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behavioral equations can be used to describe the general institutional setting of a modcl, in-
cluding the technological {¢.g., production function) and legal {e.g., tax structure) aspects,
Before a behavioral equation can be written, however, it is always necessary to adopt defi-
nite assumptions regarding the behavior pattern of the variable in question. Consider the
two cost functions

C=75+10Q (2.1)
C =110+ @ (2.2)

where 7 denotes the quantity of output, Since the two equations have different forms, the
production condition assumed in cach is obviously different from the other. In (2.1), the
fixed cost (the value of € when Q = 0} is 75, whereas in (2.2) it is 110, The variation in cost
is also different. In (2.1), for each unit increase in 0, there is a constant increase of 10 in C.
Butn (2.2}, as ¢/ increases unit after unit, C will increase by progressively larger amounts.
Clearly, it is primarily through the specification of the form of the behavioral equations that
we give mathematical expression to the assumptions adopted [or a model.

As the third type, a conditivnal equation states a requirement to be satisfied. For exam-
ple, in a model involving the notion of equilibrium, we must set up an equifibrivm condi-
tion, which describes the prerequisite for the attainment of equilibrium. Two of the most
familiar equilibrium conditions in economics are

Qu = s [quantity demanded = quantity supplied]
and S=1 [intended saving = intended investment]

which pertain, respectively, to the equilibrium of a market modcl and the equilibrium of the
nationai-income model in its simplest form, Similarly, an optimization modet either derives
ot applics one or more vptimization conditions. One such condition that comes easily 10
mind is the condition

MC = MR [marginal cost = marginal revenue)

in the theory of the firm. Because equations of this type are ncither definitional nor behay-
ioral, they constitute a class by themselves,

2.2 The Real-Number System

Equations and variables are the essential ingredients of a mathematical model. But since
the valucs that an economic variable takes are usually numerical, a few words should be
said about the number system. Here, we shall deal only with so-called real numbers.

Whole numbers such as 1, 2, 3, ... arc called positive integers, these are the numbers
most frequently used in counting. Their negative counterparts —1, —2, ~3, ... are called
negaiive integers, these can be employed, for example, to indicate subzero temperatures {in
degrees). The number 0 (zero), on the other hand, is neither positive nor ncgative, and is in
that sense unique. Let us lump all the positive and negative integers and the number 7ero
into a single category, referring to them collectively as the sef of all integers.

Integers, ol course, do not exhavst all the possible numbers, for we have fractions, such
as % 3 and £, which—ifplaced on a ruler—would fall between the integers. Also, we have
negative fractions, such as ~1 and —Z. Together, these make up the ses of @il fractions.
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The common property of all fractional numbers 1s that cach is cxpressible as a ratio of
two mtegers. Any number that can be expressed as a ratio of two integers 1s called a ratio-
nal number. But integers themsclves are also rational, because any integer # can be consid-
cred as the ratio /1. The set of all integers and the set of all fractions together form the set
of all rational numbers. An alternative defining characteristic of a rational number is that it
1s expressibie as cither a terminating decimal (e.g., % = ().25) or a repeating decimal (c.g.,
% = 0.3333 .. ), where some number or series of numbers to the right of the decimal point
is repeated indetinitely.

Once the notion of rational numbers 1s used, there naturally arises the concept of irra-
tional numbers—numbers that casnmot be expressed as ratios ol a pair of integers. One ex-
ample is the number 2 = 1.4142 .., which is a nonrepeating, nonterminating decimal.
Another is the special constant 7 = 3.1415. .. (representing the ratio of the circumierence
of any circle to its diameter), which 18 again a nonrepeating, nonterminating decimal, as 1s
charactenistic of ali irrational numbers.

Each irrational number, if placed on a ruler, would fall between two rational numbers,
so that, just as the fractions fill in the gaps between the integers on a ruler, the irrational
numbers fill in the gaps between rational numbers. The result of this filling-in process is a
continuum of numbers, all of which are so-called real numbers. This continuum constitules
the set of all real numébers, which is often denoted by the symbol R. When the set R is dis-
played on a straight line (an extended ruler), we refer to the line as the rea/ fine.

