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for any value of x, the given function is strictly increasing, and an inverse function exists. To
solve the given equation for x may not be such an easy task, but the derivative of the inverse
function can nevertheless be found quickly by use of the inverse-function rule:

d« 1 1
dy  dyjdx  5x* +1

The inverse-function rule is, strictly speaking, applicable only when the function involved
is a one-to-one mapping. in fact, however, we do have some leeway. For instance, when
dealing with a U-shaped curve {not strictly monotonic), we may consider the downward-
and the upward-sloping segments of the curve as representing two separate functions, each
with a restricted domain, and each being strictly monotonic in the restricted domain. To
each of these, the inverse-function rule can then again be applied.

EXERCISE7.3

1. Given y = u® + 2u, where u = 5 — 2, find dy/dx by the chain rute,

2. Given w = ay? and y = bx? + cx, find dw/dx by the chain rule,

3. Use the chain rufe to find dy/dx for the following:
(@ y=(3x*-13)} by y=(7x* = 55° Q) y=(ax+b)y°

4. Given y = (16x + 3)72, use the chain rule to find dy/dx. Then rewrite the function as
y = 1/(16x + 3)? and find dy/dx by the quotient rule. Are the answers identical?

5. Given y = 7x + 21, find its inverse function. Then find dy/dx and dx/dy, and verify the
inverse-function rule, Also verify that the graphs of the two functions bear a mireor-
image relationship to each other,

&. Are the following functions strictly monotonic?
@y=-x+5 (x>0
®) y=4% + x>+ 3x
For each strictly monotonic function, find dx/dy by the inverse-function ruie,

7.4 Partial Differentiation

Hitherto, we have considered only the derivatives of functions of a single independent vari-
able. In comparative-static analysis, however, we are likely to encounter the situation in
which several parameters appear in a model, so that the equilibrium value of cach endoge-
nous vartable may be a function of morg than one parameter. Therefore, as a final prepara-
tion for the application of the concept of derivative to comparative statics, we must learn
how to find the derivative of a function of more than one variable.

Partial Derivatives
Let us consider a function

v= f{x0, X, o, X) (7.12)

where the variables x; (i = 1, 2, ..., #) are all independent of one another, so that each can
vary by itself without affecting the others. If the variable x; undergoes a change Ax| while
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Example 1

X3, ..., x, all remain fixed, therc will be a corresponding change in y, namely, Ay. The
difference quotient in this case can be expressed as

Ay flntAno,x) = fELn, s 5)
Ax) B Ax

(7.13)

If we take the limit of Ay/Ax) as Axy — 0, that limit will constitute a derivative. We call
it the partial derivative of y with respect to x|, to indicate that all the other independent
variables in the function are hcld constant when taking this particular derivative. Similar
partial derivatives can be defined for infinitesimal changes in the other independent vari-
ables. The process of taking partial derivatives is called partial differentiation.

Partial derivatives are assigned distinctive symbols. In lieu of the letter & (as in dy/dx),
we employ the symbol 8, which is a variant of the Greek § (lowercase delta). Thus we
shall now write 8y /dx;, which is read: “the partial derivative of v with respect to x;.” The
partial-derivative symbol sometimes 1s also written as ;—- ¥ in that case, its /dx; part can

X;

be regarded as an operator symbol instructing us to take the partial derivative of {some
function) with respect to the variable x;. Since the lunction involved here is denoted in
(7.12) by £, it is also permissible to write df/dx;.

Is there also a partial-derivative counterpart for the symbol [*(x) that we uscd before?
The answer is yes. instead of 7, however, we now use /), f3, etc., where the subscript in-
dicates which independent variable (alone) is being allowed to vary. §f the function in {7.12)
happens to be written in terms of unsubscripted variables, such as y = f(u. v, w), then the
partial derivatives may be denoted by f,,, f., and f,; rather than f, f, and f3.

In line with these notations, and on the basis of (7.12) and (7.13), we can now define

LAy Ay
fi=—= lIm
) dx) A0 Ax

as the first in the set of # partial derivatives of the function f.

