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We have examined the parameters of a transmission line and are ready to
consider the line as an element of a power system. Figure 6.1 shows a 500-kV
line having bundled conductors. In overhead lines the conductors are suspended
from the tower and insulated from it and from each other by insulators, the
number of which is determined by the voltage of the line. Each insulator string
in Fig. 6.1 has 22 insulators. The two shorter arms above the phase conductors
support wires usually made of steel. These wires, much smaller in diameter than
the phase conductors, are not visible in the picture, but they are electrically
connected to the tower and are therefore at ground potential. These wires are
referred to as shield or ground wires and shield the phase conductors from
lightning strokes.

A very important problem in the design and operation of a power system
is the maintenance of the voltage within specified limits at various points in the
system. In this chapter we develop formulas by which we can calculate the
voltage, current, and power at any point on a transmission line, provided we
know these values at one point, usually at one end of the line.

The purpose of this chapter, however, is not merely to develop the
pertinent equations, but also to provide an opportunity to understand the
effects of the parameters of the line on bus voltages and the flow of power. In
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194 CHAPTER 6 CURRENT AND VOLTAGE RELATIONS ON A TRANSMISSION LINE

FIGURE 6.1

A S00-kV transmission line. Conductors are 76/19 ACSR with aluminum cross section of 2,515,000
cmil. Spacing between phases is 30 ft 3 in and the two conductors per bundle are 18 in apart.
(Courtesy Carotina Power and Light Company.)
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this way we can see the importance of the design of the line and better
understand the developments to come in later chapters. This chapter also
provides an introduction to the study of transients on lossless lines in order to
indicate how problems arise due to surges caused by lightning and switching.

In the modern power system data from all over the system are being fed
continuously into on-line computers for control and information purposes.
Power-flow studies performed by a computer readily supply answers to ques-
tions concerning the effect of switching lines into and out of the system or of
changes in line parameters. Equations derived in this chapter remain important,
however, in developing an overall understanding of what is occurring on a
system and in calculating efficiency of transmission, losses, and limits of power
flow over a line for both stcady-state and transient conditions.

6.1 REPRESENTATION OF LINES

The genceral cquations relating voltage and current on a transmission line
recognizc the fact that all four ol the parameters of a transmission line
discussed in the two preceding chapters are uniformly distributed along the line.
We derive these general equations later, but first we use lumped parameters
which give good accuracy for short lines and for lines of medium length. If an
overhead line is classified as short, shunt capacitance is so small that it can be
omitted entirely with little loss of accuracy, and we need to consider only the
series resistance R and the series inductance L for the total length of the line.

A medium-length line can be represented sufficiently well by R and L as
lumped parameters, as shown in Fig. 6.2, with half the capacitance to neutral of
the line lumped at each end of the equivalent circuit. Shunt conductance G, as
mentioned previously, is usually neglected in overhead power transmission lines
when calculating voltage and current. The same circuit represents the short line
if capacitors are omitted.

Insofar as the handling of capacitance is concerned, open-wire 60-Hz lines
less than about 80 km (50 mi) long are short lines. Medium-length lines are
roughly between 80 km (50 mi) and 240 km (150 mi) long. Lines longer than 240
km (150 mi) requirc calculations in terms of distributed constants if a high
degree of accuracy is requircd, although for some purposes a lumped-parameter
representation can be used for lines up to 320 km (200 mi) long.

R L
AN —— T

H
T

2 Single-phase equivalent of a medium-
length line. The capacitors are omitted
for a short line. ‘

J, r
Q,[ Vi FIGURE 6.2
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Normally, transmission lines are operated with balanced three-phase loads.
Although the lines are not spaced equilaterally and not transposed, the resulting
dissymmetry is slight and the phases are considered to be balanced.

In order to distinguish between the total series impedance of a line and
the series impedance per unit length, the following nomenclature is adopted:

z = series impedance per unit lcngth per phase

y = shunt admittance per unit length per phase to neutral

[ = length of linc

Z [ = total scrics impcdance per phase
Y

z
yl = total shunt admittance per phase to neutral

6.2 THE SHORT TRANSMISSION LINE

The equivalent circuit of a short transmission line is shown in Fig. 6.3, where /;
and [ are the sending- and receiving-end currents, respectively, and Vs and Vi
are the sending- and receiving-end line-to-neutral voltages.

The circuit is solved as a simple series ac circuit. So,

Is =1, (6.1)
Vo= Vg + 1,2 (6.2)

-where Z is zl, the total series impedance of the line.

