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An electric transmission line has four parameters which affect its ability to fulfill
its function as part of a power system: resistance, inductance, capacitance, and
conductance. In this chapter we discuss the first two of these parameters, and we
shall consider capacitance in the next chapter. The fourth parameter, conduc-
tance, exists between conductors or between conductors and the ground. Con-
ductance accounts for the leakage current at the insulators of overhead lines
and through the insulation of cables. Sincc leakage at insulators of overhead
lines is negligible, the conductance between conductors of an overhead line is
usually neglected.

Another reason for neglecting conductance is that since it is quite variable,
there is no good way of taking it into account. Leakage at insulators, the
principal source of conductance, changes appreciably with atmospheric condi-
tions and with the conducting properties of dirt that collects on the insulators.
Corona, which results in lcakage between lines, is also quite variable with
atmospheric conditions. It is fortunate that the effect of conductance is such a
negligible component of shunt admittance.

Some of the properties of an electric circuit can be explained by the
electric and magnetic fields which accompany its current flow. Figure 4.1 shows
a single-phase line and its associated magnetic and electric fields. The lines of
magnetic flux form closed loops linking the circuit, and the lines of-electric flux

originate on the positive charges on one conductor and terminate on the
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Electric

Magnetic

FIGURE 4.1
Magnctic and clectric tields associated with
a4 two-wire line.

negative charges on the other conductor. Variation of the current in the
conductors causes a change in the number of lincs of magneuc llux linking
the circuit. Any change in the flux linking a circuit induces a voltage in the
circuit which is proportional to the ratc of change of flux. The inductancc of the
circuit relates the voltage induced by changing flux to the rate of change of
current.

The capacitance which exists between the conductors is defined as the
charge on the conductors per unit of potential difference between them.

The resistance and inductance uniformly distributed along the line form
the series impedance. The conductance and capacitance existing between con-
ductors of a single-phase line or from a conductor to neutral of a three-phase
line form the shunt admittance. Although the resistance, inductance, and
capacitance are distributed, the equivalent circuit of a line is made up of
lumped parameters, as we shall see when we discuss them.

4.1 TYPES OF CONDUCTORS

In the early days of the transmission of electric power conductors were usually
copper, but aluminum conductors have completely replaced copper for over-
head lines because of the much lower cost and lighter weight of an aluminum
conductor compared with a copper conductor of the same resistance. The fact
that an aluminum conductor has a larger diameter than a copper conductor of
the same resistance is also an advantage. With a larger diamcter, the lines of
electric flux originating on the conductor will be farther apart at the conductor
surface for the same voltage. This means there is a lower voltage gradient at the
conductor surface and less tendency to ionize the air around the conductor.
Ionization produces the undesirable effect called corona.

Symbols identifying different types of aluminum conductors are as follows:

AAC all-aluminum conductors
AAAC all-aluminum-alloy conductors
ACSR aluminum conductor, stcel-reinforced

ACAD alivmimiem candnctor allavoreinforeed
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Aluminum

FIGURE 4.2
Cross section of a steel-reinforced conductor, 7 steel
strands, and 24 aluminum strands.

Aluminum-alloy conductors have higher tensile strength than the ordinary
electrical-conductor gradc of aluminum. ACSR consists of a central core of
steel strands surrounded by layers of aluminum strands. ACAR has a central
core of higher-strength aluminum surrounded by layers of electrical-conductor-
grade aluminum.

Alternate layers of wire of a stranded conductor are spiraled in opposite
directions to prevent unwinding and to make the outer radius of one layer
coincide with the inner radius of the next layer. Stranding provides flexibility for
a large cross-sectional area. The number of strands depends on the number of
layers and on whether all the strands are of the same diameter. The total
number of strands in concentrically stranded cables, where the total annular
space is filled with strands of uniform diameter. is 7, 19, 37, 61, 91, or more.

Figure 4.2 shows the cross section of a typical steel-reinforced aluminum
cable (ACSR). The conductor shown has 7 steel strands forming a central core,
around which there are two layers of aluminum strands. There are 24 aluminum
strands in the two outer layers. The conductor stranding is specified as 24 A1/7
St, or simply 24 /7. Various tensile strengths, current capacities, and conductor
sizes are obtained by using different combinations of steel and aluminum.

Appendix Table A.3 gives some electrical characteristics of ACSR. Code
names, uniform throughout the aluminum industry, have been assigned to each
conductor for easy reference.

A type of conductor known as expanded ACSR has a filler such as paper
separating the inner stecl strands from the outer aluminum strands. The paper
gives a larger diameter (and hence, lower corona) for a given conductivity and
tensile strength. Expanded ACSR is used for some extra-high-voltage (EHV)
lines.

