentiable. Just as the notation # € C' or £ € (" is often used
to indicate that the function fis continuously differentiable, an analogous notation

fe At or fec”

can be used to signify that f'is twice continuously differentiable.
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Example 1

Example 2

As a function of x the second derivative can be differentiated with respect to x again to
produce a third derivative, which in turn can be the source of a fourth derivative, and so on
ad infinitum, as long as the differentiability condition is met, These higher-order derivatives
are symbolized along the same line as the second derivative:

£, f900, .., 00 [with superscripts enclosed in { )]
d*y diy d'y
dx? dx?’ T dxn

3 [
The last of these can also be written as il where the}? part serves as an operator
X X

or

symbol instructing us to take the nth derivative of (some function) with respect to x.

Almost all the specific functions we shall be working with possess continuous deriva-
fives up to any order we desire; i.e., they are continuously differentiable any number of
times. Whenever a general function is used, such as f(x), we always assume that it has
derivatives up to any order we need.

Find the first through the fifth derivatives of the function
y=f{x)=4x* - x> + 1752+ 3x -1
The desired derivatives are as follows:
F(x) =16x° —3x% +34x + 3
F(x) = 48x% — 6x + 34

F(x) = 96x — 6
f#(x) = 96
O (x)=0

In this particular (polynomial) example, we note that each successive derivative function
emerges as a lower-order polynomial—from cubic to quadratic, to linear, to constant, We
note also that the fifth derivative, being the devivative of a constant, is equal to zero for all
values of x; we could therefore have written it as f®)(x) =0 as well. The equation
{3 (x} = 0 should be carefully distinguished from the equation F}(xp) = 0 (zero at xg
only). Also, understand that the statement f(x) = 0 does not mean that the fifth deriva-
tive does not exist; it indeed exists, and has the value zero.

Find the first four derivatives of the rational function

y:g(x):ﬁ—x (X-j#—ll)

These derivatives can be found either by use of the quotient rule, or, after rewriting the
function as y = x(1 + x)~', by the product rule:

g =0+x7?
g"(x) =-2(1+x7?
9" () = 61 +x)~*
g = ~2401 + 25
In this case, repeated derivation evidently does not tend to simplify the subsequent deriva-
tive expressions.

(x# -1
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Note that, like the primitive function g(x), all the successive derivatives obtained are
themselves functions of x. Given specific values of v, however, these derivative functions
will then take specific values. When x = 2, for instance, the second derivative in Example 2
can be evalvated as

. =2
t

2)=—-XH% = —
g 3) 77
and similarly for other values of x. It is of the utmost importance to realize that 10 evaluate
this sccond derivative g“(x) at x = 2, as we did, we must first obtain g"{x) from g'{x) and
then substitute x = 2 into the equation for g”ix}. It is incorrect to substitute x = 2 inte

g(x) or g'(x) prior to the differentiation process leading to g”(x).

interpretation of the Second Derivative

The dervative function f7(x) measures the rate of change of the function £, By the same
token, the second-derivative function f” is the measure of the rate of change of the first
derivative f; in other words, the second derivative measures the rate of change of the rate
of change of the original function /. To put it differently, with a given infinitesimal increase
in the independent variable x from a point x = xy,

F(xo) > 0
Jlxo) <0

whereas, with regard to the second derivative,

f(xg) > 0
Fllxg) < 0

Thus a positive first derivative coupled with a paositive second derivative at x = xg
implics that the slope of the curve at that point is positive and increasing. In other words,
the value of the function is increasing at an increasing rate, Likewise, a positive first deriv-
ative with a negative second derivative indicales that the slope of the curve is positive but
decreasing—the value of the function 15 increasing at a decreasing rate, The case of a neg-
ative first derivative can be interpreted analogously, but a warning is in order in this case:
When f*(xp) < 0 and f“(xq) > 0, the slope of the curve is negative and increasing, but
this does not mean that the slope is changing, say, from (—10) to (—11); on the contrary, the
change should be from (—11), a smaller number, te (— 1), a larger number. Tn other words,
the negative slope must tend to be Jess steep as x increases. Lastly, when 7{xy) < 0 and
S (xp) < 0, the slope of the curve must be negative und decreasing. This refers to 1 nega-
tive slope that tends to become steeper as x increases.

