


Chapter

Economic Dynamics
and Integral Calculus

The term dyramics, as applied to economic analysis, has had different meanings at differ-
ent times and for different economists.” In standard usage today, however, the term refers to
the type of analysis in which the objeet is cither to trace and swdy the specific time paths
of the variables ot to delermine whether, given sufficient time, these variables will tend to
converge to ceriain (equilibrium) values. This type of information is important because it
fills a major gap that marred our study of statics and comparative statics. In the latter, we
always make the arbitrary assumption that the process of economic adjustiment ingvitably
leads to an cquilibrium. [n a dynamic analysis, the question of “attainability™ 15 to be
squarely faced, rather than assumed away.

One salient feature of dynamic analysis is the dating of the variables, which intraduces
the explicit consideration of fime into the picture. This can be done in two ways: time can
be considered either as a contfnuous variable or as a discrete variable. In the former casc,
somcthing is happening to the variable at cach point of time {such as n continuous tnterest
compounding}, whereas in the lutter, the variable undergoes a change only once within a
period of time (e.g., interest is added ony at the end of every 6 months). One of these time
coneepts may be more appropriate than the other in certain contexts.

We shall discuss first the continuous-time case, to which the mathematical technigues of
integral calentus and differential equations are pertinent. Later, in Chaps. 17 and 18, we
shall turn to the discrcte-time case, which utilizes the methods of difference equations.

14.1 Dynamics and Integration

In a static model, generally speaking, the problem is to find the values of the endogenous
variables that satisfy some specified equilibrium condition(s). Applied to the context of
optimization models, the task becomes one of finding the values of the choice variubles
that maximize (or minimize) a specific objective function with the first-order condi-
tion serving as the equilibrium condition. ln a dynamic model, by contrast, the problem

" Fritz Machlup, “Statics and Dynamics: Kaleidoscopic Words,” Southern Economic fournal, October
1959, pp. 91-110; reprinted in Machlup, Essays on Fconomic Semantics, Prentice-Hall, Inc.,
444 Englewood Cliffs, N.J., 1963, pp. 9-42.
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mvolves instead the delineation of the time path of some variable, on the basis of a known
pattern of change {say, a given instantaneous rate of change).

An example should make this clear. Suppose that population size /1 is known to change
over timge at the rate

dH -1/2

= = i (14.1)
We then try to find what time path(s) ol population # = H(¢) can yicld the rate of change
in (14.1).

You will recognize that, if we know the function H = #/(/) to begin with, the derivative
d H /dt can be found by diffcrentiation. But in the problem now confronting us, the shoe is
on the other foot: we arc called upon to uncover the primitive function from a given derived
function, rather than the reverse. Mathematically, we now need the exact opposile of the
method of differentiation, or of differential calcuius.

The relevant method, known as integration, or integral calculus, will be studied in this
chapter. For the time being, let us be content with the observation that the function
T1{r) = 21"/ does indeed have a derivative of the form in (14.1), thus apparently qualify-
ing as 4 solution to our problem. The trouble is that there also exist similar functions. such
as H(t) = 262 415 or H{z) = 2:"* 4 99 or, more generally.

H(=2""4+¢ (¢ = anarbitary constant) (14.2)

which all possess exactly the same derivative (14.1). No unique time path can be deter-
mined, therefore, unless the value of the constant ¢ can somehow be made definite. To
accomplish this, additional information must be introduced into the medel, usually in the
form of what is known as an inifiaf condition or boundury condition.

