Floating Point Representation

Computational Physics

Floating Decimal Point : Scientific Form

256.78 is written as $+2.5678 \times 10^{2}$
0.003678 is written as $+3.678 \times 10^{-3}$
-256.78 is written as -2.5678×10^{2}

Example

The form is sign \times mantissa $\times 10^{\text {exponent }}$
or

$$
\sigma \times m \times 10^{e}
$$

Example: For

$$
\begin{gathered}
-2.5678 \times 10^{2} \\
\sigma=-1 \\
m=2.5678 \\
e=2
\end{gathered}
$$

Floating Point Format for Binary Numbers

$y=\sigma \times m \times 2^{e}$
$\sigma=$ sign of number (0 for + ve, 1 for - ve)
$m=$ mantissa $\left[(1)_{2}<m<(10)_{2}\right]$
1 is not stored as it is always given to be 1 .
$e=$ integer exponent

Example

9 bit-hypothetical word
-the first bit is used for the sign of the number, -the second bit for the sign of the exponent, -the next four bits for the mantissa, and -the next three bits for the exponent

$$
\begin{aligned}
(54.75)_{10} & =(110110.11)_{2}=(1.1011011)_{2} \times 2^{5} \\
& \cong(1.1011)_{2} \times(101)_{2}
\end{aligned}
$$

We have the representation as

Machine Epsilon

Defined as the measure of accuracy and found by difference between 1 and the next number that can be represented

Example

Ten bit word
-Sign of number
-Sign of exponent
-Next four bits for exponent
-Next four bits for mantissa

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

\(\underset{\substack{Next

number}}{\longrightarrow}\)| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\epsilon_{\text {mach }}=1.0625-1=2^{-4}
$$

Relative Error and Machine Epsilon

The absolute relative true error in representing a number will be less then the machine epsilon
Example

$$
\begin{aligned}
(0.02832)_{10} & \cong(1.1100)_{2} \times 2^{-5} \\
& =(1.1100)_{2} \times 2^{-(0110)_{2}}
\end{aligned}
$$

10 bit word (sign, sign of exponent, 4 for exponent, 4 for mantissa)

$$
\begin{aligned}
& (1.1100)_{2} \times 2^{-(0110)_{2}}=0.0274375 \\
& \epsilon_{a}=\left|\frac{0.02832-0.0274375}{0.02832}\right| \\
& \quad=0.034472<2^{-4}=0.0625
\end{aligned}
$$

IEEE 754 Standards for Single Precision Representation

Computational Physics

IEEE-754 Floating Point Standard

- Standardizes representation of floating point numbers on different computers in single and double precision.
- Standardizes representation of floating point operations on different computers.

One Great Reference

What every computer scientist (and even if you are not) should know about floating point arithmetic!
http://www.validlab.com/goldberg/paper.pdf

IEEE-754 Format Single Precision

32 bits for single precision

Sign
Biased
(s) Exponent (e^{\prime})

Mantissa (m)

$$
\text { Value }=(-1)^{s} \times(1 . m)_{2} \times 2^{e^{\prime}-127}
$$

Example\#1

Sign
Biased
(s) Exponent (e^{\prime})

Mantissa (m)

$$
\begin{aligned}
\text { Value } & =(-1)^{s} \times(1 . m)_{2} \times 2^{e^{\prime}-127} \\
& =(-1)^{1} \times(1.10100000)_{2} \times 2^{\left(10100010_{2}-127\right.} \\
& =(-1) \times(1.625) \times 2^{162-127} \\
& =(-1) \times(1.625) \times 2^{35}=-5.5834 \times 10^{10}
\end{aligned}
$$

Example\#2

Represent -5.5834×10^{10} as a single precision floating point number.

Sign (s) Exponent (e^{\prime})

Mantissa (m)
$-5.5834 \times 10^{10}=(-1)^{1} \times(1 . ?) \times 2^{ \pm}$?

Exponent for 32 Bit IEEE-754

8 bits would represent

$$
0 \leq e^{\prime} \leq 255
$$

Bias is 127; so subtract 127 from representation

$$
-127 \leq e \leq 128
$$

Exponent for Special Cases

Actual range of e^{\prime}

$$
1 \leq e^{\prime} \leq 254
$$

$e^{\prime}=0$ and $e^{\prime}=255$ are reserved for special numbers
Actual range of e
$-126 \leq e \leq 127$

Special Exponents and Numbers

$$
\begin{gathered}
e^{\prime}=0-\quad \text { all zeros } \\
e^{\prime}=255-\quad \text { all ones }
\end{gathered}
$$

s	e^{\prime}	m	Represents
0	all zeros	all zeros	0
1	all zeros	all zeros	-0
0	all ones	all zeros	∞
1	all ones	all zeros	$-\infty$
0 or 1	all ones	non-zero	NaN

IEEE-754 Format

The largest number by magnitude

$$
(1.1 \ldots \ldots . .1)_{2} \times 2^{127}=3.40 \times 10^{38}
$$

The smallest number by magnitude

$$
(1.00 \ldots \ldots 0)_{2} \times 2^{-126}=2.18 \times 10^{-38}
$$

Machine epsilon

$$
\varepsilon_{m a c h}=2^{-23}=1.19 \times 10^{-7}
$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

Computational Physics

 /topics/floatingpoint representation.htm|
THE END

Computational Physics