All of this can be [urther clarified with a graphical explanation. Figure 9.5a illustratcs a
function with /”(x) < 0 throughout, Since the slope must steadily decrease as x increases
on the graph, we will, when we move from left to right, pass through a point 4 with a pos-
itive slope, then a point B with zero slope, and then a point € with a negative slope, It may
happen, of course, that a function with f"(x} < 0 is characterized by f'(x) > 0 every-
where, and thus plots only as the rising portion of an inverse U-shaped curve, or, with
S(x) < O everywhere, plots only as the declining portion of that curve.

The opposite case of a function with f”(x) = ( throughout is illustrated in Fig. 9.5h.
Here, as we pass through points D to E to F, the slope steadily increases and changes from

increase

} means that the value of the function tends to I
' ‘ deercase

nerease

] means that the slope of the curve tends to {
decrease
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FIGURE 9.5
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negative to zero to positive. Again, we add that a function characterized by /“(x} > 0
throughout may, depending on the first-derivative specification, plot only as the declining
or the rising portion of a U-shaped curve.

From Fig. 9.5, it is evident that the second derivative f”(x) relates to the curvature of a
graph; it determines how the curve tends to bend itself. To describe the two types of differ-
ing curvatures discussed, we refer to the one in Fig. 9.5 as strictly concave, and the one in
Fig, 9.5b as strictly convex. And, understandably, a function whose graph is strictly concave
(strictly convex) is called a strictly concave (strictly convex) function. The precise geomet-
ric characterization of a strictly concave function is as follows. If we pick any pair of points
M and N on its curve and join them by a straight line, the line segment MN must lie entirely
below the curve, except at points A and N. The characterization of a strictly convex func-
tion can be obtained by substituting the word above for the word below in the last statement.
Try this out in Fig. 9.5. If the characterizing condition is relaxed somewhat, so that the line
segment MV is allowed to lie either below the curve, or along (coinciding with} the curve,
then we will be describing instead a concave function, without the adverb strictly. Simi-
larly, if the line segment MN either lies above, or lies along the curve, then the function is
convex, again without the adverb strictly. Note that, since the line segment MN may coin-
cide with a (nonstrictly) concave or convex curve, the latter may very well contain a linear
segment. [n contrast, a strictly concave O CONVEX CUIve can never contain a linear segment
anywhere, It follows that while a strictly concave {convex} function is automatically a con-
cave (convex) function, the converse is not true.!

From our earlier discussion of the second derivative, we may now infer that if the sec-
ond derivative f”(x) is negative for all x, then the primitive function f(x) must be a strictly
concave function. Similarly, f(x) must be strictly convex, if f"(x) is positive for all x.
Despite this, it is not valid to reverse this inference and say that, if f(x) is strictly concave
(strictly convex), then f”(x) must be negative (positive) for all x. This is because, in certain
exceptional cases, the second derivative may have a zero value at a stationary point on such
a curve. An example of this can be found in the function y = f(x) = x*, which plots as a
strictly convex curve, but whose derivatives

foy=4c  fxy=12¢

¥ We shall discuss these concepts further in Sec. 11.5.
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indicate that, at the stationary point where x = 0, the value of the second derivative is
J"(0) = 0. Note, however, that at any other point, with x # 0, the second derivative of this
function does have the (expected) pesitive sign. Aside from the possibility of a zero value
at a stattonary point, therefore, the second derivative of a strictly concave or convex func-
tion may be expected in general to adhere to a single algcbraic sign.

For other types of function, the second derivative may takce both positive and negative
valucs, depending on the value of x. In Fig. 9.34 and 5, for instance, both /(x) and g(x)
undergo a sign change in the second derivative at their respective inflection points ./ and K.
According to Fig. 9.3a’, the slope of f'(x)—that is, the value of f"(x) —changes from
negative to positive at x = j; the exact opposite occurs with the siope of g'(x)—that is, the
value of g”(x)—on the basis of Fig. 9.3%. Translated into curvature terms, this means that
the graph of f(x) tumns from strictly concave to strictly convex at point ./, whercas the
graph of g(x) has the reverse change at point K, Consequently, instead of characterizing an
inflection point as a point where the first derivative reaches an extreme value, we may
alternatively characterize it as a point where the function undergoes a change in curvature
or a change in the sign of its second denivative,

An Application
The two curves in Fig. 9.5 exemplify the graphs of quadratic functions, which may be
expressed generally in the form

y:axz—l—bx—l—c (z 2 0)

From our discussion of the second derivative, we can now derive 4 convenient way of
determining whether a given quadratic function will have a strictly convex (U-shaped} or
a strictly concave (inverse U-shaped) graph.

