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polynomial equation {17 = 3}, we nced to examine the signs of the first sirec determinants
listed in the Routh theorem: {or that purpose, we should set ¢y = as = 0.

The relevance of this theorem 1o the convergence problem should become self-evident
when we recall that, in order for the time path v(7) to converge regardless of what the ini-
tial conditions happen to be, all the characteristic roots of the differential equation must
have negative real parts. Since the characteristic equation ( 16.51°) is an ath-degree polyno-
mial equation, with ¢ = 1, the Routh theorem can be of dircet help in the testing of con-
vergence. In fact, we note that the coeflicients of the characteristic equation {16.517) are
wholly identical with those of the given differenual equation (16.513, so it is perfectly
acceptable to subsutute the coeflicients of {16.51) directly into the sequence of determi-
nants shown in the Routh theorem for testing, provided that we always take wy = I
Inasmuch as the condition cited in the theorem is given on the “if and only if™ basis. it
obviously constitutes a neeessary-and-sufficient condition.

Test by the Routh theorem whether the differential equation of Example 1 has a convergent
time path. This equation is of the fourth order, so n = 4. The coefficientare g = 1, & = 6,
o =14, a3 = 16, a3 = 8, and a5 = 65 = a7 = 0. Substituting these into the first four deter-
minants, we find their values to be 6, 68, 800, and 6,400, respectively. Because they are all
positive, we can conclude that the time path is convergent.

EXERCISE 16.7

t. Find the particular integral of each of the following:
@ y"O+2y"@Q+yO+2y=8
) y" @+ y" 0 +3y (=1
{0 3y"O+9y" (=1
() YOO +y () =4
2. Find the y, and the y. (and hence the general solution) of:
(@ y"O-2y" -y +2y=4
[Hint:r® - 202 - r 4 2=(r = ){r + 1){r — 2)]
& v+ 7y" () + 15y (Hh+9y =0
[Hint: r* + 7r2 4157 9 = (r = 1)(r? 467 4 D]
(@ y (0 +6y() +10y' () -8y =8
[Hint: r* +6r? +10r + 8 = (r — 4){r? + 2r + 2)]
3. On the basis of the signs of the characteristic roots obtained in Prob. 2, analyze the
dynamic stability of equiltbrium. Then check your answer by the Routh theorem.

4. Without finding their characteristic roots, determine whether the following differential

equations will give rise to convergent time paths:
(@ y" (6 - 10y (5 + 27y’ (t) - 18y =3
(B) y"() = 11y"(t) + 34y'(t) + 24y = 5
@ y () +4y"() - 5y'(th - 2y = -2
5. Deduce from the Routh theorem that, for the second-order linear differential equation

y"() + a1y'(t) + ;my = b, the solution path will be convergent regardless of initial con-
ditions if and only if the coefficients oy and @, are both positive,
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17.1

Discrete Time: First-Order
Difference Equations

In the continuous-time context, the pattern of change of a variable y 1s embodied in the
derivatives v'(1), 3 "(£). ete. The time change involved in these 1s occurring continuously.
When time is, instead, taken to be a discrefe variable, so that the variable £ 15 allowed to take
integer values only, the concept of the derivative obviously will no longer be appropriate.
Then, as we shall see, the pattern of change of the variable y must be described hy so-called
differences, rather than by derivatives or differentials, of y(f). Accordingly, the tcchnigues
of differential equations will give way to those of difference equations.

When we are dealing with discrete time, the value of variable y will change only when
the variable ¢ changes from one inleger value to the next, such as from (=110 ¢ =2,
Meanwhile, nothing is supposed (o happen (o p. In this light, it becomes more convenient
to interpret the values of ¢ as referring to periods—rather than points—of time, withf = |
denoting period 1 and ¢ = 2 denoting period 2. and so forth. Then we may simply regard y
as having one unique value in cach time period. In view of this interpretation, the discrete-
time version of ¢cconomic dynamics is often referred 1o as period analysis. It should be
emphasized, however, that “period” is being used here not in the calendar sense but in the
analytical sensc. [lence, a period may involve one extent of calendar time in a particular
ceonomic model, but an aliogether different one in another. Even in the same model, more-
over, each successive period should not necessarily be construed as meaning equal calen-
dar time. In the analytical sense, a period is merely a length of time (hat elapses before the
variable v undergoes a change.

