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We h ave examined the parameters of a transmission l ine and are ready to 
consider the l ine as an element of  a power system. Figure 6.1 s hows a 500-kV 
l ine  having bund led conductors. I n  overhead l ines the conductors are suspended 
from the tower and  i nsulated from i t  and from each other  by  insulators, the  
number of  wh ich i s  determined by  the vol tage of  the l ine .  Each insulator s t r i ng  
i n  F ig . 6 . 1  has  22 insu lators .  The  two shorter arms above t he  phase conductors 
support wires usua l ly made of stee l .  Th ese wires, much smal ler in  d iameter  than 
the phase conductors, are not v is ib le  in the p ic ture, but they are e lectri ca l ly 
connected to the tower and are therefore a t  ground potential .  These wires are 
referred to as shield or ground wires and shie ld the phase conductors from 
l ightning strokes. 

A very important  problem in the design and operation of a power system 
i s  the  ma intenance of the vol tage wi thin specified l im i t s  a t  various points in  t he 
sys tem.  I n  th is chapter we develop formulas by which we can ca lcu l a te  the 
vol tage, current, and power at any point on a transmission l ine,  p rovided we  
know these values a t  one poin t ,  usua l ly at  one  end  of  t he  l ine .  

The purpose of th i s  chapter, however, is not merely to develop the 
pert inent equat ions, but a l so to provide an opportunity to und,erstand the 
effects of the parameters of the l ine on bus voltages and the flow of power .  In 
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FIGURE 6.1 
A 500-kV transmission l ine.  Conductors are 76/ 1 9  ACS R with a l um inum cross sect ion of 2,5 1 5 ,000 
emi l .  Spacing between phases is 30 ft 3 i n  a n d  t h e  two conductors per bund le  are 1 8  in apart .  
(Courtesy Carolina Power and Light Company.)  



6 . 1  REPRESENTATION OF LINES 195 

th is way we can see the importance of the design of the l ine and better 
understand the developments to come in l ater chapters. This chapter a l so 
p rovides an introduction to the s tudy of trans ients on lossless l i nes in order to 
indicate how problems arise due to su rges caused by l ightn ing and switching. 

I n  the modern power system data from al l  over the sys tem are be ing fed 
cont inuously i n to on-l ine compu ters for control and information purposes. 
Power-flow stud ies performed by a computer readi ly  supply a nswers to ques­
tions concern ing the effect of swi tch ing l i nes into and out of the system or of 
cha nges in l ine parameters .  Equa t ions derived in th is chapter remain important ,  
however, i n  developing an overa l l  understand ing of what is occurr ing on a 
sys tem and i n  ca lcu l a t i ng efficiency of transm iss ion, losses, and I im i ts of power 
flow over a l ine for both s teady-s t a t e  and transient cond it ions .  

6. 1 REPRESENTATION OF LINES 

The genera l  equa t ions re l a t i n g  vo l Utgc (l n u  cu r re n t  o n  a t ransmiss ion l ine 
recogn ize the  f.t c t  t ha t  a l l  fo u r  of t h e  parameters of  a transmission l i n e  
d iscussed i n  t he  two preced ing chap ters a re un i formly distr ibuted along t he  l i n e .  
We der ive these general equat ions l a ter ,  bu t  first we use lumped parameters 
w hich give good accu racy for shor t  l i nes and for l i nes of medium length .  I f  a n  
overhead l ine i s  c lass ified a s  short ,  shunt capac i tance i s  so smal l  tha t  i t  c a n  b e  
om itted ent i re ly wi th l i tt le loss o f  accuracy, and we need to consider on ly the  
series resistance R and the  ser ies i nd uctance L for the  total length of  the  l i ne. 

A med ium- length l ine  can be represented sufficiently well by R and  L as  
I umped parameters, as shown i n  F ig .  6.2, wi th  ha l f  the capacitance to neut ra l  o f  
the  l ine lumped a t  each end  of t he  equ iva lent c ircu i t .  S hunt  conductance G ,  a s  
mentioned previously, i s  usua l ly neg lected i n  overhead power transmission l ines 
when calcu la t ing voltage and current .  The same circu i t  represents the short  l in e  
i f  capaci tors are omitted. 

I nsofar as the handl ing of capac i tance is concerned, open-wire 60-Hz l ines 
l ess than about 80 km (50 mi )  long are  short l ines .  Medium-length l i nes a re 
roughly between 80 km (50 mi)  and  240 km 0 50 mi) long. Lines longer than 240 
km ( I SO m i) req u i re ca lcul a t ions i n  terms of d istr ibuted constants if a h igh 
degree of accuracy i s  req u i red ,  a l t hough  fo r some  pu rposes a lumped-parameter 
representat ion can be used for l i nes L I P  to  320 km (200 mi)  long. 

R 
+ 

J I� 

L 
+ 

FI GURE 6.2 

S ing le-phase equ iva lent  of a med ium­
leng th  l i ne .  The capacitors are  omitted 
for a shor t  l i ne .  
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Normally ,  transmission l i nes are operated wi th  ba l anced three-phase l oads .  
Although the l ines are no t  spaced equ i la tera l ly  and not transposed, the resu l t ing 
dissymmetry is s l ight and the p hases are considered to be balanced. 

I n  order to distinguish between the total series impedance of a l i ne  and 
the ser ies  impedance per un i t  length, the fol lowing nomenclature i s  adopted : 

z = series impedance per un i t  l ength per  phase 

y = shunt  admittance per un i t  l ength per phase to neutra l  

I = l ength of  l i ne 

Z = zl = tota l  ser ies i mpeda nce per pbase 

Y = yl = total shunt  adm i t tance per phase to neu t r a l  

6.2 THE SHORT TRANSMISSION LINE 

The equivalen t  circu i t  of a short transmission l i ne is shown in Fig. 6.3, where Is 
and IR a re t he  sending- and receiving-end currents ,  respective ly, and Vs and VR 
are the sending- and receiving-end l i ne-to-neutral vol tages. 

