CHAPTER?Y

Modeling Correlated, Clustered
Responses

Many studies observe the response variable for each subject repeatedly, at several
times (such as in fongitudinal studies) or under various conditions. Repeated
measurement occurs commonly in health-related applications. For example, a
physician might evaluate patients at weekly intervals regarding whether a new drug
treatment is successful. Repeated observations on a subject are typically correlated.

Correlated observations can also occur when the response variable is observed for
martched sets of subjects. For example, a study of factors that affect childhood obesity
might sample families and then observe the children in each family. A matched set
consists of children within a particular family. Children from the same family may
tend to respond more similarly than children from different families. Another example
is a (survival, nonsurvival) response for each fetus in a litter of a pregnant mouse, for
a sample of pregnant mice exposed to various dosages of a toxin. Fetuses from the
same litter are likely to be more similar than fetuses from different litters.

We will refer to a matched set of observations as a cluster. For repeated
measurement on subjects, the set of observations for a given subject forms a cluster.
Observations within a cluster are usually positively correlated. Analyses should take
the correlation into account, Analyses that ignore the correlation can estimate model
parameters well, but the standard error estimators can be badly biased.
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9.1 MARGINAL MODELS VERSUS CONDITIONAL MODELS

As with independent observations, with clustered observations models focus on how
the probability of a particular outcome (e.g., “success”) depends on explanatory
variables, For longitudinal studies, one explanatory variable is the time of each
observation, For instance, in treating a chronic condition (such as a phobia) with
one of two treatments, the model might describe how the probability of success
depends on the treatment and on the length of time for which that treatment has
been used.

9.1.1 Marginal Models for a Clustered Binary Response

Let T denote the number of observations in each cluster. (In practice, the number of
observations ollen varies by cluster, but 1t 1s simpler to use notation that ignores that.)
Denote the T observations by (Y, Y2, ..., ¥Yr).

For binary responses, the 7 success probabilities [(P(Y; = 1), P(Y> =
D,.... P(Yr = 1)} are marginal probabilities of a T-dimensional contingency table
that cross classifies the 7 observations. Marginal models describe how the logits
of the marginal probabilities, [logit[ P(¥Y; = 1)]}, depend on explanatory variables.
To illustrate the models and questions of interest, let us consider an example to be
analyzed in Section 9.2,

9.1.2 Example: Longitudinal Study of Treatments for Depression

Table 9.1 refers to a longitudinal study comparing a new drug with a standard drug
for treating subjects suffering mental depression. Subjects were classified into two
groups according to whether the initial severity of depression was mild or severe.

Table 9.1. Cross-classification of Responses on Depression at Three Times
(N = Normal, A = Abnormal) by Treatment and Diagnosis Severity

Response at Three Times

Diagnosis

Severity Treatment NNN NNA NAN NAA ANN  ANA  AAN  AAA
Mild Standard 16 13 9 3 14 4 15 6
Mild New drug 3l 0 6 0 22 2 9 0
Severe Standard z 2 8 9 9 15 27 28
Severe New drug 7 2 5 2 3l 5 32 6

Sowrce: Reprinted with permission from the Biometric Society (G, G. Koch et al., Biomerrics, 33
133-158, 1977).
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In each group, subjects were randomly assigned to one of the two drugs. Following
1 week, 2 weeks, and 4 weeks of treatment, each subject’s extent of suffering from
mental depression was classified as normal or abnormal.

Table 9.1 shows four groups, the combinations of categories of two explanatory
variables — treatment type and severity of depression. Since the study observed the
binary response (depression assessment) at T = 3 occasions, Table 9.1 shows a 2 x
2 x 2 table for each group. The three depression assessments form a multivariate
response with three components, with ¥, = 1 for normal and 0 for abnormal at time
t. The 12 marginal distributions result from three repeated observations for each of
the four groups.

Table 9.2 shows sample proportions of normal responses for the 12 marginal dis-
tributions. For instance, from Table 9.1, the sample proportion of normal responses
after week 1 for subjects with mild depression using the standard drug was

(164+134+9+4+3)/(16+13+94+3+ 14+4+ 15+ 6) = 0.51

We see that the sample proportion of normal responses (1) increased over time for
each group, (2) increased at a faster rate for the new drug than the standard, for each
initial severity of depression, and (3) was higher for the mild than the severe cases
of depression, for each treatment at each occasion. In such a study, the company that
developed the new drug would hope to show that patients have a significantly higher
rate of improvement with it.

Let s denote the initial severity of depression, with s = 1 for severe and s =0
for mild. Let d denote the drug, with 4 = 1 for new and d = 0 for standard. Let
1 denote the time of measurement. When the time metric reflects cumulative drug
dosage, a logit scale often has an approximate linear effect for the logarithm of time.
We use scores (0, 1, 2), the logs to base 2 of the week numbers (1, 2, and 4). Similar
substantive results occur using the week numbers themselves.

Let P(Y; = 1) denote the probability of a normal response at time r for a randomly
selected subject. One possible model for how Y; depends on the severity s, drug d,
and the time 7 is the main effects model,

logit[P(Y; = 1)] = @ + fis + fad + B3t

Table 9.2. Sample Marginal Proportions of Normal Response for
Depression Data of Table 9.1

) ) Sample Proportion
Diagnosis
Severity Treatment Week 1 Week 2 Week 4
Mild Standard 0.51 0.39 0.68
New drug 0.53 0.79 0.97
Severe Standard 0.21 0.28 0.46

New drug 0.18 0.50 0.83
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This model assumes that the linear time effect fi3 is the same for each group. The
sample proportions in Table 9.2, however, show a higher rate of improvement for the
new drug. A more realistic model permits the time effect to differ by drug. We do this
by including a drug-by-time interaction term,

logit[P(Y; = D] =a + Bi1s + fad + B3t + fald x 1)

Here, A3 describes the time effect for the standard drug (d = 0) and B3 + f; describes
the time effect for the new drug (d = 1).

We will fit this model, interpret the estimates, and make inferences in Section 9.2,
We will see that an estimated slope (on the logit scale) inr the standard drug is
ﬂ3 = (0.48. For the new drug the estimated slope increases by ,84 = 1.02, yielding an
estimated slope of B3 + B4 = 1.50.
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