Since the second derivative of the quadratic function cited is d%y/dx? = 2a, this deriv-
ative will always have the same algebraic sign as the cocfficient ¢, Recalling that a positive
second derivative implies a sirictly convex curve, we can infer that a positive coefficient ¢
in the preceding quadratic function gives rise to a U-shaped graph. In contrast, a negative
coefficient & leads fo a strictly concave curve, shaped like an inverted U

Asintimated at the end of Sec. 9.2, the relative extremum of this function will also prove
to be its absolutc extremum, because in a quadratic function there can be found only 4
single valley or peak, evident ina U or inverted U, respectively.

Attitudes toward Risk

The most common application of the concept of marginal utility is to the context of goods
consemption. But in another useful application, we consider the marginal utility of income,
or more to the point of the present discussion, the payoff to a betting game, and use this
concept to distinguish between different individuals® attitudes toward risk.

Consider the game where, for a fixed sum of money paid in advance (the cost of
the game), you can throw a die and collect $10 if an odd number shows up, or $20 if the
number is even, [n view of the equal probability of the two ocutcomes, the mathematically
expected value of pavoff is

EV=05x$10+0.5 x $20 = §15
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The game is deemed a fair game, ot fuir bet, if the cost of the game is exactly $15. Despite
its fairness, playing such a game still involves a risk, for even though the probability distri-
bution of the two possible outcomes is known, the actual result of any individual play is not.
Hence, people who are “risk-averse” would consistently decline to play such a game. On
the other hand, there are “risk-loving” or “risk-preferring” people who would welcome fair
games, or even games with odds set against them (i.e., with the cost of the game exceeding
the expected value of payoff).

The explanation for such diverse aititudes toward risk is easily found in the differing
utility functions people possess. Assume that a potential player has the strictly concave util-
ity function &/ = U(x) depicted in Fig. 9.6a, where x denotes the payoff, with U{0) = 0,
U/'(x) > 0 (positive marginal utility of income or payoff), and U/"(x) < 0 (diminishing
marginal utility) for all x. The economic decision facing this person involves the choice
between two courses of action: First, by not playing the game, the person saves the $15 cost
of the game (= EV) and thus enjoys the utility level U($15), measured by the height of
point 4 on the curve, Second, by playing, the person has a .5 probability of receiving $10
and thus enjoying L($10) (see point M), plus a .5 probability of receiving $20 and thus
enjoying U($20) (see point N). The expected utility from playing is, therefore, equal to

EU = 0.5 x U($10) + 0.5 x U($20)

which, being the average of the height of M and that of N, is measured by the height of point
B, the midpoint on the line segment MN. Since, by the defining property of a strictly con-
cave utility function, line segment MN must lie below arc MN, point B must be lower than
point ; that is, EU, the expected utility from playing, falls short of the utility of the cost of
the game, and the game should be avoided. For this reason, a strictly concave utility func-
tion is associated with risk-averse behavior.

For a risk-loving person, the decision process is analogous, but the opposite choice will
be made, because now the relevant utility function is a strictly convex one. In Fig. 9.6b,
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U(§15), the utility of keeping the $15 by not playing the game. is shown by point 4 on the
curve, and EL the expected utility from playing, is given by &', the midpoint on the line
segment M'N'. But this lime line segment M'N' lies above arc M’N', and point B’ is above
point A", Thus there definitely is a positive incentive to play the game. In contrast to the sit-
uation in Fig. 9.6, we can thus associate a strictly convex utility function with risk-laving

behavior.
EXERCISE 9.3
1. Find the second and third derivatives of the follewing functions:
(@) ax? -+ bx + ¢ (c) % {x#1)
(B) 7" — 3x — 4 (d)1_f§ (1)

2. Which of the following quadratic functions are strictly convex?
(@ y=9x2—4x+8 () u=9—2x
() w=—3x+39 (dYv="8-5x+x2

3. Draw (a) a concave curve which is not strictly concave, and {b) a curve which qualifies
simultaneously as a concave curve and a convex curve.

b
4. Given the functiony = a — P (g, b, ¢ = 0. x = 0), determine the general shape of

its graph by examining (a) its first and second derivatives, (b) its vertical intercept, and
(¢} the fimit of y as x tends to infinity. If this function is to be used as a consumption func-
tion, how should the parameters be restricted in order to make it economically sensible?
5. Draw the graph of a function f(x} such that f'(x) = 0, and the graph of a function g(x)
such that ¢'(3) = 0. Summarize in one sentence the essential difference between f(x}
and g{x) in terms of the concept of stationary point.
6. A person who is neither risk-averse nor risk-loving (indifferent toward a fair game) is
said to be “risk-neutral.”
(@) What kind of utility function would you use to characterize such a person?
(&) Using the die-throwing game detailed in the text, describe the relationship between
U(315) and EU for the risk-neutral person,