The circui t  is solved as a s imple series ac circui t .  So, 

( 6 . 1  ) 

( 6 .2) 

where Z i s  zl, the total series impedance of the l ine .  
The effect of t he  var iat ion of the  power factor of the  load on the vol tage 

regulat ion of a l ine is most eas i ly u nderstood for the short l i ne and therefore 
wil l be considered at this t ime .  Voltage regu l at ion of  a t ransmiss ion l i ne is the 
rise in  vol tage at  the rece iving end ,  expressed in  percent of  fu l l - load vol tage, 
when ful l  load at  a specified power factor i s  removed whi le the send ing-end 

Z -R +j wL 

Gen. 

FIGURE 6.3 

Equ iva lent  circu i t  of a short transmission l i n e  where the  resis tance R and i nductance L are values 
for the e nt i re length of the l ine .  
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( a )  Load p. f. = 70 %  lag ( b )  Load p. f. = 1 00 % ( c )  Load p. f . = 70 %  lead 
FIG U R E  6.4 

Phasor d iagrams of a short t ra nsmission l i n e .  A l l  d i agrams are d rawn for t he same mag n i t u des of VR 
and  JR ' 

vol tage is held constant .  Correspond ing to Eq. (2.33) we can write 

I Vn . Nf. 1 - I VR . FI. : 
Percent regu l a t ion = X 1 00 

I VI( . 1-'1. 1 
( 6 .3) 

where I VI? NL I i s  the magn i t ude  of receivi ng-end volt age at no load and I VR . FL I i s  
the  magni tude o f  receiving-end vol t age at fu l l  load with i Vs l constan t .  After the 
load on a short t ransmission l i ne ,  rep resented by the circu i t  of F ig .  6 .3 ,  i s  
removed, the vol tage a t  the receiv ing end is equa l  to the vol tage a t  the sen d ing 
end .  I n  Fig .  6 .3 ,  wi th the load connected , the receiving-end voltage is des ignated 
by VR , and I VR I = I VR. FL I . The send ing-end voltage i s  Vs ; and I Vs l = I VR . NL I . The 
phasor d iagrams of F ig .  6 .4 are drawn for the same magnitudes of the receiv i ng­
end voltage and current and show that a l arger va lue of the send ing-en d vo l tage 
i s  requ i red to mainta in a given receivi ng-end vol tage \vhen the receiving-end 
curren t  i s  l agging the  vol t age than  when the  same curre nt and vol tage a re in  
phase.  A s t i l l  sma l l e r  send ing-end voltage i s  required to  ma in ta in  t he  g iven 
receiving-end voltage when the receiving-end current leads the vol t age.  The 
voltage drop i s  the same in  the series impedance of  the l ine i n  a l l  cases; becau se 
of the d ifferent  power factors, however, the vol tage drop is added to  t he  
rece i v i ng - e n d  vol t ilge il t a d i ffe r e n t a n g l e i n  each c a s e .  T h e  regu l a t i on i s  grea test 
fo r l a g g i n g  power factors a nd  l e a s t ,  o r  even negat ive, ro r le a d i ng  power  factors. 
The i nduc t ive reactance of ( t  tran sm i ss i on l ine i s  l a rger t han  the res is ta nce ,  a nd 
th e p r inc ip l e  of regu la t ion i l l u s trated in Fig .  6.4 is true for any load supp l ied by 
a p redominantly induct ive c i rc u i t .  The magn i t udes of the vo l t age drops fa R and  
luX L for a short l ine have been exaggerated wi th  respect to Va i n  drawing t h e  
p h a s o r  d i ag r a m s  i n  o r d e r  t o  i l l u s tra t e  t he p o i n t  more c le ar ly . The re lat ion 
between power factor and regu l a t ion for longer l i nes  is s im i lar  to t ha t  for s hort 
l i nes but i s  not visua lized so easi ly .  

Example 6 . 1 .  A 300-MVA 20·kY th ree-phase generator has a subtrans ient react­
ance of 20%. The generator suppl ies a number of synchronous motors over a 
64-km transmission l i ne  hav ing transformers a t both ends, as shown on the 
one- l i ne d i agram of Fig . 6.5 . The motors, al l  rated 1 3 .2 kY, are represen ted by just 
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(20 kV) ( 1 3 , 8  kV) M T (230 kV) T� 1 

� o--y �>---ol !----------.:.'?l�] , M � 
<J q .,r-"r t> Y 

FIGURE 6.5 
One-line d iagram for Example 6. 1 .  

two equivalent motors. The neutral of  one motor M, i s  g ro unded t h rough 
reactance. The neutral of the second motor M 2 i s not connected to ground (an 
u nusual cond i tion). Rated inputs to the motors are 200 MY A and 1 00 kYA for MJ 
and M 2' respectively. For both motors X� = 20% . The three-phase transformer 
Tl is rated 350 MY A, 230/20 kY with leakage reactance of 1 0% .  Transformer T2 
is composed of th ree sing le-phase t ransfo rmers , each rated 1 27/ 1 3 .2  kY,  1 00 
MYA wi th leakage reactance of 1 0 % .  Ser ies reactance of t h e t ra n s m i ss i o n  l i ne is 
0.5 il/ km. Draw the reactance d iagram wi th a l l  reactances marked i n  per un i t .  
Select t h e  generator rating a s  base i n  the  generator c i rcu i t . 