In Fig. 2.1 are listed (in the order discussed) all the number sets, arranged in relationship
to one another. If we read from bottom to top, however, we find in effect a classificatory
scheme in which the set of real numbers is broken down into its component and subcom-
ponent number sets. This figure therefore Is a summary of the structure of the real-number
system,

Real numbers are all we need for the first 15 chapters of this book, but they are not the
only numbers used in mathematics. [n fact, the reason for the term req is that there are also
“imaginary™ numbers, which have to do with the square roots of negative numbers. That
concept will be discussed later, in Chap. 16.

2.3 The Concept of Sets

We have already employed the word set several times. Inasmuch as the concept of scts
underlies every branch of modem mathematics, it 1s desirable to familiarize ourselves at
least with 1ts more hasic aspects.



Chapter 2 ficonomic Models 9

Set Notation

A set is simply a collection of distinct objects. These objects may be a group of (distinet)
numbers, persons, food items, or something else. Thus, all the students enrolled in a par-
ticular economics course can be considered a set, just as the three integers 2, 3, and 4 can
form a set. The objects in a set are called the efements of the set.

There are two alternative ways of writing a set: by enumeration and by description. If
we let 5 represent the set of three numbers 2, 3, and 4, we can write, by enumeration of the
elements,

§=1{2,3,4}

But if we let / denote the set of ¢/ positive integers, cnumeration becomes difficult, and we
may instead simply describe the elements and write

I = {x | x a positive integer}

which is read as follows: “/ is the set of all (numbers) x, such that x is a positive integer.”
Note that a pair of braces is used to enclosc the set in either casc. In the descriptive
approach, a vertical bar (or a colon) is always inscrted to separate the gencral designating
symbol for the elements from the description of the elements. As another cxample, the
set of all real numbers greater than 2 but less than 5 (call it /) can be expressed symbaoli-
cally as

J={x|2<x =<5}

Here, even the descriptive statement is symbolically expressed.

A set with a finite number of clements, exemplified by the previously given set S, is
called a finite ser. Set / and set J, each with an infinite number of ¢clements, are, on the other
hand, examples of an infinite set. Finite sets are always denumerable (or countable), i.c.,
their elements can be counted onc by one in the sequence 1, 2, 3,. .. . [nfinite sets may,
however, be either denumerable (sct 1), or nondenumerable (sct 1), In the latter case, there
is no way to associate the elements of the set with the natural counting numbers 1,2.3, . . .,
and thus the set is not countable.

Membership in a set 1s indicated by the symbol € (a variant of the Greek letter epsilon e
for “element™), which is read as follows: “is an element of.” Thus, for the two sets § and [
defined previously, we may write

28 3ed§ gel el {cte.)

but obviously 8 ¢ 5 (read: “8 is not an element of set §7). If we use the symbol R to denote
the set of all real numbers, then the statcment “x is some real number” can be simply
expressed by

xeR

Relationships between Sets

When two sets arc compared with each other, several possible kinds of relationship may be
observed. If two scts Sy and $; happen to contain tdentical elements,

Sl - {2- ?:' a, f} and ‘5‘2 = {25 t, 75 f‘}
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then S; and S; are said to be equal (S| = Sz). Note that the order of appearance of the cle-
ments in a set is immaterial. Whenever we find even one element to be different in any two
sets, however, those two sets arc not equal.

Another kind of set relationship is that one set may be a subset of another set. [T we have
twio sets

§=1{1.3,579 and T=1{37

then T'is a subset of 5, because every clement of T is also an element ot §. A more formal
statement of this is: T is a subset of 51l and only if ¥ € T implics x € 5. Using the sct
inclusion symbols C (is contaimed in) and O {(includes), we may then write

TcCS or §o>7r

It is possible that two given sets happen to be subsets ol each other. When this occurs, how-
ever, we can be sure that these two sets arc cqual. To state this formally: we can have
S; < 5 and S; € § ifand only if S, = 3-.

Note that, whercas the € symbol relates an individual efement to a set, the C symbol re-
lates a subset to 4 sef. As an application of this idca, we may state on the basis ol Fig. 2.1
that the set of all integers is a subset of the sct of all rational numbers. Similarly, the set of
all rationai numbcrs is a subset of the set of all real numbers.