I['we have knowledge of the initial population H{0)—that is, the valuc of Hat 7 = 0, let
us say, H(0) = 100—then the valuc of the constant ¢ can be made determinate, Setting
t =01in{14.2), we get

Oy =202 +c=c
But it H(0) = 100, then ¢ = 100, and (14.2) becomes
H{ry =2t £ 100 (14.2)

where the constant is no longer arbitrary. More gencrally, for any given initial population
H1(0), the time path will be

Hty =212 4 11(0) (14.2")

Thus the population size H at any point of time will, in the present example, consist of the
sum of the initial population F7{0) and another term imvolving the time variable . Such a
time path indeed charts the complete itinerary of the variable 4 over time. and thus it truly
constitutes the solution to our dynamic model. [Equation (14.1) is also a function ol &. Why
can’t it be considered a solution as well?|

Simple as it is, this population example illustrates the quintessence of the problems of
economic dynamics. Given the pattern of behavior of a variable over time, we seek 1o find
a function that describes the time path of the variable. In the process, we shall encounter
onc or more arbitrary conslants, but if we possess sufficient additional informatien in the
form of initial conditions, it will be possible to definitize these arbitrary constants.
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In the simpler types of problem, such as the one just cited, the solution can be found by
the method of integral calculus, which deals with the process of tracing a given derivative
[unction back to its primitive function. In more complicated cascs, we can also resort to the
known techniques of the closcly related branch of mathematics known as differential equa-
tioms. Since a differcntial equation is defined as any equation containing differential or
derivative expressions, (14,1) surely qualifies as one; consequently, by finding its solutien,
we have in fact alrcady solved a differential equation, albeit an exceedingly simple one.

Let us now proceed to the study of the basic concepts of integral caleulus. Since we dis-
cussed differential calculus with x (rather than ¢) as the independent variable, for the sake
of symmetry we shall use x here, too, For convenience, however, we shall in the present dis-
cussion denote the primitive and derived functions by £(x) and f(x), respectively, rather
than distinguish them by the use of a prime,

14.2 Indefinite Integrals

The Nature of Integrals
It has been mentioned that integration is the reverse of ditferentiation. 11 differentiation of
a given primitive [unction F(x) yields the derivative f(x). we can “integrate™ f(x) to find
F(x), provided appropriate information is available to definitize the arbitrary constant
that will arise in the process of integration. The function £(x) is referred to as an infegral
(or antiderivative) of the function f(x). These two types of process may thus be likened to
two ways of studying a family tree: infegration involves the tracing of the parentage of the
function f{x), whereas differentiation secks out the progeny of the fumction F(x). But note
this difference—while the (differentiable) primitive function F(x} mnvariably produces a
lonc offspring, namely, a unique derivative f{r), the derived function /{x) is traceable to
an infinite number of possible parcnts through integration, because if F{x) is an integral of
F(x), then so also must be #(x) plus any constant, as we saw in (14.2).

We necd a special notation to denote the required integration of f(x) with respect to x.
The stundard one is

[re s

The symbol on the left an elongated § (with the connotation of sum, to be explained
latery—is called the integral sign, whereas the f(x) part is known as the integrand (the
function to be integrated), and the dy part—similar to the ¢x in the diffcrentiation operator
d Jdx—reminds us that the operation i3 to be perlormed with respect to the variable .
However, you may also take f{x) dx as a single entity and interpret it as the differential
of the primitive function F(x) [that is,d #(x) = f{x) ¢x]. Then, the intcgral sign in [ront
can be viewed as an instruction to reverse the differentiation process that gavc rise 1o the
differential, With this new notation, we can write that

%F(x} = f(x) = f fxydy = F(x) +c (14.3)

where the presence of ¢, an arbilrary constant of integration, scrves to indicate the multiple
parentage of the integrand.



Example 1
Example 2

Example 3

Example 4

Example 5

Chapter 14 fconomic Dynamics and Integrad Calenbuy 447

The integral [ f(x) dx is, more specifically, known as the indefinite integral of /(x) (as
against the definite integral to be discussed in Sec. 14.2), because it has no definite numer-
ical value. Because it is equal 1o F{x) + ¢, its value will in general vary with the value of
x (even if ¢ 18 definitized). Thus, like a derivative, an indefinite integral is jtself a function
of the variable x,

Basic Rules of Integration

Just as there are rules of derivation, we can also develop certain rules of integration, As may
be expected, the lalter are heavily dependent on the rulcs of derivation with which we are
already familiar. From the following derivative formula for a power function,

n+l
d (x ):x” (n% 1)

E n—+1

for ingtance, we see that the expression x*~!/(n 4 1) is the primitive function for the
derivative function x7; thus, by substituting these for F(x)and f(x) in (14.3), we may
state the result as a rule of integration.