9.4 Second-Derivative Test

Returning to the pair of extreme points B and £ in Fig. 9.5 and remembering the newly
established retationship between the sccond derivative and the curvature of a curve, we
should be able to sec the validity of the following criterion for a relative extremums:

Second-derivative test for relative extremum I1'the value of the first derivative of a func-
tion fatx = xg 15 f'(xq) = 0, then the value of the function at xq, f(xy), will be

a. A relative maximum if the second-derivative value at xy is /"(xq) < 0.
b. A rclative mininmam if the second-derivative value at vy is /“(xg) = 0.

This test is in general more convenient to use than the first-derivative test, because it does
not requite us to check the derivative sign te both the left and the right of x;. But it has the
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Example 1

Example 2

drawback that no unequivocal conclusion can be drawn in the event that f”(xg) = 0. For then
the stationary value f(xg) can be either a relative maximum, or a relative minimum, or even
an inflectional value.! When the situation of #"{xo) = 0 is encountered, we must either revert
1o the first-derivative test, or resort to another test, to be developed in Sec. 9.6, that involves
the third or even higher derivatives. For most problems in economics, however, the second-
derivative test would usually be adequate for determining a relative maximum or minimum.

Find the relative extremum of the function
y=f(x)=4x? —x
The first and second derivatives are
filay =8x -1 and f'(x) =8
Setting f'(x) equal to zero and sofving the resulting equation, we find the {only) critical
value to be x* = é which yields the (only) stationary value f % = _11_5- Because the
second derivative is positive (in this case it is indeed positive for any value of x), the ex-

tremum is established as a minimum. Further, since the given function plots as a U-shaped
curve, the relative minimum is also the absolute minimum.

Find the relative extrema of the function
y=gx)=x—3x%*+2
The first two derivatives of this function are
gxy=3%—-6x and G(xX)=6x-6

Setting ¢'(x) equal to zero and solving the resulting quadratic equation, 3x?2 — 6x =0, we
obtain the critical values x} = 2 and x5 = 0, which in turn yield the two stationary values:

9(2)=-2  [a minimum because g"(2) = 6 > 0}
g(0)=2 [a maximum because ¢"(0) = —6 < 0f

Necessary versus Sufficient Conditions

As was the case with the first-derivative test, the zero-slope condition f(x) = 0 plays the
role of a necessary condition in the second-derivative test. Since this condition is based on
the first-order derivative, it is often referred to as the first-order condition. Once we find the
first-order condition satisfied at x = xg, the negative (positive) sign of f"(x¢) is sufficient
to establish the stationary value in question as a relative maximum (minimum). These suf-
ficient conditions, which are based on the second-order derivative, are often referred to as
second-order conditions.

T To see that an inflection point is possible when f7{xg) = 0, let us refer back to Fig. 9.3a and 9.34".
Point f in the upper diagram is an inflection point, with x =  as its critical value. Since the £/(x}
curve in the lower diagram attains a minimum at x = j, the slope of f'{x) [i.e., f"(x)] must be zero
at the critical value x = j. Thus point | illustrates an inflection peint occurring when f”(xp) = 0.

To see that a relative extremum is also consistent with #7(xp) = 0, consider the function y = x*.
This function plots as a U-shaped curve and has a minimum, y = 0, attained at the critical value
x = 0. Since the second derivative of this function is £“(x) = 12x%, we again obtain a zero value for
this derivative at the critical value x = 0. Thus this function illustrates a relative extremum accurring
when f{x) = 0.
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Conditions for
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:Condition ‘Maximum - ‘ Minimurm
First-order necessary Ky =0 Xy =0
Second-order necessary' M%) <0 =0
Second-order sufficient! (x)y <0 () > ¢

"Applicable only after the first-order nocessery condition has bezn satisfied.

[t bears repeating that the first-order condition is #ecessary, but not sufficient. for a rel-
ative maxumum or minimum. { Remember inflection peints?) In sharp contrast, the second-
order condition that /”(x) be negative {positive) at the critical value xy 15 sufficient for a
relative maximum {minimum), but it is no! necessary. [Remember the relative extremum
that occurs when f“(xy) = 07] For this reason, one should carefuily guard against the fol-
lowimg line of argument: “Since the stationary value f{xy) is already known to be 4 mini-
mum, we must have f“(x;) > 0.” The reasoning here is faulty because it incorrectly treats
the positive sign of /”{x} as a necessary condition for f(x;) to be a minimum.