The effect of the variation of the power factor of the load on the voltage
regulation of a line is most easily understood for the ‘short line and therefore
will be considered at this timc. Voltage regulation of a transmission line is the
rise in voltage at the receiving end, expressed in percent of full-load voltage,
‘when full load at a specified power factor is removed while the sending-end

is Ir
P Z=R+jwl PN
T{ A W—T/—\
Gen. Vs Ve Load
FIGURE 6.3

Equivalent circuit of a short transmission line where the resistance R and inductance L are values
for the entire length of the line.
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1A I Vs Ip X}
Vs . Iy X,
. T X > R, »" I, R
/ZV - I Ve \pg Y
Ir IR

(a) Load p.f.=70% lag (b) Load p.f.=100% (c) Load p.f.=70% lead

FIGURE 6.4

Phasor diagrams of a short transmission line. All diagrams are drawn for the same magnitudes of Vj
and /.

voltage is held constant. Corresponding to Eq. (2.33) we can write

Vi vl = Wr ke
Percent rcgulation = —— - P %100 (6.3)
“/R,/"l.’

where [V, . |is the magnitude of receiving-end voltage at no load and [V ., |is
the magnitude of receiving-end voltage at full load with {V| constant. After the
load on a short transmission line, represented by the circuit of Fig. 6.3, is
removed, the voltage at the receiving end is equal to the voltage at the sending
end. In Fig. 6.3, with the load connected, the receiving-end voltage is designated
by Vi, and [Vgl = Vi |- The sending-end voltage is Vs, and [Vg| = [V ,|. The
phasor diagrams of Fig. 6.4 are drawn for the same magnitudes of the receiving-
end voltage and current and show that a larger value of the sending-end voltage
is required to maintain a given receiving-end voltage when the receiving-end
current is lagging the voltage than when the same current and voltage are in
phase. A still smaller sending-end voltage is required to maintain the given
receiving-end voltage when the receiving-end current leads the voltage. The
voltage drop is the same in the series impedance of the line in all cases; because
of the different power factors, however, the voltage drop is added to the
rcceiving-cend voltage at a different angle in cach casc. The regulation is greatest
for lagging power [actors and lcast, or even ncgative, [or leading power factors.
The inductive rcactance of a transmission linc is larger than the resistance, and
the principle of rcgulation illustrated in Fig. 6.4 is truc for any load supplied by
a prcdominantly inductive circuit. The magnitudes of the voltage drops /4, R and
I.X, for a short line have been exaggerated with respect to V,, in drawing the
phasor diagrams in order to illustratc the point more clearly. The relation
between power factor and regulation for longer lines is similar to that for short
lines but is not visualized so easily.

Example 6.1. A 300-MVA 20-kV thrce-phase generator has a subtransient react-
ance of 20%. The generator supplies a number of synchronous motors over a
64-km transmission line having transformers at both ends, as shown on the
one-line diagram of Fig. 6.5. The motors, all rated 13.2 kV, are represented by just

r
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(20 kV) (13.8kV)
(230 kV) T, P

T,
O %gs mg(,,,"@ et
< . r M;
Qé? ;g— O~

FIGURE 6.5
One-line diagram for Example 6.1.

two equivalent motors. The neutral of onc motor M, is groundcd through
reactance. The ncutral of the sccond motor M, is not connccted to ground (an
unusual condition). Rated inputs to the motors are 200 MVA and 100 kVA for M,
and M,, respectively. For both motors X, = 20%. The thrce-phasc transformer
T, is rated 350 MVA, 230/20 kV with lcakage rcactance of 10%. Transformer T,
is composed of thrce single-phase transformers, cach rated 127/13.2 kV, 100
MV A with Icakagc rcactance of 10%. Scrics rcactance of the transmission line is
0.5 Q/km. Draw the reactance diagram with all reactances marked in per unit.
Select the generator rating as base in the generator circuit.

Solution. The three-phase rating of transformer 7, is
3 X 100 = 300 kVA
and its line-to-line voltage ratio is

127 220

V3 X — = — kV

13.2 13.2

A base of 300 MV A, 20 kV in the gcnerator circuit requires a 300-MVA base in all
parts of the systemi and thc following voltage bascs:

In the transmission line: 230 kV  (since T is rated 230/20 kV)

13.2
In th tor circuit: 230 —— = 13.8 kV
n the motor circui 220

These bases are shown in parentheses on the one-line diagram of Fig. 6.5. The
reactances of the transformers converted to the proper base are

300
Transformer T;: X =0.1Xx 350 - 0.0857 per unit

13.2\2
Transformer T,: X = O'I(W) = 0.0915 per unit ‘
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2 J0.0857 ; ;0.1815 m J0.0915
OO0 LI
J0.2 .
j0.2745
p +
z Eml
FIGURE 6.6

Reactance diagram for Example 6.1. Reactances are in per unit on the specified base.