Discrete Time, Differences, and Difference Equations

544

The change from continuous time to discrete time produces no cffect on the fundamental
nature of dynamic analysis, although the formulation of the problem must be altered. Basi-
cally, our dynamic problem is still to find a time path from some given pattern of change of
a variable y over time. But the pattern of change should now be represented by the differ-
ence quolient Av/Af, which is the discrete-time counterpart of the derivative dy/dr.
Recall, however, that  can now take only intcger values; thus, when we are comparing the
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values of y in two consceutive periods, we must have A7 = 1. For this reason, the difference
quoticnt Ay/Ar can be simplified to the expression Ay; this is called the first difference
of y. The symbol A, meaning difference, can accordingly be interpreted as a dircetive to
take the first difference of (), As such, it constitutes the discrete-time countcrpart of the
operator symbol d /dt.

The expression Ay can take various values, of course, depending on which two consce-
utive time periods are involved in the difference-taking {or “differencing”). To avoid ambi-
guity, let us add a time subscript to y and define the first difference more specifically, as
follows:

Aye = e — J (17.1)

where v, means the value of v in the rth period, and v,.; is its value in the period immedi-
ately following the tth period. With this symbelogy, we may describe the pattern of change
of v by an equation such ag

Ay, =2 (17.2)
or
A}'I{ = _U'I.y{ (17.3)

Equations of this type are called difference equations. Note the striking resemblance
between the last two equations, on the one hand, and the differential equations dy/dt = 2
and dv/dt = —0.1y on the other.

Even though difference equations derive their name from difference expressions such as
Ay,, there are alternate equivalent forms of such equations which are completely frec of A
expressions and which are more convenient to use. By virtue of (17.1), we can rewrite
(17.2}) as

Yip) — ye =2 (17.2)
or
Vepr =y +2 (17.2")
For {17.3}, the corresponding alternate cquivalent forms are
Yoy — 0.9y, = 0 (17.3)
or
s1 = 0.9y, (17.3")
The double-pnme-numbered versions will prove convenient when we are calculating a
y value from a known y value of the preceding period. In later discussions, however, we
shall employ mostly the single-prime-numbered versions, i.e., those of (17.2') and (17.3").
It 1s important to note that the choice of time subscripts in a difference equation is some-
what arbitrary. For instance, without any change in meaning, (17.27) can be rewritten as

vy — ¥ 1 = 2, where (f — 1) relers to the period which immediately precedes the /th. Or,
we may express it equivalently as v — v = 2.
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Also, it may be pointed out that, although we have consistently used subscripted y sym-
bols, it is also acceptable to use ¥(z), y(r + 1), and (¢ — 1) in their stead. In order to avoid
using the notation v(z) for both continuous-time and discrete-time cases, however, we
shall, it the discussion of period analysis, adhere to the subscript device.

Analogous to differential equations, diflerence equations can be either linear or nonlin-
ear, homogencous or nonhomogeneous, and of the first or second {or higher) orders. Take
(17.2") for instance. It can be lassitied as: (1) linear, for no y term (of any period) is raised
to the sceond (or higher) power or is multiplied by a y term of another period; (2) nonho-
mogeneous, since the right-hand side (where there is no p termy) is nonzero; and (3) of the
first order, because therc cxists only a first difference Ay, involving a one-period time lag
only. (In contrast, a sccond-crder difference ¢quation, to be discussed in Chap. 18, involves
a two-period lag and thus cntails three y terms: y,4o, vip1, a8 well as y,.)

Actually, (17.2'} can also be characterized as having constant cocfficients and a constant
term (= 2). Since the constant-coefficient case is the only one we shall consider, this char-
acterization will henceforth be implicitly assumed. Throughout the present chapter, the
constant-term featurc wili also be retained, although a method of decaling with the variable-
term case will be discussed in Chap, 18.