Solution. The three-phase rat ing of transformer T2 i s 

3 X 1 00 = 300 kYA 

and i ts l ine-to-l ine voltage ratio is 

127 I3 x  
1 3 .2 

220 
= - kY 1 3 .2 

A base of 300 MY A, 20 kY in the generator circu i t  requires a 300-MYA base i n  a l l  
parts of the system and the fol lowing vo l  tage bases: 

In the transmission l i ne :  230 kY (s ince Tl i s  rated 230/20 kY)  

In the motor c ircui t :  
1 3 .2 

230 - = 1 3 .8 kY 220 

These bases are shown in paren t h eses on the one-line d iagram of Fig .  6 .5 .  The 
reactances of the transformers converted to t h e  proper base are 

Transformer T1 : 

Transformer T2 : 

300 
X = 0 . 1  X - = 0 .0857 per unit 350 

( 1 3 .2 ) 2 
X = 0 . 1  -- = 0 .09 15 per un i t  1 3 .8 



jO .0857 j O . 1 8 1 5  
m 

FIGURE 6.6 
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jO .09 1 5  

jO .5490 

Reactance d i agram for Example 6 . l .  Reactances a re in per u n i t  on the spec i fied base. 

The base impedance of t he  transm iss ion l i ne is 

and the reactance of the l i ne  is 

(230)2 

300 176 .3f1 

0 .5 x 64 
1 76 .3 = 0 . 1 8 1 5  per un i t  

( 300 ) ( 1 3 .2 ) 2 
Reactance X� of motor MJ = 0 .2 - -- = 0 .2745 per un i t  

200 1 3 .8 

( 300 ) ( 1 3 .2 ) 2 
Reactance X� of motor M2 = 0 .2  - -- = 0 . 5490 per un i t  

1 00 1 3 .8 

Figure 6.6 JS the requ i red react ance diagram when t ransformer phase shifts are 
om i t t e d .  

Exa m p le 6.2.  I f  t h e motors MJ and M2 o f  Example 6. 1 have i nputs of 1 20 and 60 
MW, respect ively, at 1 3 .2 kV, a nd  bot h  operate at un ity power factor, find the 
vo l t age at  the termin als of the generator and the vol tage regu l ation of the l ine .  

Solution. Together the motors t a ke 1 80 MW, or 

l �O 
300 = 0 . 6  per un i t  

Therefore, wi th V and I a t  the motors i n  per un i t ,  

I V I x I I I  = 0 . 6  per u n it 
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With phase-a vol tage at the motor termina ls  as reference, we have 

1 3 .2 / no V = 1 3 .8 = O .9565L.9.: per un i t 

0 . 6  LQ: J = = 0 . 6273 0" per un i t 0 .9565 

P h a:;e-a p e r - L1 n i t  vo l t ages a t  nt l l er po i n t s  o r  Fig.  (d) ; \ re 

At m :  V = 0 .9565 + 0 . 6273 ( j0 . 09 1 5 )  

0 . 9565 + jO .0574 = 0 .9582/ 3 .4340 per un i t 
A t  I : V = 0 .9565 + 0 . 6273 ( J0 .0915 + j0 . 1 8 1 5 )  

0 . 9565 + j0 . 1 7 1 3  = 0 .971 7 / 10 . 1 540 per un i t 

At  k :  V = 0 .9565 + 0 . 6273 ( J0 . 09 1 5 + j0 . 1 8 1 5  + iO .08S7) 

0 . 9565 + jO .2250 = 0 . 9826/ 13 . 23T per un i t 

The voltage regulation o f  the  l i n e  i s  

Percen t regu la t ion = 
0 .9826 - 0 .9582 

0 . 9582 x 100 = 2 .55% 

and t he  magn i tude or t h e vo l t a g e  a t  t h e generator term i n a l s  i s  

0 .9826 X 20 = 1 9 .652 kV 

I f  i t  is des ired to show the phase sh i fts due to the Y - � t ransformers, the ang l es 
of t he phase-a vo l tages at m and I s hou l d be i ncreased by 30° . Then the ang l e of 
the phase-a current in the l ine shou l d also be increased by 30° from 0° . 

6.3 THE MEDIUM-LENGTH LINE 

The shunt admit tance, usual ly pure c apaci t ance, i s  i nc luded in  the ca lculat ions 
for a l ine of medium length. I f  the tota l  s hun t  admi t tance of the l ine is  d iv ided 
into two equal parts placed at the send i ng  and receiving ends of  the l ine, the 
circuit i s  cal led a nominal 7r .  We refe r  to Fig.  6.7 to der ive equat ions. To Qbta i n  
an '  expression for Vs )  we note t h at the  curren t  i n  the  capaci tance a t  t he  
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FIGCRE 6 .7  

Nom i n a l -;;- circu i t  of  a medium-length 
t ransmission l ine .  

receiving end is VRY /2 and the curren t  in th e series arm is IR + VRY /2. Then, 

( 6 .4) 

( 6 .5 )  

To derive Is , we note th a t  t h e  cu rren t  i n  t h e  shu n t  capac i tance a t  t he  send ing  
end i s  VsY / 2 ,  which added to  the  cu rren t i n  the se r i es  a rm gives 

Subs t i tu t ing Vs , as given by Eq. (6 .5) ,  in Eq . (6.6) yields 

Equations (6 .5) and (6.7) may be expressed in the general form 

where 
ZY 

A = D = - + l  
2 

B = Z 

( 6 .6) 

( 6 .7) 

( 6 .8) 

( 6 .9 ) 

( 6 . 10) 

These ABeD constants are somet imes  cal led the generalized circuit constants of 
the transmission l ine .  In general ,  they are complex numbers .  A a n d  D are 
d im ensionless and equa l  each other i f  the l ine i s  the same when v iewed from 
e i ther  end .  The d imensions of B and C a re ohms and m hos or S iemens, 
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respectively. The cons tants apply to any l inear ,  passive, and bi latera l  four- termi­
nal ne twork h aving two pairs of term ina ls .  Such a network is  cal led a two-port 
network . 