This is not to say that second-order derivatives can never be used in staling necessary
conditions for relative extrema. {ndeed they can. But care must then be taken to allow lor
the fact that a relative maximum {minimum) can occur not only when f“(xy} is negative
(positive), but alse when f7(xy) is zero. Consequentty, second-order necessary conditions
must be couched 1n terms of weak incqualities: for a stationary value f(xy)) 10 be a relative

maximum | . . " =
{ mimimum ], it i5 necessary that f(xq) | - ] 0.

The preceding discussion can be summed up in Table 9.1. All the equations and in-
cqualities in the table are in the naturc of conditions (requirements) to be met, rather than
descriptive specifications of a given function. In particuiar, the equation f*(x) = 0 does not
signify that function f has a zero slope cverywhere; rather, it states the stipulation that only
those values of x that satisfy this requirement can qualify as critical values.

Conditions for Profit Maximization
We shall now present an economic example of extreme-value problems, i.c., problems of
optimization,

One of the first thimgs that a student of economics lcarns is that, in order to maximize
profit, a firm must equate marginal cost and marginal revenue, Let us show the mathermnat-
ical derivation of this condition. To keep the analysis on g general level, we shall work with
the total-revenue function R = R( () and total-cost function ¢ = C( (), both of which are
functions of a single variable Q. From these it follows that a profit function (the objective
funcrion) may also be tormulated in terms of ( (the choice variable):

7 = 7(0) = R(Q) - C(O) (9.1)

To find the profit-maximizing output tevel, we must satisfy the first-order necessary
condition for a maximum: dr /d(Q = 0. Accordingly, let us differentiate (9.1) with respect
1o (7 and set the resulting derivative equal to zero: The result is

dat ot _ R; Crr
dQ=Jr(Q)— (@)= C(Q)
=0 if RO =C() (9.2)
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Thus the optimum output (equilibrium output) Q" must satisfy the equation R'(Q*) =
C'((*), or MR = MC. This condition constitutes the first-order condition for profit
maximization.

However, the first-order condition may lead to a minimum rather than a maximum; thus
we must check the second-order condition next. We can obtain the second derivative by
differentiating the first derivative in (9.2) with respect to ()

d*n ., .,
daE=" (@) =R"(Q)-C"(Q)
<0 iff  RYQ)=CYO)

This last inequality is the second-order necessary condition for maximization. If it is not
met, then @* cannot possibly maximize profit; in fact, it minimizes profit. If R*(Q*) =
C"(0*%), then we are unable to reach a definite conclusion. The best scenario is to find
R'(Q%) < C*(Q*), which satisfies the second-order sufficient condition for a maximum.
In that case, we can conclustvely take (0 to be a profit-maximizing output. Economically,
this would mean that, if the rate of change of MR is less than the rate of change of MC at
the output where MC = MR, then that output will maximize profit.

These conditions are illustrated in Fig. 9.7. In Fig. 9.7a we have drawn a total-revenue
and a total-cost curve, which are seen to intersect twice, at output levels of ; and Q4. In
the open interval ( 2, (04), total revenue R exceeds total cost C, and thus 5 is positive, But
int the intervals [0, Q;) and (34, O], where (s represents the upper limit of the firm’s pro-
ductive capacity, & is negative. This fact is reflected in Fig. 9.75, where the profit curve—
obtained by plotting the vertical distance between the R and C curves for each level of
output—Ilies above the horizontal axis only in the interval ((J2, (a).

When we set d/dQ = 0, in line with the first-order condition, it is our intention to
locate the peak point K on the profit curve, at output O3, where the slope of the curve is
zero. However, the relative-minimum point M (output (1) will also offer itself as a candi-
date, because it, too, meets the zero-slope requirement. Below, we shall resort to the
second-order condition to eliminate the “wrong” kind of extremum.

The first-order condition dr /d Q = 0 is equivalent to the condition R'(Q) = C'(Q). In
Fig. 9.7a, the output level (5 satisfies this, because the R and C curves do have the same
slope at (25 (the tangent lincs drawn to the two curves at A and J are parallel to each other).
The same is true for output ;. Since the equality of the slopes of R and C means the equal-
ity of MR and MC, outputs O3 and () must obviously be where the MR and MC curves
intersect, as illustrated in Fig. 9.7¢.