Check that the cquation {17.3') is also linear and of the first order; but unlike (17.2°), il
18 homogengous.

17.2 Solving a First-Order Difference Equation

[n solving a differential equation, our objcctive was to find a time path y{(f). As we know,
such a time path is a function of time which is totally free from any derivative (or differen-
tial) expressions and which is perfectly consistent with the given differential equation as
well as with its initial conditions. The time path we seek from a difference equation is sim-
ilar in nature. Again, it should be a function of +—a formula defining the values of y m
every time period—which is consistent with the given difference cquation as well as with
its initial conditions. Besides, it must not contain any difference cxpressions such as Ay,
(or expressions hke v, — 3.

Solving differential equations is, in the [inal analysis, a matter ol integration. How do we
solve a difference equation”?

lterative Method

Belore developing a general method of attack, let us first explain a relatively pedestrian
method, the iferative method—which, though crude, will prove immensely revealing of the
essential nature of 4 so-called solution.

In this chapter we are concerned only with the first-order case; thus the difference equa-
tion describes the pattern of change of y between fwo consecutive periods only. Once such
a pattern is specificd, such as by {17.2"), and once we are given an initial value yp, it is no
problem to find y, (rom the equation. Similarly, once y is found, y, will be immediately
obtainable, and so forth, by repcated application (iteration) of the pattern of change
specified in the difference equation. The results of iteration will then permit us to infer a
time path.
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Find the solution of the difference equation (17.2), assuming an initial value of v = 15, To
carry out the iterative process, it is more convenient to use the alternative form of the
difference equation (17.2”), namely, yi.q = v, + 2, with y = 15. From this equation, we
can deduce step-by-step that

Vi=yot+2
Vo=n+2={n+2)+2=w+2{2)
i=+2=[n+22)]+2=w+3(2)

and, in general, for any period £,
Vo= Yo+ t{2) =15+ 2t (17.4)

This last equation indicates the y value of any time period (including the initial period
t = 0); it therefore constitutes the solution of (17.2).

The process of iteration 1s crude- it corresponds roughly to solving simple differential
cquations by straight integration—but it serves to point out ¢lcarly the manner in which a
time path is generated. [n general, the value ol v, will depend in a specified way on the
value of y in the immediately preceding peried (y,—(); thus a given initial value yy will
successively lead to vy, v, .. ., via the prescribed pattern of change.

Solve the difference equation (17.3); this time, let the initial value be unspecified and
denoted simply by yg. Again it is more convenient to work with the alternative version in
(17.3"), namely, yi:1 = 0.9y:. By iteration, we have

y =09%
vz = 0.9y = 0.9(0.9%) = (0.9)%y
y3 =09y = 0.9(0.9 1 = (0.9 1o

These can be summarized into the solution
v =09 (17.5)

To heighten interest, we can lend some economic content to this example. In the simple
multiplier analysis, a single investment expenditure in period 0 will call forth successive
rounds of spending, which in turn will bring about varying amaounts of income increment
in succeeding time periods. Using y to denote income increment, we have yo = the amount
of investment in period 0; but the subsequent income increments will depend on the
marginal propensity to consume (MPC). If MPC = 0.9 and if the income of each period
is consumed only in the next period, then 90 percent of y, will be consumed in period 1,
resulting in an income increment in period 1 of y; = ¢.9y. By similar reasoning, we can
find v2 = 0.9y, etc. These, we see, are precisely the results of the iterative process cited
previously. In other words, the multiplier process of income generation can be described by
a difference equation such as (17.3"), and a solution like (17.5) will tell us what the magni-
tude of income increment is to be in any time period ¢.