How many subsels can be formed from the (ive elements in the set S=1{1.3,5,7,9}7
First of all, cach individual element of § can count as a distinct subsct of S, such as {1} and
{31, But so can any pair, triple, or quadruple of these elements, such as {1, 3}, {1. 5}, and
£3, 7. 9}. Any subset that does #of contain a/f the elements of S'is called a proper subset of
S. But the sct S itself (with all its five clements) can also be considered as one of its own
subsets—cevery element of 5 is an clement of S, and thus the set S itsell fulfills the defini-
tion of a subset. This is, of course, a limiting case, that from which we get the largest pos-
sible subsct of S, namely, S itself,

At the other extreme, the smallest possible subset of .S is a sct that contains no element
at all. Such a set is called the mul ser, or empty set, denoted by the symbol (J or { }. The rea-
son for considering the null set as 4 subset of § is quite interesting: If the null set is not a
subsct of S (0 ¢ ), then & must contain at least one element x such that x ¢ .S But since
by definition the null set has no clement whatsoever, we cannat say that & ¢ S; hence the
nuil set is a subset of 5,

It is extremely important to distinguish the symbol & or | } clearly from the notation
{0} the former is devoid of elements, but the latter does contain an element, zero, The null
set is unique; there is only onc such set in the whole world, and it is considered a subsct of
arv set that can be concelved.

Counting all the subsets of S, including the two limiting cases § and &, we find 4 total
of 2° = 32 subsets, In general, if a set has # elements, a total of 2" subsets can be formed
from those elements.”

T Given a set with n elements {a, b, ¢, . . ., i} we may first classify its subsets into two categories: one
with the elerment a in it, and ane without. Each of these two can be further classified into two
subcategories: one with the element b in it, and one without. Note that by considering the second
element b, we double the number of categories in the classification from 2 to 4 (= 2%). By the same
token, the consideration of the element ¢ will increase the total number of categaries to 8 (= 2%
When all n elements are considered, the total number of categories will become the total number of
subsets, and that number is 2",
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As a third possible type of set relationship, two sets may have no elements in common
at all. In that case, the two scts arc said to be disjoint. For example, the set of all positive in-
tegers and the set of all negative integers are mutually exclusive; thus they are disjoint sets.

A fourth type of relationship occurs when two sets have some elements in common but
some elements peculiar to cach, In that event, the two sets are neither equal nor digjeint;
also, neither set is a subset of the other,

Operations on Sets
When we add, subtract, multiply, divide, or take the square root of some numbers, we are
performing mathematical operations. Although sets are different from numbers, one can
similarly perform certain mathematical opcrations on them, Three principal operations to
be discussed here involve the union, interscetion, and complement of sets.

To take the univn of two sets A and B means to form a new set containing those elements
{and only those elements) belonging to 4, or to B, or to both 4 and A. The union set is sym-
bolized by A U B (read: “/4 union B™).

If A=1{3,5, 7} and B= {2, 3, 4, 8), then
AUB =12,3,4,57 8

This example, incidentally, illusirates the case in which two sets A and £ are neither equal
nor disjoint and in which neither is a subsel of the other.

Again referring to Fig. 2.1, we see that the union of the set of all integers and the set of all
fractions is the set of all rational numbers. Similarly, the union of the rational-number set
and the irrational-numiber set yields the set of al! real numbers.

The infersection of two sets A and B, on the other hand, is a new set which contains those
elements {and only those elements) belonging to otk A and B. The interscetion set is sym-
bolized by 4 N A (read: “4 intersection B”).

From the sets 4 and Bin Example 1, we can write

AN B = (3

If A=1{-3,6,10t and B = {9, 2,7, 4}, then AN 8 = (. Set A and set 8 are disjoint; there-
fore their intersection is the empty set—no element is common to A and 8.

