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3. Find:
3d 2
(a)f Mz © /ﬁ% i
(b}f T #D) (d)fﬁdx
4, Find;
{a) f(x+3)(x+1)‘f2 dx (b) fxtnxdx (x = 0)

5. Given nconstants & (withi=1,2,..., n) and n functions fi{x), deduce from Rules IV
and V that

f\;k f,(x)@mek,jf(x)dx )

14.3 Definite Integrals

Example 1

Meaning of Definite Integrals

All the integrals cited in Sce. 14.2 are of the indefinite variety: each is a {unction of a vari-
ablc and, hence, possesses no definite numerical value. Now, for a given indefinite integral
of a continuous function f{x),

ff(x) dx = F(x)+¢

if we choose two values of x in the domain, say, ¢ and b (¢ < B). substitute them succes-
sively into the right side of the cquation, and form the diflerence

[F(by+c]—[Fla)+c] = Fib) ~ Fia)

we get a specific numerical value, free of the variable x as well as the arbitrary constant ¢.
This value is called the definite integral of {(x) [rom « to 6. We refer to a as the lower fimit
of tntegration and to b ag the upper fimit of integration.

In order to indicate the limits of integration, we now modify the intcgral sign to the form

b
f . The evaluation of the definite intcgral is then symbolized in the following steps:

h b
fx)dx = F(x)] = F{b)— Fla) (14.6)

i i

where the symbol [/ (also written {2 or {---]?) is an instruction to substitute & and a. suc-
cessively, for x in the result of integration to get F{h) and F(a), and then take their
difference, as indicated on the right of {14.6). As the first step, however, we must find the
indefinite integral. although we may omit the constant ¢, since the latter will drop out in the
process of difference-taking anyway.

Evaluate | 3x%dx. Since the indefinite integral is x° + ¢, this definite integral has the value
)

f3xdx_x} =5 (1Y =125-1=124
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b
Evaluate[ ke* dx. Here, the limits of integration are given in symbols; consequently, the
o

result of integration is alse in terms of those symbols:

b b
f ke"dx:ke"} — k(" — e
i1

a

4 1
Evaluate[ (m + 2)() dx, (x # —1). The indefinite integral is In |1 + x| + x* + ¢; thus
0

the answer is

4 "| 24
V[g (i? +2K) d)(—[ll'l“-l—)ﬂ-l—)( ]0

={n5+16)-(In1+0)
=In5+16  [sinceln1 =10]

It is important to realize that the limits of integration a and b both refer to values of the
variable x. Were we to use the substitution-of-variables techmque (Rules VI and VII) dur-
ing integration and introduce a variable #, care should be taken zot to consider ¢ and # as
the limits of &, Example 4 will illustrate this point.

2
Evaluate [ (2x* —1)2(6x7) dx. Let u = 2x* — 1; then dufdx = 6x2, or du = 6x? dx. Now
1! 1

notice that, when x =1, u will be 1 but that, when x = 2, u will be 15; in other words,
the limits of integration in terms of the variable v should be 1 (lower) and 15 (upper).

2
Rewriting the given integral in v will therefore give us notf W du but
1

P2 1577 1 o 2
wdu=cu| =5(15"-1")=1,124¢%
[ ] =308 -1 =1248
Alternatively, we may first convert v back to x and then use the criginal limits of 1 and 2 to
get the identical answer:

1 3 u—15 -I 3 3)(—2 -I 5
— = | - — = — — 3 = é
Lu] L)(Zx 1)] 3'(15 17) =1,1245

u=1 =1

A Definite Integral as an Area under a Curve

Every definite integral has a definite value. That value may be interpreted geometrically to
be a particular area under a given curve.

The graph of a continuous function v = f(x) is drawn i Fig. 14.1. If we seek to mea-
sure the (shaded) area 4 enclosed by the curve and the x axis between the two points « and b
it the domain, we may proceed in the following manner. First, we divide the interval [a, ]
into n subintervals (not nceessarily equal in length), Four of these are drawn in Fig. 14. 14—
thatis,n =4 the first being [x1, x2] and the last, [x4, x5]. Since each of these represents
a change in x, we may refer to them as Axy, ..., Axy, respectively. Now, on the subinter-
vals let us construct four rectangular blocks such that the height of each block is equal
to the highest value of the function attained n that block (which happens to occur at
the left-side boundary ol each rectangle here). The first block thus has the height f(x)) and
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FIGURE 14.1
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the width Ax;, and, in general, the ith block has the height f(x;) and the width Ax;. The
total area 4* of this sel ol blocks ts the sum

A*=Y f(x) A5 (n=4inFigl4la)

This, though, is obvicusly not the area under the curve we seek, but only a very rough
approximation thereof,

What makes A* deviatc from the true value of A is the unshaded portion of the rectan-
gular blocks; these make A* an overestimate of A. If the unshaded portion can be shrunk
in size and be made to approach zero, however, the approximation value 4™ will corre-
spondingly approach the true value A. This result will materialize when we try a finer and
finer segmentation of the interval [a, &], so that » is increased and Ax; is shortened indefi-
nitely. Then the blocks will become more slender (if more numerous), and the protrusion
beyond the curve will diminish, as can be scen in Fig. 14.15. Carried (o the limit, this
“slenderizing” opcration yields

lim > ftr) Ax; = lim 4" = area 4 (14.7)
i=l

H—» (K 4o n=20
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provided this limit exists. (It does in the present case.) This cquation, indeed, constitutes the
formal definition of an area under a curve.