Techniques of Partial Differentiation

Partial differentiation differs from the previously discussed differentiation primarily in that
we must hold (# — 1) mdependent variables consfant while allowing one variable to vary.
[nasmuch as we have learned how to handle constants m differentiation, the actual differ-
entiation should pose little problem.

Given y = f(x1, x2) = 347 + x1x2 + 4x2, find the partial derivatives. When finding dy/dx,
{or f1), we must bear in mind that x; is to be treated as a constant during differentiation.
As such, x; will drop out in the process if it is an additive constant {such as the term 4x%) but
will be retained if it is a multiplicative constant (such as in the term x; x2). Thus we have

ay _

— = f‘] :6)(] + X2
d)ﬁ

Similarly, by treating x; as a constant, we find that

— = f2=K1+3X2
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Note that, like the primitive function £, both partial derivatives are themselves functions
of the variables x; and x. That is, we may write them as two derived functions

= hin, x) and fo = Hr{x, x2)

For the point (x1, xz) = (1, 3) in the domain of the function ¥, for example, the partial
derivatives will take the following specific values:

A(,3)=6(1)+3=9 and  f2(1,3)=1+8(3) =25

Given y = f{u, v) = (u+4)(3u + 2v), the partial derivatives can be found by use of the
praduct rule, By holding v constant, we have

fu=W+H3)+13u+2v) =2(3u+v+6)
Similarly, by holding & constant, we find that
fr=Ww+H@+0(3u+2v) =2(u+4)
When u = 2 and v =1, these derivatives will take the following values:

f,02,1)y=2(13)=26 and W2, 1=2(6Y=12
Given y = (3u - 2v)/{1? + 3v), the partial derivatives can be found by use of the quotient
rule;

By 3P +3I-2uBu—2v) =30 +4uv+ 9y
Bu (12 + 3v)2 T (W +3w?

By 2+ -30Bu-2v)  —u(2u+9)
v (W2 + 3v)2 (w2 3w

Geometric Interpretation of Partial Derivatives

As a special type of derivative, a partial derivative 1s a measure of the instantaneous rates
of change of some variable, and in that capacity it again has a geometric counterpart in the
slope of a particular curve.

Lct us consider a production function ) = Q(X, L), where (, K, and L denote cutput,
capital input, and labor input, respectively. This function is a particular two-variable ver-
ston of (7.12), with # = 2, We can therefore define two partial derivatives d G/d K {or Q)
and 9 Q/a L (or ;). The partial dertvative g relates to the rales ol change of output with
respect to infinitesimal changes in capital, while labor input is held constant. Thuy O«
symbolizes the marginal-physical-product-of-capital (MPPy) function. Similarly, the par-
tial derivative Q; is the mathematical representation of the MPP; function.

Geometrically, the praduction function @ = Q(K, L} can be depicted by a production
surface in a 3-space, such as is shown in Fig, 7.4, The variable Q is plotted vertically, so
that for any peint (X, L) in the basc plane (K'L plane), the height of the surface will indi-
cate the output ¢J. The domain ol the function should consist of the entire nonnegative
quadrant of the base plane, but {or our purposcs it is sufficient to consider a subset of it, the
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FIGURE 7.4

rectangle OK,BL,. As a consequence, only a small portion of the production surface is
shown in the figure.

Let us now hold capital fixed at the level K and consider only variations in the input L.
By setting K = Ky, all peints in our (curtailed) domain become irrelevant except those on
the line segment Ky B8. By the same token, only the curve K,CD4 (a cross section of the
production surface) is germane to the present discussion. This curve represents a total-
physical-product-of-labor (TPP,) curve for a fixed amount of capital X' = Kp; thus we
may read from its slope the rate of change of () with respect to changes in L while K is held
constant, It is ciear, therefore, that the slope of a curve such as K;CDA represcnts the geo-
metric counterpart of the partial derivative (; . Once again, we note that the slapc of a total
(TPP;) curve is its corresponding marginal (MPP, = ;) curve.