It is obvious that intersection 18 a more restrictive concept than union. In the former,
only the elements commaon to A and B arc aceeptable, whereas in the latter, membership in
either A or B 1s sufficient 1o establish membership in the union sct. The operator symbols
N and U—which, incidentally, have the samce kind of general status as the symbols / , +,
<+, etc.—therefore have the connotations “and™ and “or,” respectively. This point can be
better appreciated by comparing the following formal definitions of intersection and union:

Interscetion: ANB=x|xed4d and x e B}

Union: AUB=Jx|xecd or xebh}
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Union Inlersection Complement

AUB ANMA A

(e {h {e)

What about the complement of a sct? To explain this, let us first introduce the concept of
the universal set. In a particular context of discussion, if the only numbers used are the set
of the first seven positive integers, we may refer to it as the universal sct U. Then, with a
given set, say, 4 = {3, 6, 7}, we can define another set A (read: “the complement of A7) as
the set that contains all the numbers in the universal set U that arc not in the set 4. That 1s,

A={x|xeclU and x¢& A} =112 4,5)

Note that, whereas the symbol U has the connotation “or” and the symbol M means “and,”
the complement symbol ~ carries the implication of “not.”

U =1{56,7,8 9 and A=15 6}, then A={7,8 9.

What is the complement of {/? Since every object (number) under consideration is included
in the universal set, the complement of U must be empty, Thus Uf = (.

The three types of set operation can be visualized in the three diagrams of Fig. 2.2,
known as Venn diagrams. [n diagram a, the points in the upper circle form a set 4, and the
points in the lower circle form a sct B. The union of 4 and B then consists of the shaded area
covering both circles. In dizgram b are shown the same two sets (cireles). Since their inter-
section should comprise only the points common to both sets, only the (shaded) overlap-
ping portion of the two circles satisfies the definition. In diagram ¢, let the points in the
rectangle be the universal set and let A be the set of points in the circle; then the comple-
ment set 4 will be the (shaded) area outside the circle.

Laws of Set Operations

From Fig. 2.2, it may be noted that the shaded area in diagram @ represents not only
AU B but also BU A. Analogously, in diagram 5 the small shaded area is the visual
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AURUC ANBNC

(eh {h)

represcntation not only of 4 1 B but also of 5 M 4, When formalized, this result is known
as the commutative law (of unions and intersections):

AUB=8B14 ANB=8nNA4A

Thesc rclations are very similar to the algebraic laws ¢ + b =b+awanda x h = b x a.

To take the union of three sets A, B, and C, we first take the unien ol any two scts and
then “union” the resulting set with the third; a similar procedure is applicable to the inter-
section operation. The results of such operations are illusirated in Fig. 2.3. Tt is interesting
thal the order in which the sets are selected for the operation is immaterial. This fact gives
rise to the associagiive faw (of unions and intersections):

AU(BUC)=(AUBUC
ANBNCY=(ANB)NC

These equations are strongly reminiscent of the algebraic lawsa + (b +¢) = (a + bH) + ¢
anda x (bxc)={axbh) xc.

There 15 also a law of operation that applies when unions and intersections arc used in
combination. This 1s the distributive law (of unions and intersections):

AUBNO)Y=(4UB)N(AUC)
AN(BUC)=(4NB)U(ANC)
Thesc resemble the algebraic law a x (b +¢) = {a x b) + (a X ¢).
Verify the distributive law, given A =1{4, 5}, 8 =1{3,6, 7}, and C = {2, 3]. To verify the first
part of the law, we find the left- and right-hand expressions separately:
Left: AUBNO) =14,5U13) = 3,4, 5}
Rightt (AUB)N(AUC)=13,4,5,6,711N1{2,3,4,5 =13,4, 5!}
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Since the twa sides yield the same result, the law is verified. Repeating the procedure for the
second part of the law, we have

Left: AN(BUC)=14,5)712,3,6,7} =
Right: (ANB) (AN O =0U=0

Thus the law is again verified.

To verify a law means to check by a specific example whether the law actually works
out. If the law is valid, then any specific example ought indeed to work oul. This implies
that if the law does not check out in ag many as one single example, then the law is invali-
dated. On the other hand, the successful verification by specific examples thowever many)
does not in itself prove the taw. To prove a law, it is necessary to demaonsirale that the law is
valid for all possible cases. The procedure involved in such a demonstration will be illus-
trated later (see, c.g., Sec. 2.5).

EXERCISE 2.3

1. Write the following in set notation:
(@) The set of all real numbers greater than 34.
{b) The set of all real numbers greater than 8 but less than 65.

