Sources of Error

Two sources of numerical error

1) Round off error
2) Truncation error

Round-off Error

Computational Physics

Round off Error

- Caused by representing a number approximately

$$
\begin{aligned}
& \frac{1}{3} \cong 0.333333 \\
& \sqrt{2} \cong 1.4142 \ldots
\end{aligned}
$$

Problems created by round off error

- 28 Americans were killed on February 25, 1991 by an Iraqi Scud missile in Dhahran, Saudi Arabia.
- The patriot defense system failed to track and intercept the Scud. Why?

Problem with Patriot missile

- Clock cycle of $1 / 10$ seconds was represented in 24-bit fixed point register created an error of $9.5 x$ 10^{-8} seconds.
- The battery was on for 100 consecutive hours, thus causing an inaccuracy of

$$
\begin{aligned}
& =9.5 \times 10^{-8} \frac{\mathrm{~s}}{0.1 \mathrm{~s}} \times 100 \mathrm{hr} \times \frac{3600 \mathrm{~s}}{1 \mathrm{hr}} \\
& =0.342 \mathrm{~s}
\end{aligned}
$$

Problem (cont.)

- The shift calculated in the ranging system of the missile was 687 meters.
- The target was considered to be out of range at a distance greater than 137 meters.

Effect of Carrying Significant Digits in Calculations

Computational Physics

Find the contraction in the diameter

$$
\Delta D=D \int_{T_{a}}^{T_{c}} \alpha(T) d T
$$

$$
\mathrm{T}_{\mathrm{a}}=80^{\circ} \mathrm{F} ; \mathrm{T}_{\mathrm{c}}=-108^{\circ} \mathrm{F} ; \mathrm{D}=12.363^{\prime \prime}
$$

$$
\alpha=a_{0}+a_{1} T+a_{2} T^{2}
$$

Thermal Expansion Coefficient vs Temperature

$\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$	$\alpha\left(\mu \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right)$
-340	2.45
-300	3.07
-220	4.08
-160	4.72
-80	5.43
0	6.00
40	6.24
80	6.47

Regressing Data in Excel (general format)

$$
\alpha=-1 \mathrm{E}-05 \mathrm{~T}^{2}+0.0062 \mathrm{~T}+6.0234
$$

Observed and Predicted Values

$$
\alpha=-1 \mathrm{E}-05 \mathrm{~T}^{2}+0.0062 \mathrm{~T}+6.0234
$$

$\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$	$\alpha\left(\mu \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right)$ Given	$\alpha\left(\mu \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right)$ Predicted
-340	2.45	2.76
-300	3.07	3.26
-220	4.08	4.18
-160	4.72	4.78
-80	5.43	5.46
0	6.00	6.02
40	6.24	6.26
80	6.47	6.46

Regressing Data in Excel (scientific format)

$\alpha=-1.2360 E-05 T^{2}+6.2714 \mathrm{E}-03 \mathrm{~T}+\mathbf{6 . 0 2 3 4}$

Observed and Predicted Values

$\alpha=-1.2360 \mathrm{E}-05 \mathrm{~T}^{2}+6.2714 \mathrm{E}-03 \mathrm{~T}+6.0234$

$\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$	$\alpha\left(\mu \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right)$ Given	$\alpha\left(\mu \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right)$ Predicted
-340	2.45	2.46
-300	3.07	3.03
-220	4.08	4.05
-160	4.72	4.70
-80	5.43	5.44
0	6.00	6.02
40	6.24	6.25
80	6.47	6.45

Observed and Predicted Values

$\alpha=-1.2360 \mathrm{E}-05 \mathrm{~T}^{2}+6.2714 \mathrm{E}-03 \mathrm{~T}+6.0234$

 $\alpha=-1 \mathrm{E}-05 \mathrm{~T}^{2}+0.0062 \mathrm{~T}+\mathbf{6 . 0 2 3 4}$| $\mathrm{T}\left({ }^{\circ} \mathrm{F}\right)$ | $\alpha\left(\mu \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right)$
 Given | $\alpha\left(\mu \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right)$
 Predicted | $\alpha\left(\mu \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right)$
 Predicted |
| :---: | :---: | :---: | :---: |
| -340 | 2.45 | 2.46 | 2.76 |
| -300 | 3.07 | 3.03 | 3.26 |
| -220 | 4.08 | 4.05 | 4.18 |
| -160 | 4.72 | 4.70 | 4.78 |
| -80 | 5.43 | 5.44 | 5.46 |
| 0 | 6.00 | 6.02 | 6.02 |
| 40 | 6.24 | 6.25 | 6.26 |
| 80 | 6.47 | 6.45 | 6.46 |

THE END

Truncation Error

Computational Physics

Truncation error

- Error caused by truncating or approximating a mathematical procedure.

Example of Truncation Error

Taking only a few terms of a Maclaurin series to approximate e^{x}

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots \ldots \ldots \ldots \ldots
$$

If only 3 terms are used,

$$
\text { Truncation Error }=e^{x}-\left(1+x+\frac{x^{2}}{2!}\right)
$$

Another Example of Truncation Error

Using a finite Δx to approximate $f^{\prime}(x)$
$f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$

Figure 1. Approximate derivative using finite Δx

Another Example of Truncation Error

Using finite rectangles to approximate an integral.

Example 1 -Maclaurin series

Calculate the value of $e^{1.2}$ with an absolute relative approximate error of less than 1%.

$$
e^{1.2}=1+1.2+\frac{1.2^{2}}{2!}+\frac{1.2^{3}}{3!}+\ldots \ldots \ldots
$$

n	$e^{1.2}$	E_{a}	$\left\|\in_{a}\right\| \%$
1	1	-	-
2	2.2	1.2	54.545
3	2.92	0.72	24.658
4	3.208	0.288	8.9776
5	3.2944	0.0864	2.6226
6	3.3151	0.020736	0.62550

6 terms are required. How many are required to get at least 1 significant digit correct in your answer?

Example 2 -Differentiation

Find $f^{\prime}(3)$ for $f(x)=x^{2}$ using $f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$ and $\Delta x=0.2$

$$
\begin{aligned}
f^{\prime}(3) & =\frac{f(3+0.2)-f(3)}{0.2} \\
& =\frac{f(3.2)-f(3)}{0.2}=\frac{3.2^{2}-3^{2}}{0.2}=\frac{10.24-9}{0.2}=\frac{1.24}{0.2}=6.2
\end{aligned}
$$

The actual value is

$$
f^{\prime}(x)=2 x, \quad f^{\prime}(3)=2 \times 3=6
$$

Truncation error is then, $6-6.2=-0.2$
Can you find the truncation error with $\Delta x=0.1^{23}$

Example 3 - Integration

Use two rectangles of equal width to approximate the area under the curve for $f(x)=x^{2}$ over the interval [3,9]

Integration example (cont.)

Choosing a width of 3, we have

$$
\begin{aligned}
\int_{3}^{9} x^{2} d x & =\left.\left(x^{2}\right)\right|_{x=3}(6-3)+\left.\left(x^{2}\right)\right|_{x=6}(9-6) \\
& =\left(3^{2}\right) 3+\left(6^{2}\right) 3 \\
& =27+108=135
\end{aligned}
$$

Actual value is given by

$$
\int_{3}^{9} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{3}^{9}=\left[\frac{9^{3}-3^{3}}{3}\right]=234
$$

Truncation error is then

$$
234-135=99
$$

Can you find the truncation error with 4 rectangles?

THE END

Computational Physics