4.2 RESISTANCE

The resistance of transmission-line conductors is the most important cause of
power loss in a transmission line. The term “resistance,” unless specifically
qualified, means effective resistance. The eftective resistance of a conductor is

powcr loss in conductor
R = 0 : (4.1)

1
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where the power is in watts and [/ is the rms current in thc conductor in
amperes. The effective resistance is equal to the dc resistance of the conductor
only if the distribution of current throughout the conductor is uniform. We shall
discuss nonuniformity of current distribution briefly after reviewing some funda-
mental concepts of dc resistance.

Direct-current resistance is given by the formula

pl
Ry=—0 4.2
0= (42)

where p = resistivity of conductor
[ = length
A = cross-sectional arca

Any consistent set of units may be used. In power work in the United States / is
usually given in feet, A4 in circular mils (cmil), and p in ohm-circular mils per
foot, sometimes called ohms per circular mil-foot. In SI units / is in meters, A4
in square meters and p in ohm-meters.'

A circular mil is the area of a circle having a diameter of 1 mil. A mil is
equal to 1072 in. The cross-sectional area of a solid cylindrical conductor in
circular mils is equal to the square of the diameter of the conductor expressed
in mils. The number of circular mils multiplied by w/4 equals the number of
square mils. Since manufacturers in the United States identify conductors by
their cross-sectional area in circular mils, we must use this unit occasionally.
The area 1n square millimeters equals the area in circular mils multiplied by
5.067 x 10~4.

The internatonal standard ol conductivity is that of anncaled copper.
Commercial hard-drawn copper wire has 97.3% and aluminum has 61% of the
conductivity of standard anncaled copper. At 20°C for hard-drawn copper p is
1.77 X 107% O - m (10.66 Q - cmil/ft). For aluminum at 20°C p is 2.83 x 107
Q- m (17.00 Q - cmil /ft).

The dc resistance of stranded conductors is greater than the value com-
puted by Eq. (4.2) because spiraling of the strands makes them longer than the
conductor itself. For each mile of conductor the current in all strands except the
one in the center flows in more than a mile of wire. The increased resistance
due to spiraling is estimated as 1% for three-strand conductors and 2% for
concentrically stranded conductors.
| The variation of resistance of metallic conductors with temperature is
practically linear over the normal range of operation. If temperature is plotted
on the vertical axis and resistance on the horizontal axis, as in Fig. 4.3, extension

ISI is the official designation for the International System of Units.
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FIGURE 4.3
Resistance of a metallic conductor as a function of tem-
perature.

of the straight-line portion of the graph provides a convenient method of
correcting resistance for changes in temperature. The point of intersection of
the extended line with the temperature axis at zero resistance is a constant
of the material. From the geometry of Fig. 4.3

iazTJrzz (43)

where R, and R, are the resistances of the conductor at temperatures ¢, and
t,, respectively, in degrees Celsius and T is the constant determined from the
graph. Values of the constant T in degrees Celsius are as follows:

234.5 for annealed copper of 1009 conductivity
T = (241 for hard-drawn copper of 97.3% conductivity
228 for hard-drawn aluminum of 61% conductivity

Uniform distribution of current throughout the cross section of a conduc-
tor exists only for direct current. As the frequency of alternating current
iricreases, the nonuniformity of distribution beccomes more pronounced. An
increase in frequency causes nonuniform current density. This phenomenon is
called skin effect. In a circular conductor the current density wsually increases
from the interior toward the surface. For conductors of sufficiently large radius,
however, a current density oscillatory with respect to radial distance from the
center may result.

As we shall see when discussing inductance, some lines of magnetic flux
exist inside a conductor. Filaments on the surface of a conductor are not linked
by internal flux, and the flux linking a filament near the surface is less than the
flux linking a filament in the interior. The alternating flux induces higher
voltages acting on the interior filaments than are induced on filaments near the
surface of the conductor. By Lenz’s law the induced voltage opposes the
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changes of current producing it, and the higher induced voltages acting on
the inner filaments cause the higher current density in filaments nearer the
- surface, and therefore higher effective resistance results. Even at power system
frequencies, skin effect is a significant factor in large conductors.

4.3 TABULATED RESISTANCE VALUES

The dc resistancc of various typcs of conductors is casily found by Eq. (4.2), and
the increased resistancc duc to spiraling can bc cstimated. Tempcrature correc-
tions are determined by Eq. (4.3). The increase in resistance caused by skin
effect can be calculated for round wires and tubes of solid material, and curves
of R/R, are available for thcse simple conductors.? This information is not
necessary, however, since manufacturcrs supply tables of electrical characteris-
tics of their conductors. Table A3 is an cxample of some of the data available.

Example 4.1. Tablcs of electrical characteristics of all-aluminum Marigold stranded
conductor list a dc resistance of 0.01558 €2 per 1000 ft at 20°C and an ac resistance
of 0.0956 Q/mi at 50°C. The conductor has 61 strands and its size is 1,113,000
cmil. Verify the dc resistance and find the ratio of ac to dc resistance.