Solve the homogeneous difference equation

My — 1y =0
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Upon normalizing and transposing, this may be written as

n
Yir1 = (;1) e

which is the same as (17.3") in Example 2 except for the replacement of 0.9 by n/m. Hence,
by analogy, the solution should be
n !
o= (a) Yo

t
" . . . \
Watch the term (E) . It is through this term that various values of f will iead to their

corresponding values of y. It therefore corresponds to the expression e in the solutions to
differential equations. If we write it more generally as b' (b for base) and attach the more
general multiplicative constant A (instead of yg), we see that the solution of the general
homogeneous difference equation of Example 3 will be in the form

yr = Ab'

We shall find that this expression Ab' will play the same important role in difference equa-
tions as the expression Ae’! did in differential equations.” However, even though both are
exponential expressions, the former is to the base b, whereas the latter is to the base e. It
stands to reason that, just as the type of the continuous-time path y(f) depends heavily on
the value of r, the discrete-time path y; hinges principally on the value of b.

General Method

By this time, you must have become quite impressed with the various similantics between
differential and difference equations. As might be conjectured, the general method of solu-
tion prescntly o be explained will parallel that for diffcrential equations.

Suppase that we are seeking the solution to the first-order difference equation

Yy Fav, =¢ (17.6}

where ¢ and ¢ are two constants. The general solution will consist of the sum of two com-
ponents: a particular solution v,. which is any solution ol the complete nonhomogeneous
equation (17.6), and a complementary function y., which is the gencral solution of the
reduced equation of (17.0):

Yo tay =10 (17.7)

The y, component again represents the intertemporal equilibrium Jevel of v, and the v,
componcnt, the deviations of the time path from that equilibrium. The sum of ¥, and v,
constitutes the gereral solution, because of the presence of an arbitrary constant. As before,
in order to definitize the solutien, an inittal condition is needed.

Let us first deal with the complementary function. Our experience with Example 3
suggests that we may iry a solution of the form y, = Ab' (with 4h" £ 0, for otherwise y,
will turn out simply to be a horizontal straight line lying on the ¢ axis); in that case, we also

' You may object to this statement by pointing out that the solution (17.4) in Example 1 does not
contain a term in the form of Ab!. This latter fact, however, arises only because in Example 1 we have
b=n/m=1/1=1, so that the term Ab' reduces to a conslant.
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have y;4y = Ab/*1. If these values of v, and 3,4 hold, the homogencous equation (17.7)
will become

Ab'™T fadh" =0
which, upon canceling the nonzero common factor A4, yields
b+a=0 o b=-a

This means that, for the trial solution to work, we must set » = —¢; then the complemen-
tary lunction should be written as

yil= Ab') = A(—a)'

Now let us search for the particular solution, which has to do with the complete cqua-
tion (17.6). In this regard, Exampie 3 is of'no help at all, because that example relates only
to a homogeneous equation. However, we note that lor y, we can choose any solution of
(17.6); thus if a trial solution of the simplest form v, = £ (a conslant) can work out. no real
difficulty will be encountered. Now, if v, = %, then » will mainlain the same constant value
over time, and we must have ;.| = & also. Substitution of these values into (17.6) yields

o

:l+a

Since this particular & value satisfies the cquation, the particular integral can be written as

k+ak=c and k

¢
Ppl= k) = nme a# -1
WEb=re @# D)

This being a constant, a stationary equilibrium 1s indicated in this case.

Ifit happens that @ = —1, as in Example 1, however, the particular solution ¢/(1 + a) is
not defmed, and some other solution of the nonhomogeneous equation (17.6) must be
sought. [n this event, we employ the now-familiar trick of trying a solution of the form
v = kt. Thisimplies, of course, that v,y = k(r + 1). Substituting these into (17.6), we find

¢
kt+1D)4akt=c¢ and ht=——"—=¢ [because ¢ = —1]
41 +at

thus Ypl= ki) = ¢t

This form of the particular solution is a nonconstant function of #; it therefore represents a
moving equilibrium,
Adding y, and v, together, we may now write the gencral solution in one of the two
tollowing forms;
o

v =Al—a) + T [general solution, case of ¢ # —1]  (17.8)
a

ve=A(-=aY +ct =4+ [general solution, case of a = —1] (17.9)

Neither of these is completely determinate. in view of the arbitrary constant 4. To climinatc
this arbitrary constant, we resort 1o the initial condition that y, = yy when ¢ = 0. Letting
{ =0in(17.8), we have

¢

¢
=4+ — and A=yw-
Yo +l—|—a Yo -
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Example 4

Consequently, the definite version of (17.8) is

W= (L’ti - —) (—a)’ + ——  [definite solution, case of 2 # —1] (17.8")
y I+ | +a

Letting = 0 in (17.9), on the other hand, we find ¥, = A4, so the definite version of
(179)is

Vv, =w+ct  [definite solution, case of ¢ = —1] (17.99

I{ this last result is applied to Example 1, the solution that cmerges 1s exactly the same as
the iterative solution (17.4).