The summation cxpression in (14.7), Z f{x;) Ax;, bears a certain resembiance 1o the
h i=1
definite integral expression f /{x)dx. Indecd, the latter is based on the former. The

1)
replacement of Ax; by the differential dx is done in the same spirit as in our carlier discus-

sion of “approximation” in Scc. 8,1, Thus, we rewrite f(x;} Ax; into /(x) x. What about
H

the summation sign? The Z notation represents the sum of a finite number of terms, When
i=i
we let # — 00, and take the limit of that sum, the regular notation for such an operation is

h
rather cumbersome. Thus a simpler substitute is nceded. That substitute is ] . where the
7}

elongated S symbol also indicates a sum, and where « and » (just asi = T and &) serve to
specify the lower and upper limits of this sum. In short the definite integral is 4 shorthand
for the limit-of-a-sum expression in (14.7). That is,

Il

i

Jx)dx = lim 3" f(x;) Ax; = arca 4
T—= 00 j:]

Thus the said definite integral (referred to as a Riemana integral) now has an are¢ conno-
5

tation as well as a sum connotaiion, because / is the continupus counterpart of the
i
diserete coneept of Z
i=l|

In Fig. 14.1, we attempted to approximate area 4 by systematically reducing an over-
estumate 4™ by finer segmentation of the interval [a, b]. The resulting limit of the sum ol
block areas 1s called the upper integral-—an approximation from above, We could also have
approximated area A from below by forming rectangular blocks inscribed by the curve
rather than protruding beyond it (see Excrcise 14.3-3). The total area 4* of this new set of
blocks will underestimate 4, but as the segmentation of [¢, #] becomes finer and finer, we
shall again find lim A* = A. The last-cited limit of the sum of block arcas 1s called the

e

lower integral. If, and Only i, the upper tegral and lower integral are equal in value, then
the Riemann integral f f{x) dx is defined, and the function f(x) 1s said lo be Riemann

integrable. There exist theorems specifying the conditions under which a function f(x) is
integrable. According to the fundamental theorem of calculus, a function is integrable i
[, b] if it is continuous 1in that interval. As long as we arc working with continuous funce-
tions, therefore, we should have ne worries 1n this regard.

Another point may be noted. Although the area 4 in Fig. 14.1 happens to lic entircly
under a decreasing portion of the curve v = f(x), the conceptual equating of a defimite in-
tegral with an area is valid also for upward-sloping portions of the curve. In fact, both types

of slope may be present simultaneously; €.g., we can calculate f FixYydx as the area
0

under the curve in Fig. 14.1 above the ling (b,
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FIGURE 14.2
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Note that, if we calculate the area 8 in Fig. 14.2 by the defimite integral j flx)dx, the

answer will come out negative, because the height of cach rectangular block involved in
this area Is negative. This gives rise to the notion of a negative area, an arca that lies below
the ¥ axis and above a given curve. [n case we grc interested in the numerical rather than the

algebraic value of such an area, therefore, we should take the absolute value of the relevant
i

definite intcgral. The area C = | f{(x)}dx, on the other hand, has a positive sign even
:
though it lies in the ncgative region of the x axis; this is because cach rectangular block has

a positive height as well as a positive width when we are moving from ¢ (0 d. From this, the
implication is cleur that interchange of the two limits of integration would, by reversing the
direction of movement, alter the sign of Ax; and of the definite intcgtal. Applied to arca B,

Fig
we see that the definite integral ] F(x) dx (from b to &) will give the negative of the area
b

B; this will measure the numerical value of this arca.

Some Properties of Definite Integrals

The discussion in the preceding paragraph leads us to the following property of definite
integrals.

Property I The interchange of the limits of integration changes the sign of the definite

intcgral:
u fr

flx)de=— | fx)dx

b i

This can he proved as follows:

@ 3
J(xYdx = Fla) — F(b) = —[F(hy — Fla}] = — | f{x)dx
h

i

Delinite integrals also pessess some other interesting properties.

Property IT A definite integral has a value of zere when the (wo limits of integration are
identical:

faf(x) dx = Flu) — F(a) =
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Under the “arca” interpretation, this means that the area (under a curve) above any sin-
gle point in the domain is nil. This is as it should be, because on top of a peint on the x axis,
we can draw only 4 (one-dimensional) ine, never a (two-dimensional) area.

Property 111 A definite integral can be expressed as a sum of a finite number of definite
subintegrals as follows:

d b ¢ o
f fxyde= | flx)ds+ | flx)dx +[ flxyde (a<h<c<d)
a4 u b ¢

Only three subintegrals are shown in this equation, but the extension to the case of n
subintegrals is also valid. This property 1s sometimes described as the additivity property.

In terms of area, this means that the area (under the curve) lying above the interval [a, 4]
on the x axis can be obtained by summing the areas lying above the subintervals in the set
{la. B]. [b, c], [c.d]}. Note that, since we are dealing with closed intervals, the border
points » and ¢ have each been included in rwo areas. Ts this not double counting? It indeed
i3, But fortunately no damage 1s done, because by Property 1T the arca above a single point
s zero, so that the double counting produces no effect on the calculation. But, necdless to
say, the double counting of any inferval is never permitted.

