Determination of range of repulsive interaction

R	Page 1	
1		
-	Determination of range of repulsive interaction & =?	
P		法
1	B (Bulk modulus) = stress strain	
B		
-	$B = \frac{F/A}{\Delta V/V} = \frac{dP}{dV} \times V$	Pro
		THE WAY
1	$B = \frac{dP}{dV} \times V - (i)$	
-	1st law of thermodynmics	2
1		
-	dQ = dV + dW	
	take work - done on the system - ve by applying pressure dp so	
E	dQ = dU - dW	300
1	for adiabatic compression by applying	Service .
T	pressure de de = 0	
	III Delly	
4		-
	du = Pdv	
To	du = p	10
-		The same

Page 2

P =
$$\frac{dv}{dv}$$
 $\frac{dv}{dv}$
 $\frac{dv}{dv}$

page 3

$$\frac{d^2 V}{dV^2} = \frac{dV}{dR} \frac{d^2 R}{dV} \left[\frac{d}{dR} \left(\frac{dU}{dR} \times \frac{dR}{dV} \right) \right]$$

$$\frac{d^2 V}{dV^2} = \frac{dV}{dR} \frac{d^2 R}{dV^2} + \frac{dR}{dV} \left[\frac{d^2 V}{dR} \times \frac{dR}{dR} + \frac{dU}{dV} \times \frac{d}{dR} \frac{d^2 V}{dV} \right]$$

$$\frac{d^2 V}{dV^2} = \frac{dV}{dR} \frac{d^2 V}{dV} \left[\frac{d^2 V}{dR^2} \times \frac{dR}{dV} + \frac{d}{dR} \frac{d^2 V}{dV} \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dR^2} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV^2} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} \times \frac{dR}{dV} \times \frac{dR}{dV} + 0 \right]$$

$$\frac{d^2 V}{dV} = 0 + \frac{dR}{dV} \left[\frac{d^2 V}{dV} \times \frac{dR}{dV} \times \frac{dR}{dV$$

page 4

4 atoms per unit cell in fec

$$V = 8R^3 = 2R^3$$

Here are N atoms

 $V = 2NR^3$
 $dV = 2N(3R^2)$
 dR
 $dV = 6NR^2$
 dR

inverse both sides

 $dR = \frac{1}{6NR^2}$

put in eq (iv)

 $B = \frac{d^2v}{dR^2} \left(\frac{1}{6NR^2} \right)^2 (2NR^3)^3$
 $dR^2 = \frac{1}{38N^2R^4} \left(\frac{2NR^3}{38N^2R^4} \right)$
 $dR^2 = \frac{1}{38N^2R^4} \left(\frac{1}{8NR^2} \right)^2$
 $dR^3 = \frac{1}{38N^2R^4} \left(\frac{1}{8NR^3} \right)^3$

page 5 we know that du = -NZX = R/3 + NXQ2

dR = P R2 A R=R. dV = 0 $O = -N2\lambda e^{-R/9} + Nd9^{2}$ $S = R^{2}$ $N2\lambda - R^{9} = Nd9^{2}$ R^{2} $-R./9 = Pd9^{2}$ $2\lambda R^{2}$ diff eq A w. Y. t R $\frac{d^2 U}{dR^2} = \frac{A \times 2A}{g^2} = \frac{2N \times q^2}{R^3}$ $= \left[\frac{N2\lambda}{s^2} \left(\frac{p \times q^2}{2\lambda R^2} \right) - \frac{2N \times V^2}{R^3} \right]$ $\frac{d^2v}{dR^2} = \frac{\alpha q^2}{R^2} \left[\frac{R^2}{p} - 2 \right]$ B = 292 [R./p-2]