You can check the validity of each of these solutions by the [ollowing two steps. First, by
letting + = 0 in (17.8), see that the latter equation reduces to the identity vy = yy, signify-
ing the satisfaction of the initial condition. Sccond, by substituting the y, formula (17.8)
and a similar y; ., formula—obtained by replacing 7 with (£ + 1) in{17.8')—into (17.6), scc
that the latter reduces to the identity ¢ = ¢, signifying that the time path is consistent with
the given difference cquation, The check on the validity of solution {17.9°) is analogous.

Solve the first-order difference equation

v —Sn=1 (w=4%)

Following the procedure used in deriving (17.8"), we can find y. by trying a solution
y; = Ab' (which implies yq = AbET1Y, Substituting these values into the homogeneous
version y,_1 — 5y = 0 and canceling the common factor Ab!, we get b= 3. Thus

= A(S)
To find y,, try the solution y; = & which lmplles verp = k. Substituting these into the
complete difference equation, we find k = — 2. Hence
1
¥p="3

It follows that the general solution is
b= et yp= A5 -
7

Letting ¢t =0 here and utilizing the initial condition yp = £, we obtain A = 2. Thus the
definite solution may finally be written as

= sy - 1

Since the given difference equation of this example is a special case of (17.6), with
a=-5c=1,and yy = %, and since (17.8) is the sclution “formula” for this type of
difference equation, we could have found our solution by inserting the specific parameter
values into (17.8"), with the resuit that

71 co ] ;]
}’t—(;—m)(ﬂ T3 =205 -4
which checks perfectly with the earlier answer.

Note that the v,y term in (17.6) has a unit coefficient. 1f a given dilference cquation
has a nonunit coefficient for this term, it must be normalized before using the solution
formula (17.8).
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EXERCISE 17.2

1. Convert the following difference equations into the form of (17.2"):
(o) Ay =7
(B) Ay: =03y,
() Ayr=2y -9
2. Solve the following difference equations by iteration:
(@) yop1 =y 1 {vo=10)
(B) v = ey {vo=8)
() y1 =@y — f (yr = yo when t = 0}
3. Rewrite the equations in Prob. 2 in the form of (17.6), and solve by applying formula

(178"} or (17.97), whichever is appropriate. Do your answers check with those
obtained by the iterative method?

4, For each of the follewing difference equations, use the procedure illustrated in the
derivation of (17.8") and (17.9) to find y,, y,, and the definite solution:

(@) yr1 + 30 =4 (yo=4)
(B 2p51 — V=6 (yo=7)
©) y1 =02y +4 (yo=4)

17.3 The Dynamic Stability of Equilibrium

[n the continuous-time case, the dynamic stability of equilibrium depends on the A¢*” term
in the complementary function, In period analysis, the correspondimg role 1s plaved by the
Ab? term in the complementary function. Since its interpretation is somewhat more com-
plicated than A", let us try to clarify it before proceeding further.

The Significance of b

Whether the equilibrium 1s dynamically stable is a question of whether or not the comple-
mentary function will tend to zero as 7 — oc. Basically, we must analyze the path of the
term A& as ¢ 15 increased indefinitely. Obviously, the value of 4 (the base of this exponen-
tial term) is of crucial importance in this regard. Let us first consider its significance alone,
by disregarding the coefficient 4 (by assuming 4 = 1).