A physical m eaning is easi ly a ss igned to the constants . By le t t ing 1,< be 
zero i n  Eq. (6 .8), we see that A is the  ratio VS/ VR at no load . S imi larly, B i s  t he  
ratio Vs /IR when the receiving end is short-ci rcu i ted .  The constan t  A i s  u seful 
in computing regul at ion .  I f  VI? ,  '.L i s  t h e  rece iving-end  vol tage at fu [ I  load for a 
sending-end vol tage of ��. , Eq. (6.3) becom es 

I Vs l/ l A I  - I VJ?.F/J 
Percent regu la tion = x 1 00 I VU , FL I ( 6 . 1 1 )  

Table A.6 in  the Append ix l i sts ABeD constants for variou s networks and 
combinations of nctworks. 

6.4 THE LONG TRANSMISSION LINE: 
SOLUTION OF THE DIFFERENTIAL 
EQUATIONS 

The exact solut ion of any transmISSIon l ine  and the one requ ired for a h igh 
degree of accuracy in calculat ing 60-Hz l ines more than approximate ly 1 50 m i  
long mus t  cons ider the  fact that t he parameters of t he : i nes are not lumped but ,  
rather, a re distributed uniformly throu ghout  the length of the l ine.  

Figure 6 .8 shows one phase and the neut ral connection of a three-phase 
l ine. Lumped p arameters are not shown because we are ready to consi der the 
solut ion of the l ine with the impedance and admittance uniform ly d istr ibuted . 
I n  Fig. 6 .8 we consider a d ifferent ia l  e lement  of length dx i n  the l ine  a t  a 
d istance x from the receiving end of  the l ine .  Then z dx and y dx a re,  
respect ively ,  the ser ies impedance and shu nt  adm i t tance of the elemental  
section . V and I a re phasors which va ry w i th x .  

Gen. 

FIGURE 6.8 

I 

I 
I 

Vs V + dV 

: I 
� dx --t+-- ----I I 

+ 

x --------I 

Schematic d iagram of a transmission l ine  showing one phase and  the neu t ra l  return .  Nomenc; l a t u re 
for the l ine and the elemental  length a re indica ted .  
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Average l ine current in the el ement is (J  + I + dJ) /2, and the increase of 
V i n  the d istance dx is quite accurately expressed as 

I + 1 + dI 
dV = �--- z dx  = Iz dx  

2 

when products of the differential quantitie s  are neglected. S imilarly, 

dJ = 

v + V + dV 
----- y d.x: = Vy dx 

2 

Then ,  from Eqs. (6 . 1 2) and (6 . 1 3) we have 

and  

dV 
- = fz dx 

dI 
- = Vy dx 

( 6 . 12) 

( 6 . 13) 

( 6 . 14) 

( 6 . 15 )  

Let u s  different i a te Eqs. (6 . 14) and (6. 1 5) with respect to  x ,  and we  obtain 

and 

d2 V dI 
-- = z -

dx 2 dx 

d2] dV 
- = y ­dx 2  dx 

( 6 . 1 6) 

( 6 . 17) 

If we subst i tute the va lues of dI/dx and dV/dx: from Eqs. (6. 15 )  and (6. 14) in 
Eqs .  (6 . 1 6) and (6. 1 7), respectively, we obta in  

a n d  

d 2 V  
-- = yz V dx 2 

= yzl dx 2 

( 6 . 18) 

( 6 . 1 9) 

Now we have Eq. (6 .18) i n  which the  on ly  vari ables are V and x and Eq. (6. 1 9) 
in which the only variab l es are I and x .  The solu tions of those equations for V 
and I , respectively, must be express ions which when d ifferent iated twice with 
respect to x yie ld the original express ion t imes the constant yz . For instance, 
the  solut ion for V when d ifferent iated twice with respect to x must yie ld yzv. 

, 
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This suggests a n  exponential form of solu t ion .  Assume that the solu t ion of Eq. 
(6.18) is 

Taking the second derivative of V wi th respect to x in Eq. (6 .20) yields 

d2 V 
�- = yz [ A  c jYix + A c - fYl x ] dx 2  I 2 

( 6 .20) 

( 6 .2 1  ) 

which is  yz t imes the assumed so lut ion for V. Therefore,  Eq .  (6 .20) i s  t he 
solution of Eq.  (6. 18) .  \Vhen we subst i tu te the value given by Eq . (6 .20) fo r V i n  
Eq. (6 . 1 4), we obta i n  

1 1 J = A c fYlx - ..; A -, E  · Fzx 
vz/y I z/y � 

( 6 .22) 

The constants A 1 and A 2 can be  eva lua ted by u sing the cond i tions at the 
receiving end of  the l ine; namely, when x = 0 ,  V = VR and J = JR ' Subst i tu t ion 
of these values in Eqs. (6.20) and (6 .22) yields 

and 

Subst i tut ing Zc = vz/y and solv ing for A I gIVe 

and 

Then, subst i tut ing the  values found for A I and A 2  in Eqs. (6 .20) and (6.22) and 
letting y = fYZ, we obtain 

( 6 .23) 

( 6 .24) 

where Zc = vz/y and is called the  characteristic impedance of the l ine ,  and 

y = fiY and is  called the propagation constant . 
Equations (6.23) and (6.24) g ive the rms values of V and J and their  phase 

angles at any specified point along the l i ne  i n  te rms  of the distance x from the 
receiving end to the specified poin t ,  p rovided v�? , JR , and t he  parameters of  the 
l ine  are known.  
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6.5 THE LONG TRANSMISSION LINE: 
INTERPRETATION OF THE EQUATIONS 

Both y and Ze are complex qua ntit ies. The rea l  part of  the propagation 
constant y is cal led the attenuation constant a and i s  measured in  nepers per 
uni t  l ength . The quad rature pa rt o f  y i s  ca l led the phase constant f3 and is  
measu red in rad ians per u n it l e ngt h .  Thus, 

y = a + jf3 ( 6 . 25 )  

and  Eqs. (6 .23) and (6 .24) become 

( 6 .26) 

and ( 6 .27) 

The propert ies of E ClX and  E J{3x he lp to expla in  the vanat lOn of the phasor 
va lues of vol tage and cu rrent as  a fu nct ion of d istance along the l i ne .  The term 
E Cl .r changes in  magni tude as x changes, but E J{3x ( i dent ical to cos {3x + j s in (3x) 
a lways has a magnitude of 1 and  causes a sh i ft in phase of  {3 rad ians per  u n it  
length of l ine .  

