Introduction to Computational Physics

Dr. Farhat Iqbal

Introduction

My advice

- If you don't let a teacher know at what level you are by asking a question, or revealing your ignorance you will not learn or grow.
- You can't pretend for long, for you will eventually be found out. Admission of ignorance is often the first step in our education.
 - Steven Covey—Seven Habits of Highly Effective People

Why use Numerical Methods?

To solve problems that cannot be solved exactly

Why use Numerical Methods?

• To solve problems that are intractable!

How do we solve a problem?

Example of Solving a Problem

Bascule Bridge THG

Bascule Bridge THG

Trunnion-Hub-Girder Assembly Procedure

YPED STATE: EXPOOR

Step1. Trunnion immersed in dry-ice/alcohol

FERIN STATE: EXPOND

- **Step2.** Trunnion warm-up in hub
- **Step3.** Trunnion-Hub immersed in
 - dry-ice/alcohol
- **Step4.** Trunnion-Hub warm-up into girder

Problem

After Cooling, the Trunnion Got Stuck in Hub

Computational Physics

Why did it get stuck?

Magnitude of contraction needed in the trunnion was 0.015" or more. Did it contract enough?

Video of Assembly Process

Trunnion-Hub-Girder Assembly of Bascule Bridges

University of South Florida Tampa

Glen Besterfield (PI) Autar Kaw (Co-PI) Roger Crane (Co-PI) Michael Denninger (Grad Student) Badri Ratnam (Grad Student) Sanjeev Nichani (Grad Student)

Trunnion-Hub-Girder Assembly of Bascule Bridges

University of South Florida Tampa

Glen Besterfield (PI) Autar Kaw (Co-PI) Roger Crane (Co-PI) Michael Denninger (Grad Student) Badri Ratnam (Grad Student) Sanjeev Nichani (Grad Student)

Unplugged Version

VH1 Version

Consultant calculations $\Delta D = D \times \alpha \times \Delta T$ D = 12.363" $\alpha = 6.47 \times 10^{-6}$ in / in / ° F $\Delta T = -108 - 80 = -188^{\circ} F$

$\Delta D = (12.363)(6.47 \times 10^{-6})(-188)$ = -0.01504"

Computational Physics

The Correct Model Would Account for Varying Thermal Expansion Coefficient

Can You Roughly Estimate the Contraction?

17

Can You Find a Better Estimate for the Contraction?

Estimating Contraction Accurately

So what is the solution to the problem?

One solution is to immerse the trunnion in liquid nitrogen which has a boiling point of -321°F as opposed to the dry-ice/alcohol temperature of -108°F.

$\Delta D = -0.0244''$

Revisiting steps to solve a problem

- 1) Problem Statement: Trunnion got stuck in the hub.
- 2) Modeling: Developed a new model

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

- 3) Solution: 1) Used trapezoidal rule OR b) Used regression and integration.
- 4) Implementation: Cool the trunnion in liquid nitrogen.

THE END