As mentioned earlier, a partial derivative is a function of all the independent variables of
the primitive function. That ; is a function of L is immediately obvious from the K,CDA
curve itself, When L = L, the valuc of ¢J; 1s equal to the slope of the curve at point € but
when /. = L., the relevant slope is the one at point /. Why is 0y also a function of K The
answer is that X can be fixed at various levels, and for cach fixed level of K, there results a
different TPP; curve (a different cross section of the production surface), with inevitable
repercussions on the derivative 0. Hence J; is also a functien of K.

An analogous interpretation can be given to the partial derivative Q. [f the labor input
is held constant instead of K (say, at the level of Ly}, the line segment LB will be the rel-
evant subsct of the domain, and the curve LA will indicate the relevant subset of the pro-
duction surface. The partial derivative QO can then b interpreted as the slope of the curve
Ly A—bearing in mind that the K axis extends from southeast to northwest in Fig. 7.4. It
should be noted that Oy is again a function of both the variables L and K.

Gradient Vector

All the partial derivatives of a function y = f(x1, X3, ..., X,) can be collected under a sin-
gle mathematical entity called the gradient vectos; or simply the gradieni, of function f.

grad flaxy, X2, . X0) = (A1 fr oo J3)
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where f; = dy/dx;. Note that we are using parcntheses rather than brackeis here in writing
the vector. Alternatively, the gradient can be denoted by ¥V f(x), x2,.... x,), where V
{read: “del™} is the inverted version of the Greek letter A,

Since the function f has n arguments, there are altegether v partial derivatives; hence,

grad f s an p-vector. When these derivatives are cvaluated at g specific point (xyy,
X2, ... Xqp} 10 the domain, we get grad f{x10, 220, . . ., X40). & veetor of specific deriva-
tive values.

Example 4 The gradient vector of the production function Q = Q(K, L) s

VQ=VQK, L) =(Qx, Q)

EXERCISE 7.4

1.

Find dy/8x and 3y/dx; for each of the following functions:

(@) y =220 ~1148x; + 353 © y=@x +3)(x - 2)
() v = 7x1 + 6x1 X3 — 9x3 (d) y=(050+3)/(x-2)
. Find f, and f, from the following: -
(@ F(%, p) = X2+ 5xy— © fx,p) = :: y"’
2.1
®) £, ) = (2= 39— 2) (@ ) =~

. From the answers to Prob. 2, find f,(1, 2)—the value of the partial derivative f, when

x =1 and y = 2—for each function,

. Given the production function Q = 96K %31 %7 find the MPPx and MPP, functions. s

MPPy a function of K alone, or of both K and {7 What about MPP, ?

. {If the utility function of an individuat takes the form

U= U, ) = (x1 + 2% (x; + 3)°

where U is total utility, and x; and x; are the guantities of two commodities consumed;
{a) Find the marginal-utility function of each of the two commaodities.

{b) Find the value of the marginal utility of the first commodity when 3 units of each
commodity are consumed.

The total money supply M has two components: bank depasits D and cash heldings C,
which we assume to bear a constant ratio C/0 =, 0 < ¢ < 1. The high-powered
money H is defined as the sum of cash holdings held by the public and the reserves
held by the banks. Bank reserves are a fraction of bank deposits, determined by the
reserve ratior, 0 <r < 1.

(0} Express the money supply M as a function of high-powered money H.

{b) Would an increase in the reserve ratio r raise or lower the money supply?
{¢) How would an increase in the tash-deposit ratio c affect the money supply?
Wirite the gradients of the following functions:

(@ f(x,v,2) =x*+y* 4 2*

(D) f(x, 5, 2)=xyz
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7.5 Applications to Comparative-Static Analysis

Equipped with the knowledge of the various rules of diffcrentiation, we can at last tackle
the preblem posed in comparative-static analysis: namely, how the equilibrium value of'an
endogenous variable will change when there is a change in any of the exogenous variables
QI PArameters.