The fi rst term in Eq .  (6 .26), [( Vu + fR Z)/2]E Clx£ i/3x, i ncreases in m agni­
tude and advances in phase as d i s tance x from the receiving end incre ases .  
Conversely, as  progress a long the  l i ne from the sending end toward the 
rece iving end is  cons idered, the term d imi nishes i n  magnitude and i s  retarded in 
phase. This is  the character i s t ic  of  a t rave l ing wave and is s imi l a r  to the 
behavior of a wave i n  water ,  wh ich va ries in magni tude with t ime at any poin t, 
whereas its phase i s  retarded a n d  i ts maximum value d imin ishes with d istance 
from the origi n .  The var iat ion in i ns tantaneous value i s  not expressed in the 
t e rm b u t  i s  u n d e rstood s i n ce VI? a nd IN ( I r e  p h Cl sors . T h e  fi rs t  term i n  Eq .  (6.26) 
is c a l l e d t h e  in ciden t I 'o/tage . 

The second term i n  E q .  ( 6 .2(» ) ,  [( Vu - lu Z)/2]E - Ir .I C - ii3 r , d im in ishes in 
magn i tude and i s  retarded i n  phase from the rccc iving end toward the send i ng 
end . I t  i s  ca l led the reflecred voltage . At any point a long the l ine the vol tage is  
the sum of t h e compone n t  i nc iden t  and reflected vol tages at that  point .  

S i n c e  t h e  e q u a t ion  fo r c u r re n t  i s  s i m i l a r  to the  e q u a t io n  for voltage,  t h e  
curre n t may bc cons idered t o  be composcci of i nc ident and reRected cu rrents. 

If a l i ne is termi nated in i ts cha racteri s t ic  impedance Ze ' rece ivi ng-en d  
vol tage VR i s  equal to fR Ze and there i s  n o  reflected wave of e ither  vol tage o r  
cu rrent ,  as may be seen by subst i t u t i ng fRZe for VR i n  Eqs. (6 .26) and (6 .27). A 
l i ne  term inated in  i ts characte rist i c  impedance is ca l led a fiat line or an  infinite 
line .  The la t ter  term arises from the fact that a l i ne of infin ite l ength cann ot 
have a reflected wave . Usua l ly, power l i nes are not terminated i n  t�eir  charac­
te r i s t i c  impedance , but  commu n i cat ion l i nes are frequent ly so termina ted in  
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order to  e l iminate the  reflected wave. A typical valu e  of Zc is 400 fl fo r  a 
single-ci rcui t  overhead l in e  and 200 n for two circu i ts in para l le l .  The ph ase 
angle of Zc is usually between 0 and - 1 5° . Bundled-conductor l i nes have lower 
values of Zc since such l ines have lower L and h igher C than l ines with a s ing le 
conductor per phase. 

In power system work characterist ic impedance is somet imes called surge 
impedance . The term "surge impedance," however, is usual ly reserved for the 
special case of a loss\ess l i n e .  If a l i n e  i s  lossless, i ts series res is tance and shunt  
conductance are zero and the characterist ic impedance reduces to the real 
number ..; L IC , wh ich has the d imensions of ohms when L i s  the ser ies 
inductance of the l ine in henrys and C i s  the shunt capac i tance in farads . Also, 
the propagat ion constant y = {ZY fo r the l i ne of  length I red uces to the 
imaginary number j{3 = jW'/LC' ll s i nce the attenuat ion cons t ant a res u l t ing 
from l ine losses i s  zero . When dea l ing wi th h igh frequencies or wi th surges d ue 
to l ightning, losses are often negl ected and the surge impedance becomes 
important .  Surge- impedance load ing (S I L) of  a l i n e  i s  the power del ivered by a 
l ine to a purely resist ive load equal to i t s  su rge impedance. When so load ed , the 
l ine supp l ies a current of 

where I VL I is the l ine- to-l ine vol tage a t  the load. S ince the load IS  pure 
resistance, 

or with I V" I in k i lovo l ts ,  
I V 1 2 

S IL  = '..;i7c MW L ie ( 6 .28) 

Power system engineers somet imes find i t conven ient to express the power 
transmitted by a l ine in terms of per uni t  of S IL, that is , as the rat io 'of the 
power tra nsm i t ted t o  the surge- impedance loading. For i nstance, the  permissi­

ble loading of a transmission l ine may be expressed as a fract ion of i ts S IL, and 
S I L  provides a comparison of load-carrying capabi l i t i es o f  l i nes . I  

A wavelength � i s  the d ist ance along a l i ne between two poin t s  o f  a wave 
which d iffer in phase by 360° , or 27T" rad .  If {3 is the phase shift in radians per 

I See R. D .  Du n lop , R. Gu tman ,  and  P. P. Ma rchenko , " A nalytica l Developme n t  of Loa'd abi l i ty 
Cha racterist ics for EH Y a n d  UHY Trunsm ission Lines ,"  IEEE Transactions on Power Apparatus 

and Systems,  vol .  PAS·98, n O .  2, 1 979,  p p .  606- 6 1 7 .  
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mile, the wavelength in  mi les is 

2 rr  
.1 = -{3 ( 6 .29) 

The veloci ty of propagation of a wave i n  mi les per second is the  product of the 
wavel ength in mi l es and the frequency in  hertz ,  or 

2 rrI 
Velocity = A.I = -­f3 ( 6 . 30) 

For the lossless l ine of length I meters f3 = 2rr tlLC I I and Eqs. (6 .29) and 
(6.30) become 

I 
------,=--- m fiLe 

I 
ve l oc i ty = -- mls 

!LC 

Wh e n  va lues of L and C for low- loss overhead l i nes are subst i tu ted i n  these 
equations, i t  i s  found that the wavelengt h i s  approx imately 3000 mi a t  a 
frequency of 60 Hz and the velocity of propaga t ion is \'e ry near ly the speed of 
l ight i n  air (approximat ely 1 86 ,000 mils or 3 X 108  m/s). 