Solution. At20°C from Eq. (4.2) with an increase of 2% for spiraling

17.0 x 1000

Ry = ——=——= X 1.02 = 0.01558 ) per 1000 ft
1113 X 10

At a temperature of 50°C from Eq. (4.3)

228 + 50

Ry = 0.01558 ———— = 0.01746 2 per 1000 {t
228 + 20

R 0.0956

— - = 1.037
R, 0.01746 x 5.280

Skin effect causes a 3.7% increase In resistance.

4.4 INDUCTANCE OF A CONDUCTOR DUE
TO INTERNAL FLUX

The inductance of a transmission line is calculated as flux linkages per ampere.
If permeability p is constant, sinusoidal current produces sinusoidally varying
flux in phase with the current. The resulting flux linkages can then be expressed

2See The Aluminum Association, Aluminum Electrical Conductor Handbook, 2d ed., Washington,

DC, 1982.
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as a phasor A, and
L =-— (4.4)

If /, the instantaneous value of current, is substituted for the phasor I in
Eq. (4.4), then A should be the value of the instantaneous flux linkages
produced by . Flux linkages are measured in weber-turns, Wbt,

Only flux lines external to the conductors are shown in Fig. 4.1. Some of
the magnetic field, however, exists inside the conductors, as we mentioned when
considering skin effect. The changing lines of flux inside the conductors also
contribute to the induced voltage of the circuit and therefore to the inductance.
The correct value of inductance due to internal flux can be computed as the
ratio of flux linkages to current by taking into account the fact that cach line of
intcrnal flux links only a fraction of the total current.

To obtain an accurate value for the inductance of a transmission line, it is
nccessary to consider the flux inside cach conductor as well as the external flux.
Iet us consider the long cylindrical conductor whose cross section is shown in
Fig. 4.4. We assume that the return path for the current in this conductor is so
far away that it does not appreciably affect the magnetic field of the conductor
shown. Then, the lines of flux are concentric with the conductor.

By Ampere’s law the magnetomotive force (mmf) in ampere-turns around
any closed path is equal to the net current in amperes enclosed by the path, as
discussed in Sec. 2.1. The mmf equals the line integral around the closed path
of the component of the magnetic field intensity tangent to the path and is given
by Eq. (2.4), now written as Eq. (4.5):

mmf = hH - ds = I At (4.5)

FIGURE 4.4
Cross section of a cylindrical conductor. «
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where H = magnetic field intensity, At/m

s = distance along path, m

I = current enclosed, A

‘Note that A and I are shown as phasors to represent sinusoidally alternating
quantities since our work here applies equally to alternating and dircct current.
For simplicity the current I could be interpreted as a direct current and H as a
real number. We recall that the dot between /H and ds indicates that the value
of H is the component of the field intensity tangent to ds.

Let the field intensity at a distance x meters from the center of the
conductor be designated H,. Since the field is symmetrical, /7, is constant at all
points equidistant from the center of the conductor. If the integration indicated
in Eq. (4.5) is performed around a circular path concentric with the conductor
at x meters from the center, £/, is constant over the path and tangent to it.
Equation (4.5) becomes

GH, ds =1, (4.6)

and 2wxH, =1, (4.7)

where /, is the current enclosed. Then, assuming uniform current density,

’7T)C2

I=—51 - (4.8)

Y o

where [ is the total current in the conductor. Then, substituting Eq. (4.8) 1n
Eq. (4.7) and solving for 4, we obtain

X
H, = =21 At/m (4.9)

Y 2mr
The flux density x meters from the center of the conductor is

159
B, =pH_ = = Wb/m* (4.10)

21y

where o is the permeability of the conductor.?
In the tubular element of thickness dx the flux d¢ is B, times the
cross-sectional area of the element normal to the flux lines, the area being dx

3In SI units the permeability of free space is py = 47 X 1077 H/m, and the relative permeability is
B, =1/t
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times the axial length. The flux per meter of length is

pxl
dp = dx Wb/m (4.11)

27r?

The flux linkages dA per meter of length, which are caused by the flux in the
tubular element, are the product of the flux per meter of length and the fraction
of the current linked. Thus,

Tx? Ix?

d\ = — dé = ——— dx Wbt/m (4.12)

mTr 2mr

Integrating from thc center of the conductor to its outside edge to find A, the
total flux linkages inside the conductor, we obtain

rudx? wl
X, =/0 dx = — Wbt/m (4.13)

27r! - 8

For a relative permeability of 1, o = 47 x 1077 H/m, and

!