Market Model

First let us consider again the simple one-commodity market model of (3.1). That model
can be written in the form of two equations:

Q=a—5bP (a,h=0) [demand]
O=—c+dP {c,d =) [supply]

with solutions

a+c

P* = .14
h+d (7.14)
ad — bc

* = 7.5

¢ b+d ( )

These solutions wilt be referred to as being in the reduced form: The two endogenous vari-
ables have been reduced to explicit expressions of the four mutually independent parame-
ters ¢, b, ¢, and d.

To find how an infinitesima! changg in one of the parameters will affect the value of P*,
one has only to differentiate (7.14) partially with respect to cach of the parameters. If the
sign of a partial derivative, say, 8P*/dq, can be determined from the given information
about the parameters, we shall know the direction in which P* will move when the param-
eter @ changes; (his constitutes a qualitative conclusion. If the magnitude of 97/da can be
ascertaincd, it will constitute a quantitative concluston,

Similarly, we can draw qualitative or quantitative conclusions from the partial deriva-
tives of " with respect to cach parameter, such as #Q*/da. To avold misunderstanding,
however, a clear distinction should be made between the two derivatives 9Q"/da and
AQ)/ 3. The latter derivative is a concept appropriate (0 the demand function taken alone,
and without regard to the supply function. The derivative d()*/da pertains, on the other
hand, to the equilibrium quantity in {7.15) which, being in the nature of 4 solution of the
model, takes into account the mieraction of demand and supply together. To emphasize this
distinction, we shall refer to the partial derivatives of P* and (* with respect to the param-
cters as comparative-static derivatives. The possibility of confusion betwecen 307/ da and
80/ is precisely the reason why we have chosen to use the asterisk notation, as in ¢* to
denotc the equilibrium valuc.

Concentrating on £* for the time being, we can get the following four partial derivatives
from (7.14):

0P 1

da  b+d
aP*  Ob+d)-l{a+¢)y —(a+co)
ah (b+d)’ T (b +d)?

aramcter ¢ has the coefficient
[p b+ d]

[quoticnt rule]
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aP* 1 AP

dc  b+d\ da

P* Ob+d)—la+c)  —ate)( P
ad (b+d)? (b +d? N b

Since all the parameters are restricted to being positive in the present model, we can
conclude that
aP*  oP* ap*  apP*

% = p > 0 and E = ﬁ = 3 (7.16)

For a fuller appreciation of the results in (7.16), let us look at Fig. 7.5, where cach dia-
gram shows a change in one of the parameters. As before, we are plotting O (rather than P}
on the vertical axis.

Figure 7.5a pictures an increase in the parameter ¢ (to ’). This means a higher vertical
intercept for the demand curve, and inasmuch as the parameter 5 (the slope parameter) is
unchanged, the increase in a results in a parallel upward shift of the demand curve from D

FIGURE 7.5 ] {Increase in &) 0 {Increase in &)
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to D'. The intersection of IY and the supply curve S determines an equilibrium price £*,
which is greater than the old equilibrium price P*. This corroborates the result that
AP*fda > 0, although for the sake of exposition we have shown 1n Fig. 7.5a a much larger
change in the paramcter a than what the concept of derivative implies.

The situation in Fig. 7.5¢ has a similar interpretation; but since the increase takes place
in the parameter ¢, the result is a parallel shift of the supply curve instead. Note that this
shift is downward because the supply curve has a vertical intercept of —¢; thus an increase
in ¢ would mean a change in the intercept, say, from —2 to —4. The graphical comparative-
static result, that P* exceeds P*, again conforms to what the positive sign of the derivative
aP* /3¢ would lead vs to expect.

Figures 7.56 and 7.5d illustrate the effects of changes in the slope parameters 5 and d
of the two [unctions in the model. An increase in & means that the slope of the demand
curve will assume a larger numerical {absolute) valug; L., it will become stecper. In
accordance with the result 8P*/3h = 0, we find a decrcase in P* in this diagram. The
increase in « that makes the supply curve steeper also results in a decrease in the equilib-
rium price. This is, of course, again in line with the negative sign of the comparative-static
derivative dP*/dd.