How does the second-order condition enter into the picture? Let us first look at Fig. 9.7b.
At point X, the second derivative of the 7 function will (barring the exceptional zero-value
case) have a negative value, 77({2;) < 0, because the curve is inverse U-shaped around X
this means that (3 will maximize profit. At point M, on the other hand, we would expect
that 7*(Q) > 0; thus O, provides a relative minimum for n instead. The second-
order sufficient condition for a maximum can, of course, be stated alternatively as
R(Q) < C"((D), that ig, that the slope of the MR curve be less than the slope of the MC
curve. From Fig. 9.7c, it is immediately apparent that output O3 satisfies this condition,
since the slope of MR is negative while that of MC is positive at point L. But output ()
violates this condition because both MC and MR have negative slopes, and that of MR is
numerically smaller than that of MC at point &, which implies that R"({)) ts greater than
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C"(Qy) instead. In fact, therefore, output Q; also violates the second-order necessary
condition for a relative maximum, but satisfics the second-order sufficient condition for a

relative minimunm,
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Example 3

Let the R(Q) and C(Q) functions be

R(Q) = 1,200Q - 2Q?
C{(Q=Q>—61.25Q°+1,528.5Q+ 2,000

Then the profit function is
Q) = —Q* +59.25Q% — 328.5Q - 2,000

where R, C, and = are all in dollar units and Q is in units of {say) tons per week. This profit
function has two critical values, Q = 3 and Q = 36.5, because
dr

__1n? _ _ )3
30" 3Q°+1185Q-3285=0 whenQ= 36.5

But since the second derivative is

o*x
T 6Q+118.5 {
the profit-maximizing output is Q* = 36.5 (tons per week). (The other output minimizes
profit.) By substituting Q" into the profit function, we can find the maximized profit to be
a1t = x(36.5) = 16,318.44 {dollars per week).

As an alternative approach to the preceding, we can first find the MR and MC functions
and then equate the two, i.e., find their intersection. Since

RICQ) = 1,200 — 4Q
C(Q)=30?-122.5Q+1,5285

equating the two functions will result in a quadratic equation identical with dr/dQ =0
which has yielded the two critical values of Q cited previously.

> 0 when Q=3
<0  when Q=36.5

Coefficients of a Cubic Total-Cost Function

In Example 3, a cubic function is used to represent the total-cost function. The traditional
total-cost curve C = C(0), as illustrated in Fig. 9.74, is supposed to contain two wiggles
that form a concave segment (decreasing marginal cost) and a subscquent convex segment
(increasing marginal cost). Since the graph of a cubic function always contains exactly two
wiggles, as illustrated in Fig. 9.4, it should suit that role well. However, Fig. 9.4 immedi-
ately alerts us 1o a problem; the cubic function can possibly produce a downward-sloping
segment in its graph, whereas the total-cost function, to make economic sense, should be
upward-sloping everywhere (a larger output always entails a higher total cost). 1f we wish
to usc a cubic total-cost function such as

C=C(M=a@P +bQ*+cQ+d (9.3)

therefore, it is cssential to place appropriate restrictions on the parametets so as to prevent
the C curve from ever bending downward.

An equivalent way of stating this requirement is that the MC function should be positive
throughout, and this can be ensured only if the absolute mirimum of the MC function turns
out to be positive. Differentiating (9.3) with respect to 0, we obtain the MC function

MC =C(Q)=3aQ?+2b0 +¢ (9.4)
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which, becausc it is a quadratic, plots as a parabola as in Fig. 9.7¢. In order for the MC
curve to stay positive (above the horizontal axis) everywhere, it is necessary that the
parabola be U-shaped {otherwise, with an inverse U, the curve is bound to extend itself into
the second quadrant). Hence the coefficient of the Q0 term in (9.4) has to be positive; i.e.,
we must imposc the restriction a = 0. This restriction, however, is by no means sufficient,
because the minimum vaiue of a U-shaped MC curve—call it MCp, {a relative minimum
which also happens to be an absolute minimum)—may still occur below the horizontal
axis, Thus we must next find MCyy; and ascertain the parameter restrictions that would
make it positive.