Earlicr, it was mentioned that all continuous functions are Riemann integrable. Now, by
Property III, we can also find the definite integrals (areas) of certain discontinuous func-
tions. Consider the step function in Fig, 14,34, [n spite of the discontinuity at point & in the
interval [¢, ¢]. we can find the shaded arca from the sum

b ¢
f fxidx+ | f{x)dx
Irs I

The same also applies to the curve in Fig. 14.35.

h b
[ —fix)dx = —/ fi(x)dx

Property IV

Property V

/ iy de—k | o ds

e
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Property VI
h

iy h
[Fe) + glx)] dx :/ _f'(:c}d.r—l—f glx)ydx

i

Property V1I (integration by parts) Given u(x) and v{x),

ok y=h Xo—fr
[ vdu = up - f udv
Sx-u xod T

These last four properties, all borrowed from the rules of indefinite integration, should
require no further explanation.

Another Look at the Indefinite Integral
We introduced the definite integral by way of attaching two limits of integration to an
indefinite integral. Now that we know the meaning of the definite integral. let us sce how
we can revert from the latter to the indefinite integral.

Suppose that, instead of fixing the upper limit of intcgration at 4, we allow 1t 1o be a
variable, designated simply as x. Then the integral will take the lorm

fl_f'(:c} dy = F(x)— Fla)

which, now being a function of x, denotes a variahle arca under the curve of f{x). But
since the last term on the right is a constant, this integral must be a member of the (amily
of primitive functions of f(x ), which we denoted earlieras F(x) +¢. fwesete = —F{a).
then the above integral becomes exactly the indefinite integral f f(x) dx.

From this point of view, therefore, we may consider the { symbol to mean the same as

K
[ , provided it is understood that in the latter version of the symbol the lower limit of
i

integration is related to the constant of integration by the equation ¢ = —Fia).

EXERCISE 14.3

1. Evaluate the following:

3 1 4

(@) f —x% dx () f (x* — 6x%) dx
1 2 2
1 1

(B f xEr6ydx (@ [ (ox + bx + ¢) dx
0 -1
+3 2 1

c)j 1% dx (f)/ xz(—x3+1)dx
1 4 3

2. Evaluate the following:

W2

(a)j e dx (c)f e + ¢%)

()j”xTZ (d)l (E+ x)dx
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3. In Fig. 14.1q, take the fowest value of the function attained in each subinterval as the
height of the rectangular block, i.e., take f(x;} instead of f(x1) as the height of the first
block, though still retaining Axy as its width, and do likewise for the other blocks.

(@) Write a summation expression for the total area A** of the new rectangles.

(b) Does A* overestimate or underestimate the desired area A?

() Would A** tend to approach or to deviate further from A if a finer segmentation of
fa, b] were introduced? (Hint: Try a diagram.)

(d) In the limit, when the number 7 of subintervals approaches oo, would the approxi-
mation value A** approach the true value A, just as the approximation value A* did?

(e} What can you conclude from (g) to (d) about the Riemann integrability of the
function f(x) in Fig. 14.1a?

4. The definite integral f f{x) dx is said to represent an area under a curve, Does this
4]

curve refer to the graph of the integrand f(x), or of the primitive function £ (x)? If we
plot the graph of the F(x} function, how can we show the given definite integral on
it—by an area, a line segment, or.a point?

5. Verify that a canstant ¢ can be equivalently expressed as a definite integral:

b r
(a)cEfU 7 dx (b).c:_afﬁ 1 dt

14.4 Improper Integrals

Certain integrals are said to be “improper.” We shall briefly discuss two varieties thereol.

Infinite Limits of Integration
When we have definile integrals of the form

x 5
f f{x)dx  and f F(x) dx

with ong limit of integration being infinite, we refer wo them as improper integrals. In these
cases, it is not possible to evaluate the integrals as, respectively,

Flooy — F(a) and Fib) — F(—o0)

because o0 1s not a number, and therefore it cannot be substituted for x in the function
F{x). Instead, we musl resort once more to the concept of limits.

The first improper integral we cited can be defined to be the limit of another (proper)
imtegral as the latter’s upper limit of integration tends to oo, that is,

f{x)dr_ hmf Fix)ydx (14.8)

a b

If this limit exists, the improper integral is satd to be convergent {or to converge), and the
limiting process will yield the value of the integral. Hf the limit does not exist, the improper
integral is said to be divergent and is in fact meaningless, By the same token, we can define

] f(x)ydv = lim f f(x) dx (14.8")

with the same criterion of convergence and dwcrgcnuc.
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Example 1

Example 2

FIGURE 14.4

= dx
Evaluate i First we note that
1
b

ba’x_—?}
T b

"

Hence, in line with (14.8), the desired integral is

T im fbd"— lim _—1+1)-1
1 Xz_b—r'x; 1 ;_b—fﬂ b o

This improper integral does converge, and it has a value of 1.
Since the limit expression is cumbersome to write, same people prefer to omit the “lim”
notation and write simply

/' d":i} —0+1=1
1

2
X x

Even when written in this form, however, the improper integral should nevertheless be
interpreted with the limit concept in mind.