Thus far, all the results in (7.16) seem to have been obtainable graphically. If so, why
should we bother to usc differentiation at all? The answer 1s that the differentiation
approach has at least two major advantages. First, the graphical technique is subject to a
dimensional restriction, but differentiation is not, Cven when the number of cndogenous
variables and paramcters is such that the equilibrium state cannot be shown graphically. we
can nevertheless apply the differentiation techniques to the problem. Second, the dilfcren-
tiation method can yicld results that are on a higher level of generality. The results in (7.16)
will remain valid, regardless of the specific values that the parameters , b, ¢, and d take, as
long as they satisfy the sign restrictions. So the comparative-static conclusions ol this
model are, in effect, applicable (o an infinite number of combinanens of (linear} demand
and supply functions. [n contrast, the graphical approach deals only with som¢ specific
members of the family of demand and supply curves, and the analytical result derived
therefrom is applicable, strictly speaking, only ta the specific functions depicted.

This discussion serves to illustrate the application ot partial differentiation to comparative-
static analysis of the simple market model, but enly halt of the task has actually been
accomplished, for we can also find the comparative-static derivatives pertaining to (7. This
we shall leave to you as an exercise.

National-lncome Model
In place of the simple national-income model discussed in Chap. 3, let us now work with a
slightly enlarged model with three endogenous variables, ¥ (national income), € (con-
sumption}, and 7" (taxes):
Y=C+ 1+ Gy
C=at+BY-T) (a=0 0<pf<l) (7.17)
IT'=y+8Y (y =0, 0<d=l)

The first equation in this system gives the equilibrium condition for national income, while
the second and third equations show, respectively, how C and T are determined in the model.
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The restrictions on the values of the parameters @, 8, ¥, and & can be explained thus: o
1§ positive because consumption is positive even if disposable income (¥ — T') is zero; § is
a positive fraction because it represents the marginal propensity to consume; y is positive
because even if' ¥ is zero the government will still have a positive tax revenue (from tax
bases other than income); and finally, 8 is a positive fraction because it represents an
income tax rate, and as such it cannot exceed 100 percent. The exogenous variables f;
(investment} and Gy (government expenditure) are, of course, nonnegative. All the param-
eters and exogenous variables are assumed to be independent of one another, so that any
one of them can be assigned a new valuc without affecting the others.

This mode] can be solved for ¥* by substituting the third equation of (7.17) into the sec-
ond and then substituting the resulting equation mto the first. The equilibrium income (in
reduced form) is

V* = &'—ﬁ'}/—i-f{]-{-G[l
-8+ 8
Similar equilibrium values can also be found for the endogenous variables Cand T, but we
shall concentrate on the equilibrium income,
From (7.18), there can be obtained six comparative-static derivatives. Among these, the
{ollowing three have special policy significance:

(7.18)

=0 (7.19)
80Gy  1-p+ps '
art B
5y T 1—g+ps Y (7.20)
¢y —plo—Fy+hh+ Gy  —BYT
B U—pra 1 g G G2D

The partial derivative in (7.19) gives us the governmeni-expenditure multiplier. 1t has a pos-
itive sign here because g 1s less than 1, and A4 is greater than zero. If numerical valucs are
given for the parameters 5 and §, we can also find the numerical value of this multiplicr
from (7.19}. The derivative in (7.20) muy be called the ronincome-tax multiplier, because
it shows how a change 1n y. the government revenue from nonincome-tax sources, will af-
fect the equilibrium income. This multiplier is negative in the present model because the
denominator in (7.20) 1s positive and the numerator is negative. Lastly, the partial deriva-
tive in (7.21—which is not in the nature of a multiplicr, since it does not relate a dollar
change to another dollar change as the derivatives in (7.19) and {7.20} do—tells us the
extent to which an inerease in the income tax rate 8 will lower the equilibrium income.