According to our knowledge of relative extremum, the minimum of MC will occur
where

d
—MC =640 +2b=0

dQ
The output level that satisfies this first-order condition is
_ —2b b
Q* _———— =
' b 3a

This minimizes (rather than maximizes) MC because the second derivative d*(MC)/d Q* =
6a is assuredly positive in view of the restriction a > 0, The knowledge of O* now enables
us to calculate MCyiy. but we may first infer the sign of cocfficient b from it. Inasmuch as
negative output levels are ruled out, we see that & can never be positive (given a = 0),
Moreover, since the law of diminishing returns is assumed to set in at a positive output level
{that i, MC is assumed to have an initial declining segment), O* should be positive (rather
than zero). Consequently, we must impose the restriction & < 0.

It is a simple matter now to substitute the MC-minimizing output (J* into (9.4) to find
that

—hy? —b dac — b
MCpin = 3 | — L poe=2"T1
¢ “(3a) L VIR

Thus, to guarantee the positivity of MC.i, we must impose the restriction’ 52 < 3ac. This
last restriction, we may add, in effect also implies the restriction ¢ > 0. {Why?)

The preceding discussion has involved the three parameters a, b, and ¢, What about the
other paramcter, &7 The answer is that there is need for a restriction on  also, but that has
nothing to do with the problem of keeping the MC positive. If we let @ = 0 in (9.3}, we find

! This restriction may also be obtained by the method of completing the square. The MC function can
be successively transformed as follows:

MC = 3aQ% + 2bQ+ ¢

= [3aQ® +26Q | o° —b—2+c
3g 3a

\ 3a la

Since the squared expression can possibly be zere, we must, in order to ensure the positivity of MC,
require that b° = 3ac on the knowledge that @ = 0.

— 2
| 2
= (\/3004— ’bz) g A3
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Example 4

that C(0) = 4. The role of d is thus to determine the vertical intercept of the C curve only,
with no bearing on its slope. Since the economic meaning of d is the fixed cost of a firm,
the appropriate restriction (in the short-run context) would be d > 0.

In sum, the coeflicients of the total-cost function (9.3) should be restricted as follows
(assuming the short-run context):

a,c,d>0 bh<0 ¥ <3ac (9.5)
As you can readily verify, the C(Q) function in Example 3 does satisfy (9.5).

Upward-Sloping Marginal-Revenue Curve
The marginal-revenue curve in Fig. 9.7¢ is shown to be downward-sloping throughout.
This, of course, is how the MR curve is traditionally drawn for a firm under imperfect com-
petition, However, the possibility of the MR curve being partially, or even whelly, upward-
sloping can by no means be ruled out a priori.f

Given an average-revenue function AR = f{ (), the marginal-revenue function can be
expressed by

MR = f(Q)+ Qf (@)  [from(7.7)]

The slope of the MR curve can thus be ascertained from the derivative

TGMR= SO+ £+ 0(0)=21(©)+07'(Q)

As long as the AR curve is downward-sloping (as it would be under imperfect competition),
the 2 f'( () term is assuredly negative. But the O f"( () term can be either negative, zero,
or positive, depending on the sign of the second derivative of the AR function, i.e., depend-
ing on whether the AR curve is strictly concave, linear, or strictly convex. If the AR curve
is strictly convex either in its entirety (as illustrated in Fig. 7.2) or along a specific segment,
the possibility will exist that the (positive) Qf"(Q) term may dominate the (negative)
2 () term, thereby causing the MR curve to be wholly or partially upward-sloping.

Let the average-revenue function be
AR= f(Q)=8,000-23Q+1.1Q° - 0.018Q°

As can be verified (see Exercise 9.4-7), this function gives rise t¢ a downward-sloping AR
curve, as is appropriate for a firm under imperfect competition. Since

MR = F(Q) + QF(Q) = 8,000 — 46Q + 3.3Q% — 0.072Q?

it follows that the slope of MR is

9 MR = 46+ 6.6Q - 0.216¢°

dQ
Because this is a quadratic function and since the coefficient of Q? is negative, dMR/d Q must
plot as an inverse-U-shaped curve against Q, such as shown in Fig. 9.54. If a segment of this
curve happens to lie above the horizontal axis, the slope of MR will take positive values.

T This point is emphatically brought out in John P, Formby, Stephen Layson, and W. jJames Smith,
“The Law of Demand, Positive Sloping Marginal Revenue, and Multiple Profit Equilibria,” Economic
Ingquiry, April 1982, pp. 303-311.
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Setting dMR/dQ = 0, and applying the quadratic formula, we find the two zeros of the
quadratic function to be Qq = 10.76 and Q; = 19.72 (approximately). This means that, for
values of Q in the open interval {Qq, Qz), the dMR/dQ curve does lie above the horizontal
axis. Thus the marginal-revenue curve indeed is positively sloped for output levels between
Q1 and Q.

