

Measuring Errors

Why measure errors?

- 1) To determine the accuracy of numerical results.
- 2) To develop stopping criteria for iterative algorithms.

True Error

 Defined as the difference between the true value in a calculation and the approximate value found using a numerical method etc.

True Error = True Value – Approximate Value

Example—True Error

The derivative, f'(x) of a function f(x) can be approximated by the equation,

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

If
$$f(x) = 7e^{0.5x}$$
 and $h = 0.3$

- a) Find the approximate value of f'(2)
- b) True value of f'(2)
- c) True error for part (a)

Solution:

a) For
$$x=2$$
 and $h=0.3$

$$f'(2) \approx \frac{f(2+0.3) - f(2)}{0.3}$$

$$= \frac{f(2.3) - f(2)}{0.3}$$

$$= \frac{7e^{0.5(2.3)} - 7e^{0.5(2)}}{0.3}$$

$$= \frac{22.107 - 19.028}{0.3} = 10.263$$

Solution:

b) The exact value of f'(2) can be found by using our knowledge of differential calculus.

$$f(x) = 7e^{0.5x}$$
$$f'(x) = 7 \times 0.5 \times e^{0.5x}$$
$$= 3.5e^{0.5x}$$

So the true value of f'(2) is

$$f'(2) = 3.5e^{0.5(2)}$$
$$= 9.5140$$

True error is calculated as

$$E_t$$
 = True Value – Approximate Value

$$=9.5140-10.263=-0.722$$

Relative True Error

 Defined as the ratio between the true error, and the true value.

Relative True Error (
$$\in_t$$
) = $\frac{\text{True Error}}{\text{True Value}}$

Following from the previous example for true error, find the relative true error for $f(x) = 7e^{0.5x}$ at f'(2) with h = 0.3

From the previous example,

$$E_{t} = -0.722$$

Relative True Error is defined as

$$\epsilon_{t} = \frac{\text{True Error}}{\text{True Value}}$$

$$= \frac{-0.722}{9.5140} = -0.075888$$

as a percentage,

$$\epsilon_t = -0.075888 \times 100\% = -7.5888\%$$

Approximate Error

- What can be done if true values are not known or are very difficult to obtain?
- Approximate error is defined as the difference between the present approximation and the previous approximation.

Approximate Error (E_a) = Present Approximation – Previous Approximation

Example—Approximate Error

For $f(x) = 7e^{0.5x}$ at x = 2 find the following,

- a) f'(2) using h = 0.3
- b) f'(2) using h = 0.15
- c) approximate error for the value of f'(2) for part b) Solution:

a) For
$$x=2$$
 and $h=0.3$

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

$$f'(2) \approx \frac{f(2+0.3) - f(2)}{0.3}$$

Solution: (cont.)

$$= \frac{f(2.3) - f(2)}{0.3}$$

$$= \frac{7e^{0.5(2.3)} - 7e^{0.5(2)}}{0.3}$$

$$= \frac{22.107 - 19.028}{0.3} = 10.263$$
b) For $x = 2$ and $h = 0.15$

$$f'(2) \approx \frac{f(2+0.15) - f(2)}{0.15}$$
$$= \frac{f(2.15) - f(2)}{0.15}$$

Solution: (cont.)

$$= \frac{7e^{0.5(2.15)} - 7e^{0.5(2)}}{0.15}$$
$$= \frac{20.50 - 19.028}{0.15} = 9.8800$$

c) So the approximate error, E_a is

$$E_a$$
 = Present Approximation — Previous Approximation
= $9.8800-10.263$
= -0.38300

Relative Approximate Error

 Defined as the ratio between the approximate error and the present approximation.

```
Relative Approximate Error (\in_a) = Approximate Error Present Approximation
```

4

Example—Relative Approximate Error

For $f(x) = 7e^{0.5x}$ at x = 2, find the relative approximate error using values from h = 0.3 and h = 0.15

Solution:

From Example 3, the approximate value of f'(2) = 10.263 using h = 0.3 and f'(2) = 9.8800 using h = 0.15

 E_a = Present Approximation – Previous Approximation = 9.8800-10.263= -0.38300

Solution: (cont.)

$$\in_a = \frac{\text{Approximate Error}}{\text{Present Approximation}}$$

$$= \frac{-0.38300}{9.8800} = -0.038765$$

as a percentage,

$$\epsilon_a = -0.038765 \times 100\% = -3.8765\%$$

Absolute relative approximate errors may also need to be calculated,

$$\left| \in_{a} \right| = \left| -0.038765 \right| = 0.038765 \text{ or } 3.8765\%$$

How is Absolute Relative Error used as a stopping criterion?

If $|\epsilon_a| \le \epsilon_s$ where ϵ_s is a pre-specified tolerance, then no further iterations are necessary and the process is stopped.

If at least *m* significant digits are required to be correct in the final answer, then

$$|\epsilon_a| \le 0.5 \times 10^{2-m} \%$$

Table of Values

For $f(x) = 7e^{0.5x}$ at x = 2 with varying step size, h

h	f'(2)	$\left \in_{a} \right $	m
0.3	10.263	N/A	0
0.15	9.8800	3.877%	1
0.10	9.7558	1.273%	1
0.01	9.5378	2.285%	1
0.001	9.5164	0.2249%	2

THE END

Computational Physics