Measuring Errors

Why measure errors?

1) To determine the accuracy of numerical results.

2) To develop stopping criteria for iterative algorithms.

True Error

- Defined as the difference between the true value in a calculation and the approximate value found using a numerical method etc.

True Error = True Value - Approximate Value

Example-True Error

The derivative, $f^{\prime}(x)$ of a function $f(x)$ can be approximated by the equation,

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

If $f(x)=7 e^{0.5 x}$ and $h=0.3$
a) Find the approximate value of $f^{\prime}(2)$
b) True value of $f^{\prime}(2)$
c) True error for part (a)

Example (cont.)

Solution:

a) For $x=2$ and $h=0.3$

$$
\begin{aligned}
f^{\prime}(2) & \approx \frac{f(2+0.3)-f(2)}{0.3} \\
& =\frac{f(2.3)-f(2)}{0.3} \\
& =\frac{7 e^{0.5(2.3)}-7 e^{0.5(2)}}{0.3} \\
& =\frac{22.107-19.028}{0.3}=10.263
\end{aligned}
$$

Example (cont.)

Solution:
b) The exact value of $f^{\prime}(2)$ can be found by using our knowledge of differential calculus.

$$
\begin{aligned}
f(x) & =7 e^{0.5 x} \\
f^{\prime}(x) & =7 \times 0.5 \times e^{0.5 x} \\
& =3.5 e^{0.5 x}
\end{aligned}
$$

So the true value of $f^{\prime}(2)$ is

$$
\begin{aligned}
f^{\prime}(2) & =3.5 e^{0.5(2)} \\
& =9.5140
\end{aligned}
$$

True error is calculated as

$$
\begin{aligned}
E_{t} & =\text { True Value }- \text { Approximate Value } \\
& =9.5140-10.263=-0.722
\end{aligned}
$$

Relative True Error

- Defined as the ratio between the true error, and the true value.

Relative True Error $\left(\epsilon_{t}\right)=\frac{\text { True Error }}{\text { True Value }}$

Example-Relative True Error

Following from the previous example for true error, find the relative true error for $f(x)=7 e^{0.5 x}$ at $f^{\prime}(2)$
with $h=0.3$
From the previous example,

$$
E_{t}=-0.722
$$

Relative True Error is defined as

$$
\begin{aligned}
\epsilon_{t}= & \frac{\text { True Error }}{\text { True Value }} \\
& =\frac{-0.722}{9.5140}=-0.075888
\end{aligned}
$$

as a percentage,

$$
\epsilon_{t}=-0.075888 \times 100 \%=-7.5888 \%
$$

Approximate Error

- What can be done if true values are not known or are very difficult to obtain?
- Approximate error is defined as the difference between the present approximation and the previous approximation.

Approximate Error $\left(E_{a}\right)=$ Present Approximation - Previous Approximation

Example-Approximate Error

For $f(x)=7 e^{0.5 x}$ at $x=2$ find the following,
a) $f^{\prime}(2)$ using $h=0.3$
b) $f^{\prime}(2)$ using $h=0.15$
c) approximate error for the value of $f^{\prime}(2)$ for part b)

Solution:
a) For $x=2$ and $h=0.3$

$$
\begin{aligned}
f^{\prime}(x) & \approx \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(2) & \approx \frac{f(2+0.3)-f(2)}{0.3}
\end{aligned}
$$

Example (cont.)

Solution: (cont.)

$$
\begin{aligned}
& =\frac{f(2.3)-f(2)}{0.3} \\
& =\frac{7 e^{0.5(2.3)}-7 e^{0.5(2)}}{0.3} \\
& =\frac{22.107-19.028}{0.3}=10.263
\end{aligned}
$$

b) For $x=2$ and $h=0.15$

$$
\begin{aligned}
f^{\prime}(2) & \approx \frac{f(2+0.15)-f(2)}{0.15} \\
& =\frac{f(2.15)-f(2)}{0.15}
\end{aligned}
$$

Example (cont.)

Solution: (cont.)

$$
\begin{aligned}
& =\frac{7 e^{0.5(2.15)}-7 e^{0.5(2)}}{0.15} \\
& =\frac{20.50-19.028}{0.15}=9.8800
\end{aligned}
$$

c) So the approximate error, E_{a} is

$$
\begin{aligned}
E_{a} & =\text { Present Approximation - Previous Approximation } \\
& =9.8800-10.263 \\
& =-0.38300
\end{aligned}
$$

Relative Approximate Error

- Defined as the ratio between the approximate error and the present approximation.

Relative Approximate Error $\left(\epsilon_{a}\right)=\frac{\text { Approximate Error }}{\text { Present Approximation }}$

Example-Relative Approximate Error

For $f(x)=7 e^{0.5 x}$ at $x=2$, find the relative approximate error using values from $h=0.3$ and $h=0.15$
Solution:
From Example 3, the approximate value of $f^{\prime}(2)=10.263$
using $h=0.3$ and $f^{\prime}(2)=9.8800$ using $h=0.15$
$E_{a}=$ Present Approximation - Previous Approximation
$=9.8800-10.263$
$=-0.38300$

Example (cont.)

Solution: (cont.)

$$
\begin{aligned}
\epsilon_{a} & =\frac{\text { Approximate Error }}{\text { Present Approximation }} \\
& =\frac{-0.38300}{9.8800}=-0.038765
\end{aligned}
$$

as a percentage,

$$
\epsilon_{a}=-0.038765 \times 100 \%=-3.8765 \%
$$

Absolute relative approximate errors may also need to be calculated,

$$
\left|\epsilon_{a}\right|=|-0.038765|=0.038765 \text { or } 3.8765 \%
$$

How is Absolute Relative Error used as a stopping criterion?

If $\left|\epsilon_{a}\right| \leq \epsilon_{s}$ where ϵ_{s} is a pre-specified tolerance, then no further iterations are necessary and the process is stopped.

If at least m significant digits are required to be correct in the final answer, then

$$
\left|\epsilon_{a}\right| \leq 0.5 \times 10^{2-m} \%
$$

Table of Values

For $f(x)=7 e^{0.5 x}$ at $x=2$ with varying step size, h

h	$f^{\prime}(2)$	$\left\|\epsilon_{a}\right\|$	m
0.3	10.263	$\mathrm{~N} / \mathrm{A}$	0
0.15	9.8800	3.877%	1
0.10	9.7558	1.273%	1
0.01	9.5378	2.285%	1
0.001	9.5164	0.2249%	2

THE END

Computational Physics