If there is no load on a l i ne ,  IR is equal to zero , and as d etermined by Eqs. 
(6 .26) and (6.27), the incid ent  and reA ected vo l tages are equal i n  magn i tude and 
in phase at the receiv ing end. In this case the i nc ident and reflected curren ts are 
equal i n  magnitude bu t are 1 800 out of phase at the receiv ing end . Thus, the 
i nc ident and reflected cu rrents cancel each other at t he  receiving end of an 
open l i ne  but not a t  any other poi nt unless the l i ne is ent i rely lossless so t hat the 
atten uat ion a is zero .  

6.6 THE LONG TRANSMISSION LINE: 
HYPERBOLIC FORM OF THE EQUATIONS 

The inc iden t  a nd re flected waves of vol t a ge a re se ldom fou n d  when ca lcu la t ing 
the vol tage of a power l i ne. The reason for d iscussing the vol tage and the 
cu r rent of a l ine i n  terms of the i ncident and reflected components i s  that such 
an a n alys is  i s  helpful i n  obt a i n i ng a bet t er u nd e rs tand i ng of some o f  the 
phe nome n a of t ra n sm ission l ines . A m o re conve n ie n t fo r m  of the equ a t ions for 
compu t i n g c u rr e n t  a n d  vo ! l <lgc o f  ,l powe r l i n e  i s  fou nd by i nt roduc i n g hyper­

bo l ic funct ions. Hyperbol ic fu nct ions are d e fi ned in  exponent ia l  form 

sinh (J = ----2 

cosh (J = 2 

( 6 .3 1  ) 

( 6 .32) 
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By rearranging Eqs. (6 .23) and (6.24) and substitut ing hyperbolic funct ions for 
the exponent ia l  terms, we find a new set of equat ions. The new equat ions, giving 
voltage and current anywhere along the l ine, are 

VR I = Iu cosh "IX + - si n h  "IX 
Z( 

( 6 .33 ) 

( 6 . 34 ) 

Lett ing x = / to obta in t h e  vo l t age and t h e  c u rre n t  ( I t  t h e  s e n u i n g  e n u ,  we h ave 

( 6 .35 ) 

VI? Is = If( cosh "1/ + 
Z 

s inh y l  
c 

( 6 . 36)  

From examinat ion of t hese equations we see tha t  the genera l ized circui t 
constants for a long l ine are 

A = cosh yl 

B = Zc s inh yl 

s inh 1'1  
c = ---

D = cosh 1'1 

( 6 . 37)  

Solving Eqs .  (6 .35) and (6 .36) for VR and I R i n  t erms of Vs and Is , we obta in 

( 6 .38) 

v:�. . II? = Is cosh "1/ - Z S J Il h "1/ 
c 

( () . 39) 
For balanced three-phase l ines the  currents in the above equat ions are 

l i ne currents and the voltages are l i ne-to-neutra l  vol t ages, that  is ,  l ine vol t ages 
d iv ided by 13 . In order to solve t he equa t ions, t he hyperbolic functions must be 
evaluated .  S ince "II is usual ly complex ,  the hyperbolic functions are a lso 
complex and can be evaluated with t he assis tance of a calculator or computer .  

For solving an occasional problem wi thout resort ing to a computer t here 
are several choices. The fol lowing equat ions give the  expansions of hyperbol ic 
sines and cosines of complex arguments in  terms of circu lar  and hyperbol ic  
functions of rea l  a rguments: 

cosh ( exl + j{3/ )  = cosh exl cos {31 + j s inh al sin {31 

s inh ( exl + j{3l )  = s inh  exl cos {31 + j cosh exl sin {3i  

( 6 . 40) 

( 6 .41 ) 

Equa tions (6 . 40)  and (6 .4 1 )  make poss i ble the com p u ta tion of hyperbolk fu nc-
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t ions of complex arguments. The correct mathematical unit for {3/ is the radian, 
and the radian is the uni t  found for {3 1  by computing the quadrature component 
of "II . Equations (6.40) and (6 . 4 1 )  can be verified by subst i tut ing in t hem the  
exponential forms of  t he  hyperbolic functions and  the  s imilar exponential forms 
of the c ircular functions. 

Another method of evaluating complex hyperbol ic functions is suggested 
by Eqs . (6 . 3 1 )  and (6 . 32) .  Substituting a + j{3 for 0 ,  we obtain 

c "E Jf3 + £ -"£ -jfJ 1 
cosh ( a + j{3 ) = - 2 ( E"iJ!. + £ - "U ) ( 6 .42) 

2 

£ (r E jf3 - E - a C -jf3 1 
s inh( a + j{3 ) -

= Z ( e aL!i - c - aU ) ( 6 .43 ) 2 

Exa mp le 6.3. A s ing le -c i rcu i t  60-Hz t ransmission l i n e  i s  370 km (230 m i) l ong. The 
cond u c tors a re Rook wi th flat  hor izon ta l  spacing and 7.25 m (23.8 ft) between 
cond uctors ,  The load on the l i ne i s  1 25 MW at 2 15  kY w i t h  1 00% power factor. 
F ind t h e  vo l tage ,  c u r re n t ,  a n d  power at t h e  se nd ing end and the voltage regu la t ion 

of the l ine . Also, d e te rmine  the  wavelength a nd veloci ty of propagat ion of the l i n e .  