Again, note the difference belween the two derivatives 0Y*/0G, and 0Y/0Gy. The
former is derived from (7.18), the expression for the equilibrium income. The lalter,
obtainable from the first equation in (7.17), 18 3Y /3Gy = 1, which is altogether different in
magnitude and in concept.

Input-Output Model
The sotution of an open input-output model appears as a matrix equation x* = (/ — 4)~'d.
[f we denote the inverse matrix ({ — A4)™' by ¥ = [1;;], then, for instance, the solution for
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a three-industry economy can be written as x* = Vd, or

xf M V2 b h
x-j,‘ = |t V» iU dg (722)
x5 vy oty vn || dh

What are the rates of change of the solution values x; with respect to the exogenous final
demands d|, >, and ¢4 The general answer is that

o (k=123 (7.23)
— = 1; s = l.4 *
aa, Y :
To scc this, let us multiply out ¥4 in (7.22) and express the solution as
X7 vidi + vipdz + v13ds
x3 | =] vad) + vndy + vaads
x5 vidy + viadz + vids

In this system of three equations, each one gives a particular solution value as a function
of the exogenous final demands. Partial differentiation of these produces a total of nine
comparative-static derivatives:

dx} B.rf axy

=1 —_— =1 — = i}
T S F A
x5 dx; dxy

=1 —t = = = 7.23
31’31 21 Hdg 22 E}d3 23 ( )
dx} 3 ax3

=1 —= = {1 — =1
ad, O ad, ¢ ady

This 1s simply the expanded version of (7.23),
Reading (7.23') as three distinct columns, we may combine the three derivatives in cach
column into a matrix {vector) derivative:

Sx* 3 .’Ci* mn arx* 1z Ax® V13
= — | x| = Va1 — = | V1 — = | Um (723”)
ad,  ad, | : 3d, ads ,
X3 V3| U3z v33

Since the three column vectors in (7.23") are merely the columns of the matrix V, by fur-
ther consolidation we can summarize the nine derivatives in a single matrix derivative
9x*/0d. Given x* = Vd, we can simply writc

vy vz v
3ot i vz v »
o ={ty Vn Un|=FV={-4)
U U3z My

Thus, (7 — A)~", the inverse of the Leontict matrix, gives us an ordered display of all the
comparative-static derivatives of our open input-output model, Obviously, this matrix
derivative can easily be extended from the present three-industry model to the general
n-industry case.

Comparative-static derivatives of the input-output model are uscful as tools of economic
planning, for they provide the answer to the question; Tf the planning targets, as reflected in
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(e, da. ..., dy), are revised, and il we wish to take care of all direct and indirect require-
ments in the economy so as to be completely free of bottlenecks, how must we change the
output goals of the # industries?

EXERCISE 7.5

1. Examine the comparative-static properties of the equilibrium quantity in {7.15), and
check your results by graphic analysis.

2. On the basis of (7.18), find the partial derivatives dY*/afg, 8Y*/da, and #Y*/34. Inter-
pret their meanings and determine their signs.

3. The numerical input-output model {5.21) was soived in Sec. 5.7,
(o) How many comparative-static derivatives can be derived?
(b) Write out these derivatives in the forim of (7.23") and (7.23").

7.6 Note on Jacobian Determinants

Our study of partial derivatives was motivated solely by comparative-static considerations.
But partial derivatives also provide 4 means of testing whether there exists functional
{tingar or nonlinear) dependence among a set of # functions in r variables. This is related
to the notion of Jacobian determinants (named after Jacobi).