Graphically, this improper integral still has the connotation of an area. But since the
upper limit of integration is allowed to take on increasingly larger values in this case,
the right-side boundary must be extended eastward indefinitely, as shown in Fig. 14.4a.
Despite this, we are able to consider the area to have the definite {limit) value of 1.

* dx __
Evaluate f — . As before, we first find
1 X

b b
f d”lenx] —lnb—In1=Inb
1 1

X

When we let b— oc, by (10.16") we have Inb — 0. Thus the given improper integral is
divergent.

Figure 14.4b shows the graph of the function 1/x, as welt as the area corresponding to
the given integral. The indefinite eastward extension of the right-side boundary will resuft
this time in an infinite area, even though the shape of the graph displays a superficial
similarity to that of Fig. 14.4a.

J) )

0 1 f—— - —- x e l h— — &

{a) (b




Example 3

Example 4

Chapter 14 Econonic Dynartics and infegral Coleuivs 463

What if both limits of integration are infinite? A direct extension of (14.8) and (14.8)
would suggest the definition

o A
] flx)dx = lim j F(x) dx (14.8")

=

Again, this improper integral is said to converge if and only if the limit in question exists.

Infinite Integrand

Even with fimite limits of integration, an integral can still be improper if the integrand be-
comes infinite somewhere in the interval of integration [a, #]. To evaluate such an integral.
we must again r¢ly upon the concept of a timit,

1

1

Evaluatef 5 dx. This integral s improper because, as Fig. 14.4b shows, the integrand is
0

infinite at the lower limit of integration (1/x — oc as x — 07). Therefore we should first
find the integral

1 1
fldlenx} =il-Ing=-mhg [fora>0]
o

X Q
and then evaluate its limitas g — 0°;

1'] 'I'l
—dx = Iim[ —dx=Ilim{- Ina)
0 X a—0' J, X -0t

Since this limit does not exist (as @ — 0%, Inu — —o0), the given integral is divergent.

g
Evaluate[ x Y2 dx_When x — 01, the integrand 1/./x becomes infinite; the integral is
0

improper. Again, we can first find

a q
/ X112 dx=2x”'2} =6-2Ja
Q T
The limit of this expression as @ — 0% is 6 — 0 = 6, Thus the given integral is corvergent
(to 6).

The situation where the integrand becomes infinite at the upper limit of integration 1s
perfectly similar. 1t is an altogether different proposition, however, when an infinite valuc
of the integrand occurs in the open interval (a, b) rather than at a or b. In this eventuality,
it is necessary to take advantage of the additivity of definite integrals and first decomposc
the given integral into subintegrals. Assumc that f{x) — oo as x — p, where p is a poinl
in the interval (a, #); then, by the additivity property, we have

[ iy de = f " foeydn +

The given tegral on the left can be considered as convergent if and only if each subinte-
gral has a limit.

f
f(x) dx

£
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1

1 o
Evaluate j i dx. The integrand tends to infinity when x approaches zero; thus we must

1.

Example 5 »
write the given integral as the sum
1 0 1
f X 3::M:f x~3 dx#f 3 dx sy, =h+ 1)
-1 -1 0
The integral /; is divergent, because
limn bx3dx l 1.2 I'm( ! +1
= —_— = 1 . — —_ e
bLo- /.1 bL”S i 1 b=0 252 2) &
Thus, we can conclude immediately, without having to evaluate {5, that the given integral
is divergent,
EXERCISE 14.4

Check the definite integrals given in Exercises 14.3-1 and 14.3-2 to determine whether
any of them is improper. if improper, indicate which variety of improper integral each
one is.

. Which of the following intearals are improper, and why?
i 0
@ f o7 dt (d) f o di
0 -
i 5 dx
4 d T
(b) fz x* dx (e) ﬂ 3
1 4
© [ 23 dx () f 6dx
Jo -3
. Evaluate all the improper integrals in Prob, 2.

. Evaluate the integral /, of Example 5, and show that it is also divergent,
. {a) Graph the function y = ce™t for nonnegative t, {c > 0}, and shade the area under

the curve,

(b} Write a mathematical expression for this area, and determine whether it is a finite
area.

14.5 Some Economic Applications of Integrals

Integrals are used in economic analysis in various ways. We shall iilustrate a few simple
applications in the present section and then show the application to the Domar growih
model in Sec. 14.6.

From a Marginal Function to a Total Function

Given a total function (c.g., a total-cost function), the process ol differentzation can yield
the marginal function (e.g., the marginal-cost function). Because the process of integration
is the opposite of differentiation, it should enable us, conversely, to infer the total function
from a given marginal function.
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If the marginal cost (MC) of a firm is the following function of output, C'(Q) = 2629, and
if the fixed cost is Cr =90, find the total-cost function C(Q). By integrating C'(Q) with
respect to Q, we find that

1
fze"-m dQ =256 +c=10820 4 ¢ (14.9)

This result may be taken as the desired C(Q) function except that, in view of the arbitrary
constant ¢, the answer appears indeterminate. Fortunately, the information that C; = 90
can be used as an initial condition to definitize the constant. When @ =0, total cost C
will consist solely of Cr. Setting Q =0 in the result of (14.9), therefore, we should get a
value of 90; that is, 10e® + ¢ = 90. But this woulid imply that c = 90 — 10 = 80. Hence, the
total-cost function is

Q) =102 1+ 80

Note that, unlike the case of (14.2), where the arbitrary constant ¢ has the same value as
the initial value of the variable H{0), in the present example we have ¢ =80 but
C(0) = C; = 90, so that the two take different values. in general, it should not be assumed
that the arbitrary constant ¢ will always be equal to the initial value of the total function.