Solution. Feet and  m i l e s  r a t h e r  t h a n  me ters a n d  ki lome ters a r e  chosen for the  
calcu la tions i n  order  to use  Tab les A.3 th rough A.5 in the Appendix :  

J �-:------:-=--::--- ---:-Deq = /23 .8 X 23 .8 X 47 .6 == 30.0 ft 

and  from the  tab l e s  for Rook 
z = 0 . 1 603 + j (0 ,4 1 5  + 0 .4 1 27) = 0 .843 1

/
79 .0r n/mi 

y = j
[
1 / ( 0 ,0950 + 0 . 1 009)

] 
X 1 0 -

6 
= 5 . 1 05 X 1 0 - 6 L22: 

Sim i  

, / 79 .04° + 90° 

"II = ;Y;I = 230
/
0 .843 1 X 5 . 1 05 X 1 0 - 1> �-

2
--

= O .4772L84 ,52° = 0 .0456 + j0 .4750 

0 .843 1 / 79 . 04° - 90° 

5 . 1 05 X 1 0  - 6 2 

215 ,000 VR = 13 = 1 24 , 1 30 L.2: V to neut ral 

1 25 ,000,000 / {\O iR = 13 = 335 .7Li2.: 
A 

3 X 2 1 5 ,000 

= 406 .4 / - 5 .48° n 
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From Eqs. (6.42) and (6 .43) and not ing tha t 0 . 4750 rad = 27.22° 

= 0 .4654 + jO . 23 94 + 0 .4248 - jO .2 185 

= 0 .8902 + jO .0209 = 0 .H904 / 1 . 34° 

sinh yl = 0 .4654 + jO .2394 - 0 .4248 + jO . 2 1�5 

= 0 .0406 + j0 .4579 = 0 .4597 /84 .93° 
Then, from Eq. (6 .3 5) 

Vs = 124 , 1 30 x 0 .8904/ 1 .34° + 335 .7 x 406 .4/ - 5 .48° x 0 .4597[84 .93° 
= 1 10 ,495 + j2 ,585 + 1 1 ,483 + j61 ,656 

= 1 37 ,860 /27 .77° V 

and from Eq . (6.36) 

/ 
124 , 130  / Is = 335 .7 x 0 .8904 1 .34° + x 0 .4597 84 .93° 

406 .4 / - 5 .48° t.......---

= 298 .83 + j6 .99 - 1 .00 + j 1 40 .4 1  

= 332.3 1/ 26 .330 A 

At the sending end 

Line voltage = fS x 137 .86 = 238 .8 k V 

Line current = 332 .3  A 

Power factor = cos(27 .77° - 26 .330 ) = 0 .9997 = 1 .0 

Power = fS x 238 .8 x 332 . 3  x l .0 = 137 ,443 kW 

From Eq. (6.35) we see that a t  no load ( JR = 0) 

Vs V - --­

I? - cosh yl  
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So, the vol tage regu la t ion is 

1 37 .86/0 .8904 - 124 . 13 --------- X 100 = 24 .7% 
124 . 1 3  

The wavelength and veloc ity of propagation are computed as fol lows: 

{3 = 
0 .4750 

230 

{3 

= 0 .002065 rad/mi  

---- = 3043 m i  0 .002065 

Vel oc i ty  = fA. = 60 x 3043 = 1 82,580 mijs 

We note part icu larly in this examp l e  t h a t in  the equat ions for Vs a nd Is 
the val ue of vol t age must  be exp ressed i n  vol ts and must be the l ine- to-neu tral  
vol tage. 

Exa mple 6 .4 .  Solve for the send i ng -end vo l tage and t he current found i n  Example 
6 .3 us ing per-un i t  calcu la t ions. 

Solution . We choose a base of 1 25 MVA, 2 1 5  kV to ach ieve the s implest per-unit 
values and to compute base impedance and base current as follows: 

So ,  

2 1 5 2 
Base impedance = -- = 370 n 

1 25 

125 ,000 
Base curren t = = 335 .7  A f3 x 2 1 5  

406 .4
/ 

- 5 .48° 
Zc 

= --�===-

2 1 5  V = -

/I 2 1 5  

370 

2 1 5 /
v0" 

2 1 5 /13 

1 .098
/ 

- 5 .48° per un i t  

1 .0 per u n i t  

For l ise  i n  E q .  ( 6 .35)  w e  chose VI< a s  t h e  r e fe re nce vo l t <1 g e .  So,  

VI? = 1 .0/..Q: per un i t  ( as a l ine - Io-neutra l vo l tage) 
and s ince the load is at un i ty power factor, 

337.S
/..Q: 

IR = l .o
/..Q: 

337 .5 
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If the power factor had been less than 1 00%, IR would have been greater than l .0 
and would have been at an angle determined by the power factor. By Eq . (6.35) 

Vs = 1 .0 X 0 .8904 + 1 .0 x 1 .098 / - 5 .48° X 0 .4597 / 84 . 93° 

= 0 .8902 + jO .0208 + 0.0923 + j0 .4961 

= 1 . 1 102/27 .7SO per uni t  

and by Eq . (6.36) 

1 . 0LQ: 
Is = 1 .0 X 0 .8904 / l .34° + x 0 .4597/ 84 .93° 

1 . 098 L- 5 . 48° = 0 .8902 + fO .0208 - 0 . 003 1 + j0 . 4 1 86 

= 0 .990/ 26 .35° per u n i t  

At t he  sending end 

Line voltage = 1 . 1 1 02 x 2 15 = 238.7 kV 

Line current  = 0 . 990 X 335 .7  = 332 . 3  A 

Note that  we mult iply l i ne-to-l i ne voltage base by t he  per-un i t  magni tude of the 
voltage to  find the  l i ne-to- l ine voltage magnitude .  W e  could have mu l tip l ied the 
l ine-to-neutral voltage base by the per-un i t vol tage to nnd the l i ne- to-neu tral 
voltage magni tude. The factor 13 does not enter t h e  calcula t ions a fter  we h ave 
expressed all quanti ties in per un i t .  