Consider the two functions

¥ = 2X| + 312

. ) (7.24)
vy =dxy + 12x,x2 + 973
If we get all the four partial derivatives
dy dy dvy dy>
ACIPD e R S P FRVIS T NP PR
A dx; Ay X2

and arrange them Into a square matrix in a prescribed order, called a Jacobian matrix and
denoted by J, and then take its determinant, the result will be what is known as a Jacobian
determinant (or a Jacobian, [or short), denoted by |/ :

dnon
#4x; 0 2 3
Jl=1] ‘ = 7.25
| | d,]"':.' (3}!2 |[8_\‘] + 121'2) {]2.\’] -+ 1812) ( )
a.-‘{'] f}x_}

Far econemy of space, this Jacobian is sometimes also expressed as

Ay, y2)

g =
alxy, v2)

Morc generally. if we have n differentiable functions in # variables, not necessarily linear,

¥o= \f](x]a X2y ooy -YJ'E)
Va = X X2, e Xa)

(7.26)
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where the symbol f* denotes the sth function {and not the function raised to the nth
power), we can derive a total of n” partia! derivatives. Adopting the notation f/ = 8y /dx;.
we can write the Jacobian

iy, va, .., ¥
| = ‘(}1 V2 V)
xy, xa, ..., %)
dnfoxe o anfox | |A o A
= 5 : =|: ; (7.27)
dyyfdxy - By, /0x, Il" M

A Jacobian test for the existence of functional dependence among a set of # functions s
provided by the following theorem: The Jacobian | /| defined in (7.27) will be identically
zero for all values of x|, . .., x, ifand only if the # fanctions /', ..., f” in (7.26) are func-
tionally (linearly or nonlinearly) dependent.

As an example, for the two functions in (7.24) the Jacobian as given in (7.25) has the
value

|| = (24x, + 36x3) — {24x, + 3007) =0

That is, the Jacobian vanishes for all values of x; and x,. Therefore, according to the theo-
rern, the two fanctions in (7.24) must be dependent. You can verify that y; is simply
squared; thus they are indeed functionally dependent- here nonlinearly dependent.

Let us now consider the special case of linear functions. We have earlicr shown that the
rows of the coefficient matrix 4 of a linear-equation system

anxy +apxs + - Fapky =d

anxy +apxz + - Fapxy =da (7.28)

QX F 2paXa ol Xy = dy

are linearly dependent if and only if the determinant 4| = 0. This result can now be inter-
preted as a special application of the Jacobian criterion of functional dependence.

Take the lcft side of each equation in (7.28) as a separate function of the » vanables
X1, ..., Xq, and denote these functions by vy, ..., »,. The partial derivatives of these func-
tions will turn out 1o be ¢y /0x; = a1, 8y /8x2 = a1, cte., so that we may write, in gen-
eral, dy;/dx; = a;;. In view of this, the elements of the Jacobian of these # functions will
be precisely the elements of the cocfficient matrix 4, already arranged in the correct order.
That is, we have |J| = | 4|, and thus the Jacobian criterion of functional dependence among
V1, .+ s Yo—oOr, what amounts to the same thing, lincar dependence among the rows ot the
coefficient matrix A—is equivalent to the criterion | 4| = 0 in the present linear case.

We have discussed the Jacobian in the context of a system of  functions in n variables.
Tt should be pointed out, however, that the Jacobian in (7.27) is defined even if each func-
tion in (7.26) contains more than n variables, say, n + 2 variables:

.})F':Jri(xl's"'1xnaxﬂ-}13xﬂ+z) (i=1529"'$n)

In such a case, if we hold any two of the variables (say, x,4 and x,,2} constant, or treat
them as parameters, we will again bave » functions in exactly » variables and can form a
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Jacobian. Moreover, by holding a different pair of the x variables constant, we can form a
different Jacobian. Such a situation will indeed be encountered in Chap. & in canncetion
with the discussion of the implicit-function theorem.

EXERCISE 7.6

1. Use Jacobian determinants to test the existence of functional dependence between the
paired functions.

(G) Y= 3)(32 + X2
Vo = 9x} 4 6x%(x + 4) + xo{x2 + 8} + 12

(B) yr = 3x% +2x7
y2 =5x +1

2. Consider (7.22) as a set of three functions x7 = ff(eh, dh, ) (withi =1, 2, 3).

(@) Write out the 3 x 3 Jacobian. Does it have some relation to (7.23")? Can we write
i1=1v7

(&) Since V ='(J — A)~!, can we conclude that {V| # 07 What can we infer from this
about the three equations in (7.22)?