If the marginal propensity to save (MPS) is the following function of income, $'(¥)=
0.3 - 0.1¥~12, and if the aggregate savings § is nil when income Y is 871, find the saving
function S(¥}). As the MPS is the derivative of the § function, the prablem now calls for the
integration of $'(Y):

500 = 0301112y dr 037 0277 4

The specific value of the constant ¢ can be found from the fact that § =0 when ¥ = 81.
Even though, strictly speaking, this is not an initiaf condition (not relating to Y = 0), substi-
tution of this information into the preceding integral will nevertheless serve to definitize ¢,
Since

0=03(81)-02(9+¢c = c=-225
the desired saving function is
S(Y)=0.3y —02Y'"2 225

The technique illustrated in Examples 1 and 2 can be extended directly 1o other prob-
lems involving the search for total functions (such as total revenue, total consumption)
from given marginal functions. It may also be reiterated that in problems of this type the va-
lidity of the answer (an integral) can always be checked by differentiation.

Investment and Capital Formation

Capital formation is the process of adding to a given stock of capital. Regarding this
process as continuous over time, we may cxpress capital stock as a function of time, K (1),
and use the derivative ¢ K /¢/7 to denole the raic of capital formation.” But the rate of capital

P As a matter of notation, the derivative of a variable with respect to time often is also dencted by a
dat placed over the variable, such as K = dK/dt. In dynamic analysis, where derivatives with respect
to time occur in abundance, this more concise symbol can contribute substantially to notational
simplicity. However, a dot, being such a tiny mark, is easily lost sight of or misplaced; thus, great care
is required in using this symbal.
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Example 3

formation at time £ is identical with the rate of et imvestment flow al timg ¢, denoted by
(). Thus, capital stock K and net investment / are related by the following two equations:

dK
—d-;EffI‘]
and K(r):ji(z)dr:f%dr:/dK

The first of the preceding equations 1s an identity; it shows the synonymity between net
investment and the increment of capital. Since /() is the derivative of £(f), it stands to
reason that K(z) is the integral or antiderivative of 7(¢), as shown in the second equation.
The transformation of the integrand in the latter equation is also easy to comprehend: The
switch from f to d K /dt is by definition, and the next transformation 1s by cancellation of
two identical differcntials, i.c., by the substitution rule.

Sometimes the concept of gross imvestment is used together with that of net investment
in a model. Denoting gross investment by 7, and net investment by /, we can relate them to
each other by the equation.

I=1+3K

where § represents the rate of depreciation of capital and 8K, the rate of replacement
nvestment.

Suppose that the net investment flow is described by the equation {(£) = 3t'/2 and that the
initial capital stock, at time t = 0, is K (0). What is the time path of capital K7 By integrating
1ty with respect to f, we obtain

Kt = ] () dt = f 38 gt =287 1 ¢

Next, letting t = 0 in the leftmost and rightmast expressions, we find K (Q) = ¢. Therefore,
the time path of Kis

K(t) = 2632 4 K (0) (14.10)
Observe the basic similarity between the results in (14.10) and in (14.2°).

The concept of definitc integral enters into the picture when one desires to find the
amount of capital formation during some interval of time (rather than the time path of K).
Since (1) di = K(t), we may write the definitc integral

b b
f (1) dr = K(r}] = K(b) — K(a}
a a
to indicate the total capital accumulation during the time intetval [, 5]. Of course, this also
represents an area under the 1(#) curve. It should be noted, however, that in the graph of the
K{t) function, this definite integral would appear instead as a vertical distance—more
specifically, as the difference between the two vertical distances K(h) and K(a). (cf. Exer-
cise 14,3-4.)

To appreciate this distinction between X(¢) and /(¢) more fully, let us cmphasize that
capital X is a stock concept, whereas investment / is a flow coneept. Accordingly, while
K (1) tells us the amount of K cxisting at each point of time, /(¢) gives us the information
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about the rate of (net) investment per year (or per period of time) which is prevailing at
each point of time. Thus, in order to calculate the amount of net investment undertaken
(capital accumulation), we must first specify the length of the interval involved. This fact
can also be seen when we rewrite the identity K /dt = I{t) as d K = 1{t) dt, which states
that /K, the increment in K, is based not only on /{¢), the ratc of flow, but also on 4, the
time that elapsed. It 1s this need to specify the time interval in the expression [(¢) df that
brings the definite integral into the picture, and gives rise to the area representation under
the /(f)—as against the K{f) curve.

if net investment is a constant flow at /() = 1,000 (doilars per year), what will be the total
net investrnent (capital formation) during a year, from t = 0 to t = 17 Obviously, the answer
is $1,000; this can be obtained formally as follows:
1 1 1
f 1(f) dt = ] 1,000t = 1,000:] — 1,000

0 0 0
You can verify that the same answer will emerge if, instead, the year involved 1s from t = 1
tot=2.

f 1{t) = 3t"% (thousands of dollars per year)—a noncenstant flow—what will be the capi-
tal formation during the time interval [1, 4], that is, during the second, third, and fourth
years? The answer lies in the definite integral

4 . 4
f 34142 dt:Zt“] =16-2=14
1 1

On the basis of the preceding examples, we may express the amount of capital accumu-
lation during the time interval [0, t], for any investment rate {{t), by the definite integral
i

fr;‘(f) dt = K(t)] = K(t) - K{0)
0

O

Figure 14.5 illustrates the case of the time interval [0, to]. Viewed differently, the preceding
equation yields the following expression for the time path K (1):

.t
k(D) = K(0)+]U (o) dt

The amount of K at any time ¢ is the initial capital plus the total capital accumulation that
has occurred since.