6.7 THE EQUIVALENT CIRCUIT 
OF A LONG LINE 

The nominal-7T circuit does not represent a transm ission l ine exactly because i t  
does no t  account for the parameters o f  t he  l ine be ing un i formly d istr ibuted .  The 
discrepancy between the nominal  7T and the actual  l i ne becomes l a rger as the 
length o f  l ine increases. I t  i s  possible ,  however ,  to  find the equivalent circu i t  o f  a 
l ong tra nsm ission l ine and to represent t h e  l ine  accu rately, insofar as measure­

men ts at the ends of the l ine are concerned,  by a network of lumped parame­
ters. Let us assume tha t  a 7T circu i t  s imi lar  to that of Fig. 6.7 is the equivalent 
circu i t  of a long l ine, but let us call the series a rm of our equivalent-7T circuit Z' 
and the shunt arms Y' /2 to dist inguish them from the arms of t he nominal-7T 
circuit. Equation (6 .5) gives the  sending-end  vol tage of a symmetrical -7T c i rcuit 
in terms of i ts series and shunt arms and the vol tage and current at the receiving 
end .  By substitut ing Z' and Y' /2 for Z and  Y /2 in Eq. (6.5), we obtq.in t he 
sending-end vol tage of our equ iva lent  c ircu i t  in terms of i ts series and shunt 
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arms and the voltage and current at  t he  receiving end: 

( Z'Y' 1 
Vs = -2- + 1 VR + Z' I R ( 6 .44) 

For our c ircu it to be equivalent to t he  long transmission l ine the coefficients of 
VR and IR in Eq . (6 .44) must  be ident ical ,  respect ively, to t he  coefficients of VR 
and I R in Eq. (6.35). Equat ing the  coefficients of J R in the two equat ions yie l ds 

Z' = Zc s inh yl 

r; 
s inh y!  

Z' = - s inh yl  = z/ -=--
y \ zy I 

s inh  yl  
z' = z -­

yl  

( 6 .45) 

( 6 .46 ) 

where Z i s  equal to zl, the total series impedance of the l ine .  The term 
(s inh y /)/yl is t he factor by which the  series impedance of the nominal 7T must 
be mu l tipl ied to convert the nomina l  7T t o  the equ ivalent 7T .  For small va lues of 
y/,  both s inh y I and y I are a lmost i dentical ,  and t his fact shows t hat the  
nominal 7T represents the  med ium-l ength transmission I ine qui te accurately, 
insofar as the series arm is concerned . 

To invest igate the s hu nt arms of the equivalent-" c ircu it , we equate the  
coefficients o f  VR i n  Eqs. (6 .35) and (6 .44) and obt ain  

Z'Y '  
-- + 1 = cosh y !  

2 

Subst i tut ing Zc s inh  yl for Z' gives 

Y 'Zc sinh y !  
----- + 1 = cosh y l  

2 

Y' 1 cosh yl - 1 

2 Zc s inh yL 

( 6 .4 7) 

( 6 .48) 

( 6 .49) 

Another form of the expression for the shunt admittance of the equival ent 
circu i t  can be found by subst itut ing in  Eq. (6.49) the identity 

y l  cosh yl  - 1 
tanh - = 

2 s inh yl  
( 6 .5 0) 

The i dent ity can be verified by subst i tut ing the exponential forms of 
,
Eqs. (6.3 1) 
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y '  
2 

Z' = Z sinh  "'l = Z sinh YI 
C I yl 

1::= J.... ta n h  !..!..-2 Zc 2 
y tanh rl/2 :=: 2  1//2 

FIGURE 6.9 
Eq u iva Jent-7T ci rcu i t  of a t rans­
mission l ine. 

and (6.32) for the hyperbol ic fu nctions and by recal l ing that tan h () = 
s inh () Icosh e .  Now 

Y' 1 "II  - - tanh -
2 Zc 2 

( 6 . 5 1 )  

Y' Y tanh ( "1112) -
2 2 "1 112 

( 6 .52) 

where Y is equal to yl, the total shunt  admit tance of the l ine. Equation (6 .52) 
shows the correction factor used to convert the admittance of the shunt arms of 
the nominal 7r to that of the equivalen t  7r. S ince tanh( "1112) and "1112 are very 
near ly equal for smal l  values of "I I, the nominal TT represents the medium-length 
transmission l ine qui te accurately, for we h ave seen previously that the correc­
t ion factor for the series arm is negl ig ible for medium-length l ines. The 
equivalent-TT ci rcu it is shown in  Fig. 6.9 . An equ ivalent-T circuit can also be 
found for a transmission l ine .  

Example 6.5 .  Find the equ iva lent-7T c ircu i t  for the l ine described in Example 6.3 
and compare it w i th the nominal -7T circu it .  

Solution. S i nce s i n h  y /  a n d  cosh y /  a rc a l re a d y  k nown from Exa mple  6 .3 ,  Eqs .  
(6 .45) and (6.49) are now used . 

Z' = 4aC1 .4/ - 5 .480 X 0 .4597 / 84 .930 = U36 .82/79 .45° n in series arm 

Y' 
2 

0 .8902 + la .a2a8 - 1 
1 86 .82/ 79 .450 

0 . 1 1 1 8/ 169 .27° 
1 86 .82/ 79 .45° 

= 0 .000599/ 89 .8ZO S in each shunt arm 

Using the values of z and y from Example 6.3, we find for the nominal -rr circu it a 
series impedance of 

Z = 230 X 0 .843 11 79 .04° = 1 93 .9/79 .04° 