Rule 1  (the power rule)

|
/A:"dx:mx”'l+c (n#-1)

Find [x*dx. Here, we have n= 3, and therefore

1
3 4
X*de = —x"+¢

f P

Find fx dx, Since n =1, we have

1
dx=—x*
fxx 2){—1—5

What s { T dx? To find this Integral, we recall that x° = 1; so we can let n = 0 in the power

rule and get
f1 dx=x-+¢

[/ 1 dx is sometimes written simply as [ dx, since 1dx = dx.]

Find  vx3 dx. Since vx* = x3'2, we have n = 3: therefore,

52
Iy X 2 I
fv’x3 dX:T—FC:g'\.’XS-FC
3

"1
Firnd ] Fdx, (x # 0). Since 1/x* = x~1, we have n= —4. Thus the integral is

1 x—4+1 1
— dx = C=—-—
'[x‘* g —4+1+ 3x3+c

Note that the correctness of the results of integration can always be checked by differ-
entiation; 1f the integration process 1s correct, the derivative of the integral must be cqual to
the integrand.



448 Part Five Dvnamic Anahisis

The derivative formulas for simple exponential and logarithmic functions have heen
shown to be

{ i
ée’f =e' and o Inx = . (x = 0)

From these, two other basic rules of integration cmerge.

fe" dy=¢e" +¢

1
f—a’x:lnx—w (x>
X

Rule 11 (the exponential rule)
Rule Il  (the logarithmic rule)

It is of intercst that the integrand involved in Rule [ is 1/x = x~', which is a special
form of the power function x” with # = —1. This particular integrand is inadmissible under
the power rule, but now is duly taken care of by the logarithmic rule.

As stated, the logarithmic rule is placed under the restriction x > 0, because logarithms
do not cxist for nonpositive values of x. A more general formulation of the rule, which can
lake carc ol negative values of x, i

fldx=ln|x|—|—c' (x #40)
X

which also implies that (d/dx)In|x| = I/x, just as (d/dx) Inx = 1/x. You should con-
vince yoursell' that the replacement of x (with the restriction x = 0) by |x| (with the
resiriction v % 0) does not vitiate the formula in any way.
. : : I :
Also, as a malter of notation, it should be pointed out that the integral ] dx s
. . dy *
sometimes also written as f —.
X
As variants of Rules [ and 11, we also have the following two rules.

Rule [1a
]f,-(l_)ef(.\'} dy = e.f'f.l'] 4

Rule 11Ta

f D =) +e [y >0
S(x)
or In|f(x)[+¢  [flx)#£0]
The bases for these two rules can be found in the derivative rules in (10.20).

Rules of Operation

The three preceding rules amply illustrate the spirit underlying all rules of integration. Each
rule always corresponds to a certain derivative formula. Also, an arbitrary conslant is
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always appended at the end {cven though it is to be definitized later by using a given bound-
ary condition) to indicate that a whole family of primitive {unctions can give rise to the
given integrand.

To be able to deal with more complicated integrands, however, we shall also find the
following two rules of operation with regard to integrals helplul.

Rule IV (the integral of a sum) The mtegral of the sum of a finite number of functions
is the sum of the integrals of those functions. For the two-function case, this means that

f[f(JJ) tglx)] dx = ff(x) dx + fg[X) ix
This rule is a natural consequence of the fact that

d d d
—[F () + Gl = —Flx) + —Glx) = f{x) +g(x)
x 0

dx dx d
4 7 ¢
Inasmuch as 4 = C, on the hasis of (14.3) we can write
f [flx)+g(x)|de = F(x)+ G(x) + ¢ (14.4)

But, from the fact that B = (, it follows that
ff(x] dx = F{x) + ¢, and fg(x) dx =Glx)+ ¢