{

{=1n

f n“j(:) dt = Kigp) ~ K@)

e T S

2
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Present Value of a Cash Flow
Qur earlier discussion of discounting and present value, limited to the casc of a single
future value ¥, led us to the discounting formulas

A=V +i) " [discrere case]

and A=Ve™ [continuous case]

Now suppose that we have a stream or flow of future values—a serics of revenues receiv-
able at various times or of cost outlays payable at various times, How do we compute the
present value of the entire cash stream, or cash fow?

In the discrete case, if we assume three future revenue figures R, (¢ = 1, 2, 3) available
at the end of the tth year and also assume an interest rate of / per annum, the present values
of R, will be, respectively,

RO+ R(i+i)?  RB+n™?

It follows that the total present value is the sum

3

=Y R(l+~ (14.11)

1=1

(T is the uppercase Greek letter p1, here signifying present.) This differs from the single-
value formula only in the replacement of ¥ by R, and in the insertion of the Z sign.

The idea of the sum readily catries over to the casc of a continuous cash flow, but in the
latter contex! the T symbol must give way, of course, to the definite integral sign, Consider
4 continuous revenue stream at the rate of R(¢) dollars per year. This means that at + = ¢
the rate of flow is R(#) dollars per year, but at another point of time ¢ = ¢, the rate will
be R(1:) dollars per year—with ¢ taken as a continuous variable. At any pomt of time,
the amount of revenue during the interval [1, # + dt] can be written as R(7) dt [cf. the
previous discussion of dK = I{f) d]. When continuously discounted at the rate of  per
year, its present value should be R{r)e "' dt. If we let our problem be that of finding the
total present value of a 3-year stream, our answer is to be found in the follewing definite
integral:

3
n:fnmf%n (14.11")
0

This expression, the continuous version of the sum in (14.11), differs from the single-value

formula only in the replacement of ¥ by R(r} and in the appending of the definite integral

sign.

"It may be noted that, whereas the upper summation index and the upper limit of integration are
identical at 3, the lower summation index 1 differs from the lower limit of integration 0. This is
because the first revenue in the discrete stream, by assumption, will not be forthcoming until ¢t = 1
tend of first year), but the revenue flow in the continuous case is assurned to commence immediately
after t = 0.
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What is the present value of a continuous revenue flow lasting for y years at the constant
rate of D dollars per year and discounted at the rate of r per year? According to {14.11%), we

have
y y _1 ¥
l'[:f pDe! dt:Df e‘”dt:D[—-e‘”]
0 0 r )

_ t=y _
iy ”} - TD(e-W—n: ?(1 ey (1412)

r 1-0
Thus, TT depends on D, r and y. If & = §3,000, r = 0.06, and y = 2, for instance, we have
3,000
- 0.06

The value of T naturally is always positive; this follows from the positivity of D and r, as well
as (1 —e™"¥). (The number e raised to any negative power will always give a positive frac-
tional value, as can be seen from the second quadrant of Fig. 10.3a.)

m (1 — e %12y = 50,000(1 — 0.8869) = $5,655  [approximately]

In the wine-storage problem of Sec. 10.6, we assumed zero storage cost. That simplifying
assumption was necessitated by our ignorance of a way to compute the present value of a
cost flow. With this ignorance behind us, we are now ready to permil the wine dealer to
incur starage costs.

Let the purchase cost of the case of wine be an amount , incurred at the present time.
Its (future) sale value, which varies with time, may be generally denoted as V{(£)—its present
value being V{t)e . Whereas the sale value represents a single future value (there can be
only one sale transaction on this case of wine), the storage cost is a stream. Assuming this
cost to be a constant stream at the rate of s dollars per year, the total present value of the
storage cost incurred in a total of f years will amount to

t
f se” T dt = §(1 —e Yy (. (34.12)]
0
Thus the net present value—what the dealer would seek to maximize—can be expressed as
ri s —rt 5 —l 5
- —2(1-e™-C= Z -—-
N(D) = V{de - (1 - - C [V(t)—l—r}e - ¢

which is an objective function in a single choice variable ¢,
To maximize N({), the value of t must be chosen such that N°(¢) = Q. This first derivative is

N =V (e ™ —r [V(t) + ;] e’ [product rule]
=WV —rv(t)—sle "
and it will be zero if and only if
Vii=rV{t)+s

Thus, this last equation may be taken as the necessary optimization condition for the choice
of the time of sale t*.