The basc impcdance of the transmission hinc is

2

(220) 76.3Q
30 O
and the reactance of the line is

0.5 x 64 0.1815 .

—F— = 0. t

176 3 perum
300\ (13.2\° _ _
Reactance X of motor M, = 0.2 >0 (m] = (.2745 per unit
300)(13.2\? ,
Reactance X of motor M, = 0.2 — || —=—= | = 0.5490 per unit

100 /\ 13.8

Figure 6.6 is thc required reactance diagram when transformer phase shifts are
omitted.

Example 6.2. If thc motors M, and M, ol Example 6.1 have inputs of 120 and 60
MW, respectively, at 13.2 kV, and both opcrate at unity power factor, find the
voltage at thc terminals of thc generator and the voltage rcgulation of the line.

Sotution. Togcther the motors take 180 MW, or

180 '
300 = (0.6 per unit

Therefore, with V' and / at the motors in per unit,

VI X 11l = 0.6 per unit



200 CHAPTER 6 CURRENT AND VOLTAGE RELATIONS ON A TRANSMISSION LINE

With phase-a voltage at the motor terminals as reference, we have

13.2

V= 1*3—8 = 0.9565/ 0° per unit

0.6
I = 0.9565 = 0.6273{ 0° per unit

Phasc-a per-unit voltages at otha points of g, 0.6 are
At V' =0.9565 + 0.6273(0.0915)
0.9565 + j0.0574 = U.‘)SSE{ 3.434° pcr unit

At [ V= 0.9565 + 0.6273(0.0915 + j0.1815)

0.9565 +0.1713 = 0.9717/ 10.154° per unit

:

At k. V' =10.9565 + 0.6273(j0.091S5 + j0.1815 + j0.0857)

0.9565 + j0.2250 = 0.9826 / 13.237° per unit

;

The voltage regulation of the line is

. (0.9826 — 0.9582
Percent regulation = X 100 = 2.55%
0.9582

and the magnitudce of the voltage al the generator terminals is

0.9826 x 20 = 19.652 kV

If it is desircd to show the phase shifts duc to the ¥ — A transformers, the angles
of the phase-a voltages at m and [ should be increased by 30°. Then the angle of
the phase-a current in the line should also be increased by 30° from 0°.

6.3 THE MEDIUM-LENGTH LINE

The shunt admittance, usually pure capacitance, is included in the calculations
for a line of medium length. If the total shunt admittance of the line is divided
into two equal parts placed at the sending and receiving ends of the line, the
circuit is called a nominal w. We refer to Fig. 6.7 to derive equations. To gbtain
an' expression for V;, we note that the current in the capacitance at the
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I I
== . AL Ty
Y Y
v _ = —_ ==
s 2 2 V& FIGURE 6.7
_ l l Nominal-= circuit of a medium-length
7 transmission line.

receiving end is V3Y/2 and the current in the series arm is /p + V;Y /2. Then,

Y

Ve = (VRE + | Z + Vg (6.4)
A4

Vs = [7 + 1V, + 21, (6.5)

To derive /¢, we note that the current in the shunt capacitance at the sending
end is VY /2, which added to the current in the series arm gives

Y Y

Substituting V, as given by Eg. (6.5), in Eq. (6.6) yields

ZY
1+ —
4

zY
— +1

l.=V1,Y +
5 R 2

In (6.7)

Equations (6.5) and (6.7) may be expressed in the general form

Ve = AV, + BI, (6.8)
I, = CV, + Di, (6.9)
ZY
where A=D = 7 + 1
(6.10)
zZY
B=2Z C=Y|1l+ T]

These ABCD constants are sometimes called the generalized circuit constants of-
the transmission line. In general, they are complex numbers. A and D are
dimensionless and equal each other if the line is the same when viewed from
either end. The dimensions of B and C are ohms and mhos or siemens,
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respectively. The constants apply to any linear, passive, and bilateral four-termi-
nal network having two pairs of terminals. Such a network is called a two-port
network.