Thus we can obtain (by addition}
ff(x) dx + /g(x) dx = F{x)+ G(x)+c 46 (14.5)

Since the constants ¢, ¢y, and ¢; arc arbitrary in value, we can let ¢ = ¢| + ¢». Then the
right sides of (14.4) and (14.5) become cqual, and as 4 consequence, thetr left sides must
be equal also. This proves Rule [V,

Find [(x? + x4+ 1) dx. By Rule IV, this integral can be expressed as a sum of three integrals:
[x3dx + fxdx+ {1dx. Since the values of these three integrals have previously been
found in Examples 1, 2, and 3, we can simply combine those results to get

3 X4 XE X4 X2
(x4 dx= Ztaltizta +(x+<:3):1+?+x+c

In the final answer, we have lurmped together the three subscripted constants intc a single
constant ¢,

As a general practice, ail the additive arbitrary constants of integration that emerge dur-
ing the process can always be combined into a single arbitrary constant in the final answer.

. 14x . . .
Find f(zezx T +5) dx. By Rule IV, we can integrate the two additive terms in the

integrand separately, and then sum the results. Since the Ze%* term is in the format of
f(x)ef™ in Rule Ila, with f(x) = 2x, the integral is e?* +¢;. Similarly, the other term,
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Example 8

Example 9

Example 10

14x/(7x* + 5), takes the form of f'(x}/f(x), with f(x}) = 7x2 + 5 = 0. Thus, by Rule llla, the
integral is In (7x? + 5) + ¢;. Hence we can write

’ 14
f(2€2“+ -3 is)dx=ez’(+ln(?x2+5)+c

where we have combined 7 and ¢; into one arbitrary constant c.

Rule V  (the integral of a multiple) The integral of & times an integrand (& being a con-
stant) is 4 times the integral of that integrand. In symbols,

[kf(x}dx = kff[x]a'x

What this rule amounts to, opcrationally, is that a mulliplicative constant can be “factored
out” of the integral sign. (Warning: A variable term cannot be factored out in this fashion!)
To prove this rule (for the case where 4 is an integer), we recall that & times f(x} merely
means adding 7 (x) & times. therclore, by Rule IV,

fkf(x) dx = f &)+ fx) 4+ fl0)] dx

k wrms

= ff(\} dx + ff'(_.\:} dy + - +ff(x) dx =k /f(x) dx

£ ferms

Find { —f(x) dx. Here k = —1, and thus

f—f(x) dx = _]f(x) dx

That is, the integral of the negative of a function is the negative of the integral of that
function.

Find | 2x7 dx. Factoring out the 2 and applying Rule |, we have
. 3
[ZXde:Z]xzdx=2<% +c1) = §x3+c
Find f3x? dx. in this case, factoring out the multiplicative constant yields
3
f3x2dx:3/.x2dx=3(%—|—q)::x3+c

Note that, in contrast to the preceding example, the term x* in the final answer does not
have any fractional expression attached to it. This neat result is due to the fact that 3 {the
muitiplicative constant of the integrand) happens to be precisely equal to 2 (the power of
the function) plus 1. Referring to the power rule (Rule I), we see that the multiplicative con-
stant (n + 1) will in such a case cancel out the fraction 1/(r1 4 1), thereby yielding {(x™' + ¢)
as the answer.

In general, whenever we have an expression (n + 1)x” as the integrand, there is really
no need to factor out the constant (n + 1) and then integrate x*; instead, we may write
x"1E 4 ¢ as the answer right away.
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' 3
Findf (Se" —x 4 ;) dx, (x # 0). This example illustrates both Rules IV and V; actually,

it illustrates the first three rules as well:

1 .
513”——+§ dx=5{e“dx— [ x2dux+3 1dx [by Rules IV and V]
X2 X X Y

1
:(Se"+ci)—(x_—1 +Cz)+(3ln!x!+q)

1
=5"+—+3Inlxl+c
X
The correctness of the result can again be verified by differentiation,