For analytical purposes, we can divide the range of possible values of b, (—oc, +00).
into seven distinct regions, as set forth in the first two columns of Table 17.1, arranged in
descending order of magnitude of 4. These regions arc also marked off in Fig, 17.1 on 4
vertical & scale, with the poiats 41, 0, and —1 as the demarcation points, In fact, these tat-
ter threc potnts in themselves constitute the regions I1, TV, and VI. Regions 11T and ¥, on the
other hand, correspond to the set of all positive fractions and the set of all negative frac-
tions, respectively. The remaining two regions, [ and VII, are where the numerical value of
b exceeds unity,

In cach region, the exponential expression & generates a different type of time path.
These arc exemplified in Table 17.1 and tlustrated in Fig. 17.1. In region [ (where & > 1),
&' must increase with ¢ at an increasing pace, The general configuration of the time path
will therefore assume the shape of the top graph in Fig. 17.1. Note that this graph is shown
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TABLE 17.1

A Classitication
of the Vatues
of b

Value of ¥ in Different Time Periods

Region Value of b Valueof b' t=0 t=1 t=2 t=3 i=4...
| b1 (b > 1) eg, (2 1 2 4 8 16
I b=1 (b = 1) () 1 1 1 1 1
W 0<b<l (b<h eq. (%)I (R S S A
v b=0 (1b] = 0) (o) 0 g 0 0 0
V. —1<b<0 (bi<h eg, (1) 1 -3 b -f 4
vl b=-1 (bl = 1) O ) LA IS B, I 1
VI b« -1 bl =1 eq. (-2 1 -2 4 -8 16

as a step function rather than as a smooth curve; this is because we are dealing with period
analysis. In region 11 (b == 1), 5" will remain at unity for ali values of 7. [ts graph will thus
be a horizontal straight line. Next, in region 111, 4" represents a positive fraction raised to
integer powers, As the power is increased, A must decrease, though it will always remain
positive, The next case, that of » = ( in region 1V, is quite similar to the case of & = 1; but
here we have ' = 0 rather than &' = 1, so its graph will coincide with the horizontal axis.
However, this case is of peripheral intcrest only, since we have earlier adopted the assump-
tion that 45" # (0.

When we move into the negative regions, an interesting new phenomenon oceurs: The
value of &' will alternate between positive and negative values from period to period! This
fact is clearly brought out in the last three rows of Table 17.1 and in the last three graphs of
Fig. 17.1. [n region V, where A js a negative fraction, the alternating time path tends to get
closer and closer to the herizontal axis (cf. the positive-fraction region, 111). In contrast,
when & = ~ 1 (region V). a perpetual alternation between —1 and —1 resulis. And finally,
when & < —1 (region V1), the alternating time path will deviate farther and farther from
the horizontal axis.

What is striking is that, whereas the phenomenon of a fluctuating time path cannot pos-
sibly arisc from a single Ae'" term (the complex-root case of the second-order differential
equation requires a pair of complex roots), fluctuation can be generated by a single '
{or 4h°) term. Note, however, that the character of the fluctuation is semewhat different;
unlike the circular-function pattern, the fluctuation depicted in Fig. 17.1 1s nonsmooth.
For this reason, we shall employ the word escillation to denote the new, nonsmooth type
of fluctuation, even though many writers do use the terms fluctuation and oscillation
interchangeably.

The essence of the preceding discussion can be conveyed in the following gencral statc-
ment: The time path of ' (h = 0) will be

Nonoscillatory | .. [h =0
Oscillatory ] i ‘ h<0
Divergent ] : [ |6 =
. if
Convergent b < 1

It is impottant to note that, whereas the convergence of the expression e depends on the sign
of 7, the convergence of the A" expression hinges, instead, on the absolute value of 5.
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The Role of A

So far we have deliberately left out the multiplicative constant 4. But its effects—of which
there are two—are relatively casy to take into account, First, the magnitude of 4 can serve
to “blow up” (if, say, 4 = 3) or “pare down” (if, say, 4 = %) the values of »'. That is, it can
produce a scale effect without changing the basic configuration of the time path. The sign of
A, on the other hand, does materially affect the shape of the path because, if A’ is multiplied
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by A = —1, then each tim¢ path shown in Fig. 17.1 will be replaced by its own mitror
image with reference to the horizontal axis. Thus, a negative A can produce a mirror effect
as well as a scale effect.