A physical meaning is easily assigned to the constants. By letting /, be
zero in Eq. (6.8), we see that A is the ratio Vg /V, at no load. Similarly, B is the
ratio Vs /I, when the receiving end is short-circuited. The constant 4 is useful
in computing regulation. If V,, .. is the recciving-end voltage at full load for a
sending-end voltage of Vg, Eq. (6.3) becomes

Wil/l AL =1V} o,
Percent regulation = —2 K % 100 (6.11)
\VI{,I"I_|

Table A.6 in the Appendix lists ABCD constants for various networks and
combinations of nctworks.

6.4 THE LONG TRANSMISSION LINE:
SOLUTION OF THE DIFFERENTIAL
EQUATIONS

The exact solution of any transmission line and the one required for a high
degree of accuracy in calculating 60-Hz lines more than approximately 150 mi
long must consider the fact that the parameters of the lines are not lumped but,
rather, are distributed uniformly throughout the length of the line.

Figure 6.8 shows one phase and the neutral connection of a three-phase
line. Lumped parameters are not shown because we are ready to consider the
solution of the line with the impedance and admittance uniformly distributed.
In Fig. 6.8 we consider a differential element of length dx in the line at a
distance x from the receiving end of the line. Then zdx and ydx are,
respectively, the series impedance and shunt admittance of the elemental
section. V' and [ are phasors which vary with x.

1

/-"*‘% I+dlI I
o |_I_,, —
+ + : RS +1
i |
! {
Gen. Vs V+dv % Ve Load
t [
l J: |
|
- vy ! (I _
Ir<—dx—f-<— x
| |
FIGURE 6.8

Schematic diagram of a transmission line showing one phase and the neutral return. Nomenglature
for the line and the elemental length are indicated.
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Average line current in the element is (/ + I + dI)/2, and the increase of
V' in the distance dx is quite accurately expressed as

I+1+dl

dV = —— —zdv = lzdy (6.12)

when products of the differential quantities are neglected. Similarly,

V+V+dV

dl = -—2—y(ix = Vydx (613)

Then, from Egs. (6.12) and (6.13) we have

av ;
o z (6.14)
d a %
an o
Em y (6.15)

Let us differentiate Eqgs. (6.14) and (6.15) with respect to x, and we obtain

da*v dl :
a? (6.16)
d d*l av
a —_— =y —
n e e (6.17)

If we substitute the values of dI/dx and dV//dx from Egs. (6.15) and (6.14) in
Eqgs. (6.16) and (6.17), respectively, we obtain

d?V
PRl (6.18)
d®]

and W = }’Z/ (619)

Now we have Eq. (6.18) in which the only variables are V and x and Eq. (6.19)
in which the only variables are / and x. The solutions of those equations for V
and /, respectively, must be expressions which when differentiated twice with
respect to x yield the original expression times the constant yz. For instance,
the solution for V' when differentiated twice with respect to x must yield yzV.
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This suggests an exponential form of solution. Assume that the solution of Eq.

(6.18) is
V=Ael*" + A,e” V¥ (6.20)
Taking the second derivative of V' with respect to x in Eq. (6.20) yields

d*v
e zyz[Alev/ﬁ"'+Azs‘ y“] (6.21)

which is yz times the assumed solution for V. Therefore, Eq. (6.20) is the
solution of Eq. (6.18). When we substitute the value given by Eq. (6.20) for V' in
Eq. (6.14), we obtain

] 1
[= A eV — e 4, (6.22)
Vz/y Vz/y

The constants 4, and 4, can be evaluated by using the conditions at the
receiving end of the line; namely, when x = 0, V' = V, and / = I,. Substitution
of these values in Eqs. (6.20) and (6.22) yields

1
Ve=A,+A, and Iy= ——(A, - A)

vz/y

Substituting Z_ = yz/y and solving for 4, give

Ve + 1oZ. Ve — 122,
Al"‘_R_zR and Azz_R_z_L

Then, substituting the values found for 4, and A, in Egs. (6.20) and (6.22) and
letting v = \/y_z, we obtain

Ve + I Z, Ve — Ig2,
R L 2 G S £ (6.23)
2 2
Ve/Zo + I Vi/Z, — 1
1=—————R/; Rs**—————R/£ e (6.24)

where Z_ = \/ﬁ and is called the characteristic impedance of the line, and
v = \/5 and is called the propagation constant.