Rules Involving Substitution

Now we shall introduce two more rules of integration which seek to simplify the process
of integration, when the circumstances are appropriate, by a substitution of the original
variable of integration. Whenever the newly introduced variable of integration makes the
intcgration process easier than under the old. these rules will become of service,

Rule V1 (the substitation rule) The integral of f(u){du/dx) with respect (o the van-
able x is the integral ol f(u) with respeet to the variable u:

L du .
ff(u)—dx=f_f(u)du:F(u)+c
dx

where the operation [ g has been substituted for the operation [ dx.
This rule, the integral-calculus counterpart of the chain rule, may be proved by means of
the chain rule itself, Given a function F{x), where u = u(x). (he chain rule states that
d d du du du
_th.:w—-Fu.—:f‘-'iu—: H)l—
dx (#) du ( )dx ( ]d,\‘ T dx
Since f{u)(du/dx) is the derivative of Fiu), it follows from (14.3) that the integral (anti-
derivative) of the former must be

ff(.ur)ﬂ de = F(u)+¢
dx

You may note that this result, in fact, follows also from the canceling of the two dx expres-
stons on the left.

Find [ 2x(x? +1}dx. The answer to this can be obtained by first multiplying out the
integrand:
4
f2x(x2—|-1)dx=](2x3+2x)dx: 52—+x2+c
but let us now do it by the substitution rule, Let u= x2+1; then du/dx =2x, or
dx = du/2x. Substitution of du/2x for dx will yield

du 2
fx(x-l—)x fXUZX fudu 2+c:1

1
:%(x4+-2x2+-1)+c1 :§x4+x2+c

where ¢ = 1 +¢1. The same answer can also be obtained by substituting du/dx for 2x
(instead of du/2x for dx).
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Example 13

Example 14

Find {6x2(x* + 2)* dx. The integrand of this example is not easily multiplied out, and thus
the substitution rule now has a better opportunity to display its effectiveness. Let
u = x3 + 2; then du/dx = 3x%, so that

f&xz(x3 +2)% dx = f (Z%) W dx = [ v du

— 2 100 _ 1 3 100
_100[; —|—c_50(x +2) M+

Find [8e¥*+3 dx. Let u=2x + 3; then du/dx = 2, or dx = du/2. Hence,
j892"'3dx:fSe“%=4fe“du:4e“+c=4ez"'3+c

As these examples show, this rule is of help whenever we can—by the judicious choice
of a function # = u{x) -express the integrand {a function of x} as the product of f{u)
(a function of #) and du/dx (the derivative of the « function which we have chosen). How-
ever, as illustrated by the last two examples, this rule can be uscd also when the original
integrand is transformable into a constant multiple of f(#)(du/dx). This would not aftect
the applicability because the constant multiplier can be factored out of the integral sign,
which would then leave an integrand of the form f(u)(du/dx), as required in the substitu-
tion rule. When the substitution of variables results in g variable multiple ot f{u}du/dx),
say, x times (he latter, however, factoring is not permissible, and this rule will be ofno help.
In fact, there exists no general formula giving the integral of a preduct of two functions in
terms of the separate integrals of those functions; nor do we have a general formula giving
the intcgral of a quotient of two functions in terms of their separate integrals, Herein lies
the reason why integration, on the whole, is more difficult than differentiation and why,
with complicated integrands, it is more convenient to look up the answer in prepared lables
of integration formulas rather than to undertake the integration by oneself.

Rule VII (integration by parts) The integral of v with respect to x is equal to v less
the integral of # with respect to v:

fudu =Hv—fud1.-‘

The essence of this rule is to replace the operation [ du by the operation f dv.
The rationale behind this result is relatively simple. First, the product rule of differen-
tials gives us

diuy) = vdu +udv

If we integrate both sides of the equation {i.e., integrate each diflerential). we get a new

equation
[d(uv): fudu—k[udv

or HY = f vdu + f udv [no constant is nceded on the left (why?)]