The economic interpretation of this condition appeals easily to intuitive reasoning: V'(£)
represents the rate of change of the sale value, or the increment in V, if sale is postponed for
a year, while the two terms on the right indicate, respectively, the increments in the interest
cost and the storage cost entailed by such a postponement of sale (revenue and cost are
both reckoned at time £*). So, the idea of the equating of the twao sides is to us just some “old
wine in a new bottle,” for it is nothing but the same MC = MR condition in a different guise!
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Example 8

Present Value of a Perpetual Flow

If a cash flow were to persist forever—a situation exemplified by the intercst from a per-
petual bond or the revenue from an indestructible capital asset such as land -the present
value of the flow would be

(¥
1 :f Ri{e™" di
]

which is an improper integral.

Find the present value of a perpetual income stream flowing at the uniform rate of D dol-
lars per year, if the continuous rate of discount is r. Since, in evaluating an improper inte-
gral, we simply take the limit of a proper integral, the result in (14.12) can still be of help.
Specitically, we can wnte

= . ¥ . D I
M= [ De " dt = lim [ De™dt=lim —{1—e )= -—
Ja y==.to o f r
Note that the y parameter (number of years) has disappeared from the final answer. This
is as it should be, for here we are dealing with a perpetual flow. You may also observe that
our result (present value = rate of revenue flow -+ rate of discount) corresponds precisely to
the familiar formula for the so-called capitalization of an asset with a perpetual yield.

EXERCISE 14.5

1. Given the following marginal-revenue functions:
() R(Q) = 28Q~€™ () R(Q) =100+ Q)
find in each case the total-revenue function R(Q). What initial condition can you
introduce to definitize the constant of integration?
2. {g) Given the marginal propensity to import M'(Y) =0.1 and the information that
M = 20 when ¥ = 0, find the import function M(Y).
(b) Given the marginal propensity to consume C'(Y)=08+0.1Y""2 and the
information that C = ¥ when Y = 100, find the consumption function C(Y).
3. Assume that the rate of investment is described by the function /() = 12t"/? and that
K(0y = 25:
{@) Find the time path of capital stock K.
(b) Find the amount of capital accurnulation during the time intervals [0, 1] and [1, 3],
respectively.
4, Given a contindous income stream at the constant rate of 31,000 per year:

(g} What will be the present value IT if the income stream lasts for 2 years and the
continuous discount rate is 0.05 per year?

(b) What wilt be the present value IT if the income stream terminates after exactly
3 years and the discount rate is 0.047

5. What is the present value of a perpetual cash flow of:
(0} $1,450 per year, discounted at r = 5%?7
(0 $2,460 per year, discounted at 7 = §%?
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14.6 Domar Growth Model

In the population-growth problem of (14.1) and (14.2) and the capital-formation problem
of' (14.10), thc common objective is to delineate a time path on the basis of some given pat-
tern of change of a variable. In the classic growth model of Professor Domar." on the other
hand, the idea is to stipulate the type of time path required to prevail if a certain equilibrium
condition of the economy is to be satisfied.

The Framework
The basic premises of the Domar model are as follows:

1. Any change in the rate of investment flow per year J(z) will produce a dual effect: it will
affect the aggregate demand as well as the productive capacity of the econony.

2. The demand cffect of a change in /(4) operates through the multiplier process, assumed
to work instantancously. Thus an increase m /() will raise the rate of income flow per
year Y (¢} by a multiple of the increment in /(). The multiplier is £ = 1 /s, where s
stands for the given (constant) marginal propensity to save. On the assumption that 7{t)
15 the only {parametric) expenditure flow that influences the rate of income flow, we can
then state that

dY dl
di dt s (14.13)

3, The capacity effect of investment is to be measured by the change in the rate of posen-
tiel output the economy is capable of producing. Assuming a constant capacity-capital
ratio, we can write

K

K

P (= a constant)

where « (the Greek letler kappa) stands for capacity or potential output flow per year,
and p (the Greek letter tho) denotes the given capacity-capital ratio. This implies, of
course, that with a capital stock X (1) the economy is potentially capable of producing
an annual product, or income, amounting to ¥ = pK dollars. Note that, from & = pK
(the production function), it follows that dic = p dK, and

dic dK
i =pf (14.14)

In Domar’s model, equilibrium is defined to be a situation in which productive capacity
is fully utilized. To have ¢quilibrium is, therefore, to require the aggregate demand to be
exactly equal to the potential output producible in a year; that1s, ¥ = «, [f we start initially
from an equilibrium situation, however, the requirement will reduce to the balancing of the
respective changes in capacity and in aggregate demand; that is,

d}’_a'f(

P A5
dt dt (14.15)

" Evsey D. Domar, “Capital Expansion, Rate of Growth, and Employment,” Feonometrica, April 1946,
pp. 137-147; reprinted in Domar, £ssays in the Theory of Economic Growth, Oxford University Press,
Fair Lawn, N.|., 1957, pp. 70-82.
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What kind of time path of investment /(#) can satisty this equilibrium condition at all
times?

Finding the Solution
To answer this question, we first substitute (14.13) and (14.14} into the equilibrium condi-
tion (14.15). The result is the following differcntial equation:

dar 1 1 di
— - =pl or - — =
I dt

5 1416
dt s pe ( )

Since (14.16) specifies a definite pattern of change for 7, we should be able to find the equi-
libriym (or required) investment path from it.