Equations (6.23) and (6.24) give the rms values of V and / and their phase
angles at any specified point along the line in terms of the distance x from the

receiving end to the specified point, provided V}, /., and the parameters of the
line are known.
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6.5 THE LONG TRANSMISSION LINE:
INTERPRETATION OF THE EQUATIONS

Both y and Z, are complex quantities. The real part of the propagation
constant <y is called the attenuation constant « and is measured in nepers per
unit length. The quadrature part of v is called the phase constant B and is
measured in radians per unit length. Thus,

y=a+jp (6.25)

and Egs. (6.23) and (6.24) become

Ve + 1eZ. Ve—1,2Z, |
Ve BB agipe p R R e i (6.26)
2 2
Vo/Z. + 1 vz -1 |
and [ = RATme R 5 Re”"e’ﬁ" _ e R > Rs“”e TIBx (6.27)

The properties of ¢°* and €’?* help to explain the variation of the phasor
values of voltage and current as a function of distance along the line. The term
£°* changes in magnitude as x changes, but £/#* (identical to cos Bx + j sin Sx)
always has a magnitude of 1 and causes a shift in phase of 8 radians per unit
length of line.

The first term in Eq. (6.26), [(V,, + IxZ.)/2)e**¢’P*, increases in magni-
tude and advances in phase as distance x from the receiving end increases.
Conversely, as progress along the line from the sending end toward the
receiving end is considered, the term diminishes in magnitude and is retarded in
phase. This is the characteristic of a traveling wave and is similar to the
behavior of a wave in water, which varies in magnitude with time at any point,
whereas its phase is retarded and its maximum value diminishes with distance
from the origin. The variation in instantaneous value is not expressed in the
term but is understood since V,, and /,, arc phasors. The first term in Eq. (6.26)
1s called the mcident voltage.

The sccond term in Eq. (6.26), [(V,, — 1,2Z,)/2)e “*& /P, diminishes in
magnitudc and is retarded in phase from the rccciving end toward the sending
end. It is called the reflected voltage. At any point along the line the voltage is
the sum of the component incident and reflected voltages at that point.

Since the cquation for current is similar to the equation for voltage, the
current may bc considered to be composcd of incident and reflected currents.

If a line is terminated in its characteristic impedance Z_, receiving-end
voltage V, is equal to /,Z_ and there is no reflected wave of either voltage or
current, as may be seen by substituting /,Z, for V, in Egs. (6.26) and (6.27). A
line terminated in its characteristic impedance is called a flar line or an infinite
line. The latter term arises from the fact that a line of infinite length cannot
have a reflected wave. Usually, power lines are not terminated in thleir charac-
teristic impedance, but communication lines are frequently so terminated in
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order to eliminate the reflected wave. A typical value of Z_ is 400 () for a
single-circuit overhead linc and 200  for two circuits in parallcl. The phase
angle of Z_ is usually between 0 and — 15°. Bundled-conductor lines have lower
values of Z_ since such lines have lower L and higher C than lines with a single
conductor per phase.

In power system work characteristic impedance is sometimes called surge
impedance. The term “surge impcdance,” however, is usually reserved for the
special case of a lossless linc. If a linc is lossless, its series resistance and shunt
conductance are zero and the characteristic impedance reduces to the real
number L /C, which has the dimcnsions of ohms when L is the series
inductance of the line in henrys and C is the shunt capacitance in farads. Also,
the propagation constant y = \/5 for thc line of length / reduces to the
imaginary number j3 =jun/R‘"/l since the attenuation constant a resulting
from line losses is zero. When dealing with high frequencies or with surges due
to lightning, losses are often neglected and the surge impedance becomes
important. Surge-impedance loading (SIL) of a line is the power delivered by a

line to a purely resistive load equal to its surge impedance. When so loaded, the
line supplies a current of

WVl

W= mscnet

where [V, | is the line-to-line voltage at the load. Since the load is pure
resistance,

191

smm@mﬁxﬁzw

or with |V, | in kilovolts,

v, |?
SIL = —=—— MW . (6.28)

vL/C

‘ Power system engineers sometimes find it convenient to express the power
transmitted by a line in terms of per unit of SIL, that is, as the ratio of the
power transmitted to the surge-impedance loading. For instance, the permissi-
ble loading of a transmission line may be expressed as a fraction of its SIL, and
SIL provides a comparison of load-carrying capabilities of lines.!