Then, by subtracting [ 4 du from bath sides, the previously stated result emerges,
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Find J %{(x + 1) /2 dx. Unlike Examples 12 and 13, the present example is not amenable to

Example 15 o . _
—— the type of substitution used in Rule VI. (Why?)} However, we may consider the given inte-
gral to be in the form of v du, and apply Rule VII. To this end, we shall let v = x, implying
dv = dx, and also let v = Z(x + 1)*Z, sa that du = (x + 1)"/2 dx. Then we can find the
integral to be
f x(x+ 112 dx = ’ v du = uv—f udv
2 _.
= {x + 1) - f g(x +1)%2 dx
3 3
_ 2 3:2 4 5/2
= 3(,\'-7—1) X ﬁ(J<+1) +c
Example 16 Find finxdx, (x = 0). We cannat apply the logarithmic rule here, because that rule deals
——— with the integrand 1/x, not Inx. Nor can we use Rule VI. But if we let v = Inx, implying
dv = (1/x) dx, and also let u = x, so that du = dx, then the integration can be performed
as follows:
flnxdx:fvdu:uv—fudv
= xinxhfdx:xlnx—x+c=x(lnx—1)+c
Example 17 Find fxe*dx. In this case, we shall simply let v=x, and u=e", so that dv = dx and
—————— du = e”" dx. Applying Rule VII, we then have
[xe“dx: [vdu:uvafudv
:e"x—[e"dx:e*x—e"+c:e’((x—1)+c
The validity of this result, like those of the preceding examples, can of course be readily
checked by differentiation.
EXERCISE 14.2
1. Find the fellowing:
(0) f 16x 2 dx  (x#0) {d) [ 2072 dx
' 4x
by | 9xtd g
()fx X {e)fx2+1dx
(¢) f(xs - 3x) dx () f(Zax + B)(ox® + bx) dx
2, Find
(@) f 13e* dx (d) f 3¢ gy

(b) [ (3e* + ;) dx (x>0 (@ [ 4xe* 3 dx
(© f(s.ew%) g (x£0) (f)fxe”z’gdx
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3. Find:
3d 2
(a)f Mz © /ﬁ% i
(b}f T #D) (d)fﬁdx
4, Find;
{a) f(x+3)(x+1)‘f2 dx (b) fxtnxdx (x = 0)

5. Given nconstants & (withi=1,2,..., n) and n functions fi{x), deduce from Rules IV
and V that

f\;k f,(x)@mek,jf(x)dx )

14.3 Definite Integrals

Example 1

Meaning of Definite Integrals

All the integrals cited in Sce. 14.2 are of the indefinite variety: each is a {unction of a vari-
ablc and, hence, possesses no definite numerical value. Now, for a given indefinite integral
of a continuous function f{x),

ff(x) dx = F(x)+¢

if we choose two values of x in the domain, say, ¢ and b (¢ < B). substitute them succes-
sively into the right side of the cquation, and form the diflerence

[F(by+c]—[Fla)+c] = Fib) ~ Fia)

we get a specific numerical value, free of the variable x as well as the arbitrary constant ¢.
This value is called the definite integral of {(x) [rom « to 6. We refer to a as the lower fimit
of tntegration and to b ag the upper fimit of integration.

In order to indicate the limits of integration, we now modify the intcgral sign to the form

b
f . The evaluation of the definite intcgral is then symbolized in the following steps:

h b
fx)dx = F(x)] = F{b)— Fla) (14.6)

i i

where the symbol [/ (also written {2 or {---]?) is an instruction to substitute & and a. suc-
cessively, for x in the result of integration to get F{h) and F(a), and then take their
difference, as indicated on the right of {14.6). As the first step, however, we must find the
indefinite integral. although we may omit the constant ¢, since the latter will drop out in the
process of difference-taking anyway.

Evaluate | 3x%dx. Since the indefinite integral is x° + ¢, this definite integral has the value
)

f3xdx_x} =5 (1Y =125-1=124