In this simple casc, the solution is obtainable by dircetly integrating both sides of the
second equation in (14.16) with respect to 7. The fact that the two sides arc identical in equi-
librium assures the cquality of their intcgrals. Thus,

By the substitution rule and the log rule, the left side gives us
di
T=1n|1’|+c| (f#0)
whereas the right side yields (s being a constant)

[,os dt = pst+ o

Equating the two results and combining the two constants, we have
In |f|=pst+¢ (1417}

To obtain | /| from In |7}, we perform an operation known as “raking the antilog of In | 7],
which utilizes the fact that ™ = x. Thus, leiting cach side of {14.17) become the exponent
of the constant e, we obtain

e|n|}'| — plost lc)
or |T| = emle" = A" where A = ¢

If we take investment to be positive, then /| = /, so that the preceding result becomes
1(t) = Ae™! where A is arbitrary. To get rid of this arbitrary constant, we set { = 0 in the
equation I(t) = Ae” toget 1{0) = 4 ¢ = 4. This definitizcs the constant A, and enables
us to express the solution— the required invcstment path—as

(1) = T{0)e™ (14.18)

where 1(0) denotes the initial rate of investment.”
This result has a disquieting economic meaning, In order to maintain the balance
between capacity and demand over time, the rate of investment flow must grow preciscly

t The solution {14.18) will remain valid even if we let investment be negative in the result || = Al
See Exercise 14.6-3.
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at the exponential rate of ps, along a path such as illustrated i Fig. 14,6, Obvicusly, the
larger the capacily-capital ratio or the marginal propensity (o save, the larger the required
rate of growth will be. But at any rate, once the values of p and s are known, the required
growth path of investment becomes very rigidly set.

The Razor’s Edge

[t now becomes relevant to ask what will happen if the actual rate of growth of investment—
call that rate r—differs from the required ratc ps.
Domar’s approach is to define a coefficient of utilization

Y
U = lim ﬁ

[ = 1 means full utilization of capacity]
=i j{(j)

and show that ¥ = »/ps, so that u z I asr % ps. In other words, if there 13 a discrepancy
between the actual and required rates (r # ps), we will find in the end {as ¢ — oc) cither
a shortage of capacity (¢ > 1) or a surplus of capacity (u < 1), depending on whether r is
grcater or less than ps.

We can show, however, that the conclusion about capacity shortage and surplus really
applics at any time £, not only as # — o0. For a given growth rate » implies that

. di
I =1{0e"  and E=m'(0)e“’
[/
Therefore, by (14.13) and (14.14), we have

day vdi oy
aZsa =
dic vt
== pl{t) = pl{0)e
The ratio between thesc two derivatives,
dYjdt  r
dicjdt ~ ps

should tell us the relative magnitudes of the demand-creating effect and the capacity-
generating effect of investment at any time ¢, under the actual growth rate of r. If r (the
actual rate) exceeds ps (the required ratc), then dY/dt > dic/dt, and the demand cffect
will outstrip the capacity effect, causing a shortage of capacity. Conversely, if » < ps, there
will be a deficiency in aggregaie demand and, hence, a surplus of capacity.
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The curious thing about this conclusion is that if investment actually grows at a faster
rate than required (r = ps), the end result will be a shoriage rather than a surplus of
capacity. It is cqually curious that if the actual growth of investment lags behind the
required rate (r < py), we will encounter a capacity surplus rather than a shortage. Indeed,
because of such paradoxical results, if we now altow the entrepreneurs 1o adjust the actual
growth rate r (hitherto taken to be a constant) according to the prevailing capacity situation,
they will most certainly make the “wrong™ kind of adjustment. In the case of r > ps, for
instance, the emergent capacity shortage will motivate an even faster rate of investment.
But this would mean an increasc in r, instead of the reduction called for under the circum-
stances. Consequently, the discrepancy between the two rates of growth would be 1ntensi-
fied rather than reduced.

The upshot is that, given the parametric constants o and s, the only way to avoid both
shortage and surplus of productive capacity is to guide the investment flow ever so care-
fully along the equilibrium path with a growth rate »* = ps. And, as we have shown,
any deviation {rom such a “razor’s edge” time path will bring about a persisteat failure to
satisfy the norm of full utilization which Domar envisaged tn this model. This 15 perhaps
not too cheerful a prospect 1o contemplate. Fortunately, more flexible resulis become pos-
sible when certain assumptions of the Domar model are modificd, as we shall see from the
growth model of Professor Selow, to be discussed in Chap, 15.

EXERCISE 14.6

1. How many factors of production are explicitly considered in the Damar model? What
does this fact imply with regard to the capital-labor ratio in production?

2. We learned in Sec. 10.2 that the constant rin the exponential function Ae'* represents
the rate of growth of the functicn. Apply this to (14.16), and deduce (14.18) without
going through integration.

3. Show that even if we let investment be negative in the equation |f| = Ae”', upon
definitizing the arbitrary constant A we will still end up with the solution (14.18).

4. Show that the result in (14.18) can be obtained alternatively by finding—and
equating—the definite integrals of both sides of {14.16),

1 di
Idt
with respect to the variable t, with fimits of integration t = 0 and t = {. Remember that
when we change the variable of integration from ¢ o /, the limits of integration will
change from t = 0 and t = t, respectively, to { = /(0} and } = I{{},

ps