A wavelength A is the distance along a line between two points of a wave
which differ in phase by 360°, or 27 rad. If B is the phase shift in radians per

'See R. D. Dunlop, R. Gutman, and P. P. Marchenko, “Analytical Development of Loadability
Characteristics for EHV and UHV Transmission Lines,” IEEE Transactions on Power Apparatus
and Systems, vol. PAS-98, no. 2, 1979, pp. 606-617.
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mile, the wavelength in miles is
A= — (6.29)

The velocity of propagation of a wave in miles per second is the product of the
wavelength in miles and the frequency in hertz, or

o
Velocity = A f = %}l (6.30)

For the lossless line of length / meters B = 2w fyLC /I and Egs. (6.29) and
(6.30) become

[ [

= f\/_ﬁ m velocity = ﬁ m/s

A

When values of L and C for low-loss overhead lines are substituted in these
equations, it 1s found that the wavelength is approximately 3000 mi at a
frequency of 60 Hz and the velocity of propagation is very nearly the speed of
light in air (approximately 186,000 mi/s or 3 X 108 m/s).

If there is no load on a line, I is equal to zero, and as determined by Eqgs.
(6.26) and (6.27), the incident and reflected voltages are equal in magnitude and
in phase at the receiving end. In this case the incident and reflected currents are
equal in magnitude but are 180° out of phase at the receiving end. Thus, the
incident and reflected currents cancel each other at the receiving end of an
open line but not at any other point unless the line is entirely lossless so that the
attenuation « Is zero.

6.6 THE LONG TRANSMISSION LINE:
HYPERBOLIC FORM OF THE EQUATIONS

The incident and reflected waves of voltage arc scldom found when calculating
the voltage of a power line. The reason for discussing the voltage and the
current of a line in terms of the incident and reflectcd components is that such
an analysis is hclpful in obtaining a bectter understanding of some of the
phenomena of transmission lines. A more convenient form of the equations for
computing current and voltage ol a powcer line is found by introducing hyper-
bolic functions. Hyperbolic functions are defined in cxponential form

sinh§ = ——— (6.31)

—— . (6.32)
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By rearranging Egs. (6.23) and (6.24) and substituting hyperbolic functions for
the exponential terms, we find a new set of equations. The new equations, giving
voltage and current anywhere along the line, are

V =Vgcoshyx + [ Z, sinh yx (6.33)
Ve .
I =1I,coshyx + Z sinh yx (6.34)

c

Letting x = / to obtain the voltage and the current at the sending end, we have
Vi = Vycosh yl + [,Z.sinh yl (6.35)

%
J¢ = 1, cosh yl + Z—"‘ sinh y/ (6.36)

C

From examination of these equations we see that the generalized circuit
constants for a long line are

sinh v/
A = cosh vyl C =
Z (6.37)
B = Z_sinhyl D = cosh v/

Solving Eqs. (6.35) and (6.36) for V, and I, in terms of V and I, we obtain

Ve =Vscoshyl — IZ_ sinhyl (6.38)
Vy
I, = I cosh yl — 7 sinh y/ (6.39)

c

For balanced three-phase lines the currents in the above equations are
line currents and the voltages are line-to-neutral voltages, that is, line voltages
divided by V3 . In order to solve the equations, the hyperbolic functions must be
evaluated. Since v/ is usually complex, the hyperbolic functions are also
complex and can be evaluated with the assistance of a calculator or computer.

For solving an occasional problem without resorting to a computer there
are several choices. The following equations give the expansions of hyperbolic
sines and cosines of complex arguments in terms of circular and hyperbolic
functions of real arguments:

cosh(al + jBl) = cosh al cos B! + jsinh a! sin B/ (6.40)
sinh(al + jBI) = sinh al cos B! + j cosh al sin B/ (6.41)

Equations (6.40) and (6.41) makc possible the computation of hyperbolic func-
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tions of complex arguments. The correct mathematical unit for 8/ is the radian,
and the radian is the unit found for B8/ by computing the quadrature component
of y/. Equations (6.40) and (6.41) can be verified by substituting in them the
exponential forms of the hyperbolic functions and the similar exponential forms
of the circular functions.

Another method of evaluating complex hyperbolic functions is suggested
by Egs. (6.31) and (6.32). Substituting e + jB for 6, we obtain

£%/B 4 gmagiB

1
cosh(a +jB) = - =s(e/8 +e/-B) (6.42)

e"eP — g7 TP

sinh(a + jB) = > = %(g“ﬂa e/ —#) (6.43)

Example 6.3. A single-circuit 60-Hz transmission line is 370 km (230 mi) long. The
conductors are Rook with flat horizontal spacing and 7.25 m (23.8 ft) between
cenductors. The load on the line is 125 MW at 215 kV with 100% power factor.
Find the voltage, current, and power at the sending end and the voltage regulation
of the line. Also, determine the wavelength and velocity of propagation of the line.