2. Giventhesets § = {2, 4,8}, S: = (7,2, 6}, $3 = 4, 2,6}, and 54 = {2, 4}, which of the
following statements are true?

(@ $1=135 (d)3¢ 5 (g) $1 0 34
(b} S5 = R (set of real numbers) (e) 4 ¢ 5 WNdcs;
(c) 8e 5z (fY 4 C R (i S3211,2)
3. Referring to the four sets given in Prob. 2, find:
(@ SuUs; (&) S 5 (e) 5243215
by 5uUs: {d) $7 5 (f) SSU5 U5y
4. Which of the following staternents are valid?
(@ AUA=A (d) Autl =U (g) The complement of
(B AnA=A (e} AN @ = Ais A
(€ AUZ=A (fy AnU =A

5. Given A ={4,5,6}, B =1{3,4,6,7}, and C = {2, 3, 6}, verify the distributive law.

6. Verify the distributive faw by means of Venn diagrams, with different orders of succes-
sive shading.

7. Enumerate all the subsets of the set {5, 6, 7).

8. Enumerate all the subsets of the set § = {a, b, ¢, d}. How many subsets are there
altogether?

9. Example 6 shows that & is the complement of U. But since the null set is a subset of
any set, & must be a subset of U, Inasmuch as the term “complement of U implies the
notion of being not in U, whereas the term “subset of U” implies the notion of being in
U, it seems paradoxical for J to be both-of these, How do you resolve this paradox?
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2.4 Relations and Functions

Example 1

Example 2

FIGURE 2.4

Our discussion of sets was prompted by the usage of that term in connection with the vari-
ous kinds of numbers in our number system. However, sets can refer as well to objects other
than numbers. In particular, we can spcak of sets of “ordered pairs”™—to be defined
presently—which will lead us to the important concepts of relations and functions.

Ordered Pairs

In writing a sct {a, £}, we do not care about the order in which the clements a and b appear,
because by definition {a, b} = {b, a}. The pair of elements ¢ and & is in this case an un-
ordered pair. When the ordering of @ and b does carry a significance, however, we can write
two different ordered pairs denoted by (a, b) and (b, @), which have the property that
(a,b) # (b, a) unless a = b, Similar concepts apply to a set with more than two clements,
in which case we can distinguish between ordered and unordered triples, quadruples, quin-
tuples, and so forth. Ordered pairs, triples, etc., collectively can be called ordered sets: they
are enclosed with parentheses rather than braces.

To show the age and weight of each student in a class, we can form ordered pairs (g, w), in
which the first element indicates the age (in years) and the second element indicates the
weight (in pounds). Then (19, 127) and (127, 19) would obviously mean different things.
Moreover, the latter ordered pair would hardly fit any student anywhere,

When we speak of the set of all contestants in an Olympic game, the order in which they
are listed is of no consequence and we have an unordered set. But the set {gold-medalist,
silver-medalist, bronze-medalist} is an ordered triple.

Ordered pairs, like other objects, can be elements of a set. Consider the rectangular
{Cartcsian) coordinate plane in Fig. 2.4, where an x axis and a y axis cross each other at a
right angle, dividing the plane into four quadrants. This xy plane is an infinite set of points,
each of which represents an ordered pair whose first element is an x value and the sccond
element a v valuc. Clearly, the point labeled (4, 2} is different from the point (2, 4); thus
ordering is significant herc.

Y
{Quadrant [1) (Quadrant T)
(2, 4) (4. 4)
¢ 4+ a .
* 3= a ]
{2,2) (4,2)
. P e ®
[ ] | + ® | ]
—
-4 -3 -1 -1 I 2 3 4 *
[ ] ol e » *
{Quadrant 111} {Quadrant TV)
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Example 3

With this visual understanding, we are ready to censider the process of generation of
ordered pairs. Suppose, from two given sets, x = {1, 2} and v = {3, 4}, we wish to form all
the possible ordered pairs with the first element taken from set x and the second element taken
from set . The result will, of course, be the set of four ordered pairs (1, 3),(1,4), (2, 3). and
(2, 4). This set is called the Curtesian product (named after Descartes), or direct product, of
the sets x and v and is denoted by x x y (read: “x cross y). It is important to remember that,
while x and y are sets of numbers, the Cartesian product turns out 1o be 4 set of ordered pairs.
By enumeration, or by description, we may express this Cartesian product alternatively as

L XY= {“13)$(l$4)>(2¥ 3)1(2y 4)}
or xxy=Ha,b)|aexandb € y|

The latter expression may in fact be taken as the general definition of Cartesian product for
any given sets x and p.