The presence of a positively sloped segment on the MR curve has interesting implica-
tions. Such an MR curve may produce more than one intersection with the MC curve
satisfying the second-order sufficient condition for profit maximization. While all such
intersections constitute local optima, however, only one of them is the global optimum that
the firm is seeking.

EXERCISE 9.4
1. Find the relative maxima and minima of y by the second-derivative test:
(@) y= ~2x%+ 8x + 25 Q) y=ix~3x2 4+ 5x 43
2x 1
—_ 3 2 o LEx _ 1
() y=x+6x2+9 @y=" (x;éz)

2. Mr. Greenthumb wishes to mark out a rectangular flower bed, using a wall of his house
-as one side of the rectangle. The other three sides are to be marked by wire netting, of
which he has only 64 ft available. What are the length L and width W of the rectangle
that wouid give him the largest possible planting area? How do you make sure that
your answer gives the largest, not the smallest area?

3. Afirm has the following total-cost and demand functions:
=1} -7QP +111Q + 50
Q=100-P
() Does the total-cost function satisfy the coefficient restrictions of (9.5)?
(1) Write out the total-revenue function R in terms of Q.
{(¢) Formulate the total-profit function = in terms of Q.
(d) Find the profit-maximizing level of output @Q*.
{e) What is the maximum profit?

4. If coefficient b in (9.3) were to take a zero value, what would happen to the marginal-
cost and total-cost curves?

5. A quadratic profit function 7(Q) = hQ? + jQ + k is to be used to refect the fallowing
assumptions:

{@) If nothing is produced, the profit will be negative (because of fixed costs).
(D) The profit function is strictly concave.

(¢) The maximum profit occurs at a positive cutput level Q*,

What pararneter restrictions are called for?

6. A purely competitive firm has a single variable input £ (labor), with the wage rate W,
per period. Its fixed inputs cost the firm a total of F dollars per period. The price of the
product is Py.

{9) Write the production function, revenue function, cost function, and profit function
of the firm.
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(b) What is the first-order condition for profit maximization? Give this candition an
economic interpretation.

{¢) What economic circumstances would ensure that prefit is maximized rather than
minimized?

7. Use the following procedure to verify that the AR curve in Example 4 is negatively

sloped:

(&) Denote the slope of AR by §. Write an expression for 5.

{b) Find the maximum value of 5, Smax, by using the second-derivative test.

(¢} Then deduce from the value:of Sy that the AR curve is negatively sloped
throughout.

9.5 Maclaurin and Taylor Series

The time has now come for us to develop a test for relative extrema that can apply even
when the second derivative turns out to have a zero value at the stationary point. Before we
can do that, however, it is first necessary to discuss the so-called expansion of a function
v = f(x) into what are known, respectively, as a Maclaurin series (expansion around the
point x = 0) and a Taylor series (expansion arcund any point x = xg).

To expand a function y = f{x) around a point xy means, in the present context, to trans-
form that fimetion into a polynomial form, in which the coefficients of the various terms are
expressed in terms of the derivative values f"(xg), f"(xp), etc.—all evaluated at the point
of expansion xp. In the Maclaurin series, these will be evaluated at x = 0; thus we have
FI(0), £"(0), etc., in the coefficients. The result of expansion is a power series because,
being a polynomial, it consists of a sum of power functions.

Maclaurin Series of a Polynomial Function
Let us consider first the expansion of a polynomial function of the ath degree,

f(xy=ag+ax +ax + asx® +agx? + -+ apx” (9.6)

into an equivalent nth-degree polynomial where the coefficients (4o, a, etc.) are expressed
instead in terms of the derivative vatues f°(0), f(0), etc. Since this involves the transforma-
tion of one polynomial into another of the same degree, it may seem a sterile and purposeless
exercise, but actually it will serve to shed much light on the whole idea of expansion.

Since the power series after expansion will involve the derivatives of various orders of
the function f, let us first find these. By successive differentiation of (9.6), we can get the
derivatives as follows:

F1x) = a) 4 2apx + 3@’ + dagx’ +- 4 nax"”
F(x) = 223 + 3(Q)asx + 4(3asx? + -+ aln — Dax"™?

F(x) = 3(Das + AN Dagx 4 - -+ nln — D(n — ax""

() = 403)(Das + SN 2asx + - +aln — D{n = 2)(n —3ax"

i

Py =nln = 1)(n—2)(n = 3}~ (3)(2H1)ay