Solution. Feet and miles rather than meters and kilometers are chosen for the
calculations in order to use Tables A.3 through A.5 in the Appendix:

3
Do, = V238 X 23.8 X 47.6 =30.0 ft
and from the tables for Rook
z=0.1603 +(0.415 + 0.4127) = 0.8431/ 79.04° Q/mi

y =j[1/(0.0950 + 0.1009)] x 107% = 5.105 X 10—6Q0° S/mi

79.04° + 90°
2

yl = \Jyzl = 230Y0 8431 x 5.105 x 10““/

= 04772/ 84.52° = 0.0456 + j0.4750

Fq 0.8431 79.04° — 90°
Z.o= = = _ 4064/ —5.48 Q
TV \/5.105 % 10 * / 2 /=598
215,000
V3

125,000,000
Jo= ——
R /3 x 215,000

= 124,130/ 0° V to neutral

=335.7/0° A
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From Eqs. (6.42) and (6.43) and noting that 0.4750 rad = 27.22°

1 1
— _ .0.0456 i o 4 _ .-00456 i _ a
cosh ¥l = 25 27.22° + 28 27.22

0.4654 + j0.2394 + 0.4248 — j0.2185

0.8902 + j0.0209 = 0.8904{ 1.34°

sinh yl = 0.4654 + j0.2394 — 0.4248 + j0.2185

= 0.0406 + j0.4579 = 0.4597/ 84.93°

Then, from Eq. (6.35)

Vs = 124,130 x 0.8904/ 1.34° + 335.7 x 406.4/ ~5.48° x 04597/ 84.93°

= 110,495 + j2,585 + 11,483 + j61,656

137,860/ 27.77° V

and from Eq. (6.36)

124,130
Is = 335.7 X 0.8904 / 1.34° + X 0.4597{ 84.93°
406.4/ —5.48°

= 298.83 +,6.99 — 1.00 + j140.41

= 33231/ 2633 A

At the sending end

Line voltage = V3 x 137.86 = 238.8 kV
Line current = 332.3 A

Power factor = cos(27.77° — 26.33°) = 0.9997 = 1.0
Power = V3 x 238.8 X 332.3 X 1.0 = 137,443 kW
From Eq. (6.35) we see that at no load (I, = 0)

Vs
cosh y!

VR -
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So, the voltage regulation is

137.86,/0.8904 — 124.13
124.13

X 100 = 24.7%

The wavelength and velocity of propagation are computed as follows:

0.4750
B = —55— = 0.002065 rad /mi
29 2T
- = — = 3043 mi
3 0.002065 m

Vclocity = fA = 60 x 3043 = 182,580 mi/s

We note particularly in this cxample that in the equations for V; and [
the value of voltage must be expressed in volts and must be the line-to-neutral

voltage.

Example 6.4. Solve for the sending-end voltage and the current found in Example
6.3 using per-unit calculations.

Solution. We choose a base of 125 MVA, 215 kV to achieve the simplest per-unit
values and to compute base impedance and basc current as follows:

2152
Base impedance = —— = 370 ()
125
125,000 )
Base current = ——— = 335.7 A
V3 x 215
406.4/ —5.48°
So, _ Z,. = %— = 1.0981—5,48O per unit
y 215 215/V3 o _
= = —_ = . C t
% 15 215/‘/3 peruni

For use in Eq. (6.35) we chosc V, as the reference voltage. So,

Ve = 1.0/ 0° per unit (as a linc-to-ncutral voltage)

and since the load is at unity power factor,
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If the power factor had been less than 100%, I, would have been greater than 1.0
and would have been at an angle determined by the power factor. By Eq. (6.35)

1.0 X 0.8904 + 1.0 X 1.098/ —5.48° X 0.4597/ 84.93°

0.8902 + j0.0208 + 0.0923 + j0.4961

1.1102/ 27.75° per unit

and by Eq. (6.36)

1.0/ 0°
Is=1.0x0.8904/134° + X 0.4597/ 84.93°

1.098 / —5.48°

Vs

0.8902 + ;0.0208 — 0.0031 + ;0.4186

= 0.990{ 26.35° per unil

At the sending end
Line voltage = 1.1102 X 215 = 238.7kV

Line current = 0.990 x 335.7 = 3323 A

Note that we multiply line-to-line voltage base by the per-unit magnitude of the
voltage to find the line-to-line voltage magnitude. We could have multiplied the
line-to-neutral voltage base by the per-unit voltage to find the line-to-neutral
voltage magnitude. The factor V3 does not enter the calculations after we have
expressed all quantities in per unit.