To broaden our horizon, now let both x and p include all the real numbers, Then the re-
sulting Cartesian product

rxy={{a,by|lae Randb c R} (2.3)

will represent the st of all ordered pairs with real-valued clements. Besides, cach ordered
pair corresponds to a unigue point in the Cartesian coordinate plane of Fig. 2.4, and, con-
versely, each point in the coordinate plane also corresponds to a unique ordered pair in the
set x x y. In vicw of this double uniqueness, a one-fo-one correspondence 15 said 10 exist
between the set of ordered pairs in the Cartesian product (2.3) and the set ol points in the
rectangular coordinate planc. The rationale for the notation x % v s now easy Lo percelve;
we may associate it with the erossing of the x axis and the y axis in Fig. 2.4, A simpler way
of expressing the sct x x p in (2.3) is to write it directly as ® x R; this is also commonly
denoted by R

Fxtending this idea, we may also define the Cartesian product of three sets x, v, and - as
follows:

xxyxz={la,b.c)ylacx, bey ccz}

which is a set of ordered triples. Furthermore, if the sets x, v, and z each consist of all
the real numbers, the Cartesian product will correspond to the set of all points in a three-
dimensional space. This may be denoted by ® x R x R, or more simply, R*. [n the present
discussion, all the variables are taken to be real-valued; thus the framework will generally
be R:, orRY, .. or K

Relations and Functions

Since any ordered pair associates a y value with an x value, any collection of ordered
pairs—any subset of the Cartesian product (2.3)—will constitute a relation between y and
x. Given an x value, one or more y values will be speeified by that relation. For convenience,
we shall now write the clements of x x v generally as (x, ¥)  rather than as (a, b), as was
donc in (2.3) --where both x and y are variables.

The set [(x, y) | ¥y = 2x] is a set of ordered pairs including, for example, (1, 2), (0, 0), and
(-1, —2). It constitutes a relation, and its graphicai counterpart is the set of points lying on
the straight line v = 2x, as seen in Fig. 2.5.
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)

The set {(x, y) | y = x], which consists of such ordered pairs as (1, @), (1, 1), and (1, —4),
constitutes another relation. In Fig. 2.5, this set corresponds to the set of all points in the
shaded area which satisfy the inequality y = x.

Obscrve that, when the x value is given, it may not always be possible to determine a
unigue y value from a relation. In Example 4, the three exemplary ordered pairs show that
if x = 1, y can take various values, such as 0, 1, or —4, and yct in cach case satisfy the
stated relation. Graphically, two or more points of a relation may fall on a single vertical
line in the xy plane. This is exemplified in Fig. 2.5, where many points in the shaded area
(representing the relation y < x) fall on the broken vertical line labeled x = 4.

As a special case, however, a relation may be such that for each x value there exists only
one corresponding y value. The relation in Example 3 is a case in point. In such a case, v is
said to be a function of x, and this is denoted by v = f{(x), which is read as “y equals fof
x” [Note: f(x) does not mean ftimes x.] A function is therefore a set of ordered pairs with
the property that any x valuc uniquely determines a v value." It should be clear that a func-
tion must be a relation, but a relation may not be a function.

Although the definition of a function stipuiates a unique y for each x, the converse is not
required. In other words, more than one x value may legitimately be associated with the
same y value. This possibility is illustrated in Fig. 2.6, where the values x| and x> in the x
set are both assoctated with the same value (o} in the v set by the function y = f(x).

A function 1s also called a mapping, or transformation; both words connote the action ol
associating one thing with another. Tn the statement y = /(x), the functional notation

T This definition of function corresponds to what would be called a singfe-valued function in the older
terminology. What was formerly called a muftivatued function ts now referred to as a refation or
correspondence,