Convergence to Equilibrium
The preceding discussion presents the interpretation of the 46’ term in the complementary
function, which, as we recall, represents the deviations from some intertemporal equilib-
rium level. Ifa term (say) y, = 5 is added to the A5 term, the time path must be shifted up
vertically by a constant value of 5. This will in no way affect the convergence or divergence
of the time path, but it will alter the level with reference to which convergence or diver-
gence in gauged. What Fig. 17.1 pictures is the convergence {or lack of it) of the Apf
expression to zcro. When the y, is included, it becomes a question of the convergence of
the timc path y, = y. + ¥, to the equilibrium level v,.

In this connection, letus add a word of explanation for the special cascof 6 = | {region 11},
A time path such as

=AY +y,=4+y,

gives (he impression that it converges, because the multiplicative term {1)' = | produces
no explosive effect. Observe, however, that y, will now take the value (4 + v,) rather than
the equilibrium vaiuc y,; in fact, it can never rcach y, (unless 4 = 0). As an illustration of
this type of situation, we can cite the time path in (17.9), in which & moving equilibrium
v, = ¢t is involved. This time path is to be considered divergent, not because of the
appearance of ¢ in the particular solution but because, with a nonzero A, there will be a con-
stant deviation from the moving equilibrium, Thus, in stipulating the condition for conver-
gence of time path y, to the equilibrium y,, we must rule out the case of 5 = 1.
In sum, the solution

yr=Ab' + Yo

is a convergent path it and only 1 [b] < I.

Example 1 What kind of time path is represented by y; = 2(— 1) + 97 Since b= —g < 0, the time path
————— s oscillatory. But since |5 = % = 1, the oscillation is damped, and the time path converges
to the equilibrium level of 9.
You should exercise care not to confuse 2(~ )7 with —2(3}'; they represcnt entirely dif-
ferent time-path configurations.
Example 2 How do you characterize the time path y. = 3(2)' + 47 Since b= 2 > 0, no oscillation will
——— —— occur. Butsince || = 2 = 1, the time path will diverge from the equilibrium level of 4,
EXERCISE 17.3

1. Discuss the nature of the following time paths:
t
(0) yi=3+1 @ yi=5(-1) +3

) ye = 2(%)t (d) ye = —3(%)!2
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2. What is the nature of the time path obtained from each of the difference equations in
Exercise 17.2-47

3. Find the solutions of the following, and determine whether the time paths are oscilfa-
tory and convergent:

@y —3v=6  (p="1)
D) i+ 2y =9 {(w=4)
© pitin=5 (o=2)
@ypn-p=3 (=35

17.4 The Cobweb Model

To illustrate the use of first-order difference equations in cconomic analysis, we shall cite
two variants of the market model for a single commodity, The first variant, known as the
cobweb model, differs from our earlier markel models in that it treats ), as a function not
of the current price but of the price of the preceding time period.

The Model

Consider g situation in which the producer’s output decision must be made one period in
advance of the actual salc—such as in agricultural production, where planting must pre-
cede by an appreciable length of time the harvesting and saie of the output. Let us assume
that the output decision in period ¢ is based on the then-prevailing price £, Since this
output will not be available for the sale until period (# 4 1), however, P, will determine
not O, but 0,1 Thus we now have a “lagged” supply function.'

Oreyt = S(F)
or, cquivalently, by shifting back the time subseripts by one period,
Qs.r =5(F 1)

When such a supply function interacts with & demand function of the form

Q:?’F = D(P.r)

interesting dynamic price paiterns will result.

Taking the linear versions of these (lagged) supply and {unlagged) demand functions,
and assuming that in each time period the market price is always set at a Ievel which clears
the market, we have a market model with the following three equations:

Qd{ = Q.s‘f
Qu=a—fP (o, 8= 0) (17.10)
Qu=—y+8P_ (v.8=0)

*We are making the implicil assumption here that the entire output of a period will be placed on the
market, with no part of it held in storage. Such an assumption is appropriate when the commaodity in
question is perishable cr when no inventory is ever kept. A model with inventory will be considered
in Sec. 17.5.