6.7 THE EQUIVALENT CIRCUIT
OF A LONG LINE

The nominal-7r circuit does not represent a transmission line exactly because it
does not account for the parameters of the line being uniformly distributed. The
discrepancy between the nominal 7 and the actual line becomes larger as the
length of line increases. It is possible, however, to find the equivalent circuit of a
long transmission line and to represent the line accurately, insofar as measure-
ments at the ends of the line are concerned, by a network of lumped parame-
ters. Let us assume that a 7 circuit similar to that of Fig. 6.7 is the equivalent
circuit of a long line, but let us call the series arm of our equivalent-m circuit Z’
and the shunt arms Y'/2 to distinguish them from the arms of the nominal-m
circuit. Equation (6.5) gives the sending-end voltage of a symmetrical-m circuit
in terms of its series and shunt arms and the voltage and current at the receiving
end. By substituting Z’ and Y’/2 for Z and Y/2 in Eq. (6.5), we obtain the
sending-end voltage of our equivalent circuit in terms of its series and shunt
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arms and the voltage and current at the receiving end:
Z'Y’
VS = + 1
2

For our circuit to be equivalent to the long transmission line the coefficients of
Ve and I in Eq. (6.44) must be identical, respectively, to the coefficients of Vj
and /I, in Eq. (6.35). Equating the coeflicients of /, in the two equations yields

Ve + Z'15 (6.44)

Z' = Z_sinh vyl (6.45)
z sinh y!
Z' =,/ — sinhyl =zl—
y \zy/
sinh v/
= Y (6.46)
vl

where Z is equal to z/, the total series impedance of the line. The term
(sinh y!/)/v! is the factor bv which the series impedance of the nominal 7 must
be multiplied to convert the nominal = to the equivalent 7. For small values of
vl, both sinh y/ and <! are almost identical, and this fact shows that the
nominal 7 represents the medium-length transmission line quite accurately,
insofar as the series arm is concerned.

To investigate the shunt arms of the equivalent-#+ circuit, we equate the
coefticients of V in Eqs. (6.35) and (6.44) and obtain

Z'Y’
5 + 1 = cosh y! (6.47)

Substituting Z, sinh y! for Z' gives

Y'Z_ sinh y!

5 + 1 = cosh y!/ (6.48)
Y’ 1 coshyl -1

SN A (6.49)
2 V4 sinh !/

C

Another form of the expression for the shunt admittance of the equivalent
circuit can be found by substituting in Eq. (6.49) the identity

vl coshyl =1
tanh — = ——— (6.50)
2 sinh y/

The identity can be verified by substituting the exponential forms of ‘Eqs. (6.31)
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Z =2Z. sinh vl = z%,—”

I

’ Y _ 1 1
lz" 7" Z. tanh -
_ Y tanh 71/2 FIGURE 6.9 o
T2 ez Equivalent-r circuit of a trans-

mission line.

and (6.32) for the hyperbolic functions and by recalling that tanh 8 =
sinh 8 /cosh 6. Now

Y’ ] ) vl 3
—_— = — t _ .
5 2 anh — (6.51)

Y’ Y tanh(yl/2
Y'_ Y tanh(yl/2) (6.52)
2 27 i

where Y is equal to y/, the total shunt admittance of the line. Equation (6.52)
shows the correction factor used to convert the admittance of the shunt arms of
the nominal 7 to that of the equivalent . Since tanh(y!//2) and y//2 are very
nearly equal for small values of v/, the nominal 7 represents the medium-length
transmission line quite accurately, for we have seen previously that the correc-
tion factor for the series arm is negligible for medium-length lines. The

equivalent-mr circuit is shown in Fig. 6.9. An equivalent-T circuit can also be
found for a transmission line.

Example 6.5. Find the equivalent-m circuit for the line described in Example 6.3
and comparc it with thec nominal-w circuit.

Solution. Sincc sinh y/ and cosh y/ arc alrcady known from Lxample 6.3, Egs.
(6.45) and (6.49) arc now uscd.

406.4{ —5.48° X 0‘4597{ 84 93° = 186.82{ 79.45° € in scrics arm

Y’ 0.8902 +,0.0208 —- 1 0.1118/ 169.27°

2 186.82/ 79.45° 186.82 / 79.45°

= 0.000599{ 89.82° S In each shunt arm

N
I

Using the values of z and y from Example 6.3, we find for the nominal-7 circuit a
series impedance of

Z = 230 x 0.8431/79.04° = 193.9/79.04° ‘