Aie = 5 X 1077 Wbt/m < (4.14)
1

Lin =3 X 107" H/m (4.15)

We have computed the inductance per unit length (henrys per meter) of a
round conductor attributed only to the flux inside the conductor. Hereafter, for
convenience, we refer to inductance per unit length simply as inductance, but we
must be careful to use the correct dimensional units.

The validity of computing the internal inductance of a solid round wire by
the method of partial flux linkages can be demonstrated by deriving the internal
inductance in an entirely different manner. Equating energy stored in the
magnetic ficld within the conductor per unit length at any instant to Limiz/Z
and solving for L. will yield Eq. (4.15).

mt

4.5 FLUX LINKAGES BETWEEN TWO
POINTS EXTERNAL TO AN ISOLATED
CONDUCTOR

As a step in computing inductance due to flux external to a conductor, let us
derive an expression for the flux linkages of an isolated conductor due only to
that portion of the external flux which lies between two points at D, and D,
meters from the center of the conductor. In Fig. 4.5 P, and P, are two such
points. The conductor carries a current of / A. Since thc flux paths are
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FIGURE 4.5
A conductor and cxternal points Py and P,.

concentric circles around the conductor, all the flux between P, and P, lies
within the concentric cylindrical surfaces (indicated by solid circular lines) which
pass through P, and P,. At the tubular element which is x meters from the
center of the conductor the field intensity is 4, . The mmf around the element is

2wxH, =1 (4.16)

Solving for H, and multiplying by n yield the flux density B, in the element so
that

!
B, = . \«Vt}/m2 (4.17)
2mX

The flux d¢ in the tubular clement of thickness dx is

I
dd = 2“ dx Wb /m (4.18)

mTX

The flux linkages dA per meter are numerically equal to the flux d¢ since flux
external to the conductor links all the current in the conductor only once. So,
between P, and P, the flux linkages are

D, wl wl D2 ’
A, = dr = == 1n 22 wot 4.19
27 ), 2mx o D, or/m (4.19)

or for a relative permeability of 1

D
Ap=2%10 "11n D—Z Wbt /m (4.20)

1
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The inductance due only to the flux included between P, and P, is

D,

L,=2x%x10""1
12 HD]

H/m _ (4.21)

4.6 INDUCTANCE OF A SINGLE-PHASE
TWO-WIRE LINE

We can now dctermine the inductance of a simple two-wire line composed of
solid round conductors. Figure 4.6 shows such a line having two conductors of
radii r, and r,. One conductor is the return circuit for the other. First, consider
only the flux linkages of the circuit caused by the current in conductor 1. A line
of flux set up by current in conductor | at a distance equal to or greater than
D + r, from the center of conductor 1 docs not link the circuit. At a distance
less than D — r, the fraction of the total current linked by a linc of flux is 1.0.
Therefore, it is logical when D is much greater than r, and r, to assume that D
can be used instead of D —r, or D +r, In fact, it can be shown that
calculations made with this assumption are correct even when D is small.

We add inductance due to internal flux linkages determined by Eq. (4.15)
to inductance due to external flux linkages determined by Eq. (4.21) with r,
replacing D, and D replacing D, to obtain

1 D
— 4+ 2In —
2 r,

L, = X 1077 H/m (4.22)

which is the inductance of the circuit due to the current in conductor 1 only.

FIGURE 4.6
Conductors of different radii and the mag-
netic field due to current in conductor 1

only. p
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The expression for inductance may be put in a more concise form by
factoring Eq. (4.22) and by noting that In ¢!/* = 1/4, whence

D .
Ly =2X IO“T[ID 81/4—+—1n-—] (4.23)
'y
Upon combining terms, we obtain
N . D
PIE
If we substitute r} for re ™'/
L, D _
L,=2%x10"7In — H/m (4.29)

U

The radius rj is that of a fictitious conductor assumed to have no internal flux
but with the same inductance as the actual conductor of radius r,. The quantity
e~ 14 is equal to 0.7788. Equation (4.25) omits the term accounting for internal
flux but compensates for it by using an adjusted value for the radius of the
conductor. The multiplying factor of 0.7788, which adjusts the radius in order to
account for internal flux, applies only to solid round conductors. We consider
other conductors later.

Since the current in conductor 2 flows in the direction opposite to that in
conductor 1 (or is 180° out of phase with it), the flux linkages produced by
current in conductor 2 considered alonc arc in the same direction through the
circuit as those produced by current in conductor 1. The resulting flux for the
two conductors is determined by the sum of the mmfs of both conductors. For
constant permeability, however, the flux linkages (and likewise the inductances)
of the two conductors considered separately may be added.

By comparison with Eq. (4.25), the inductance due to current in conductor
21is

D
L,=2x%x10""ln— H/m (4.26)
r

and for the complete circuit

D
- H/m (4:27)

f
Vi

L=L,+L,=4x%x10""In
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If ri =ry, =r', the total inductance reduces to

D
L=4x10""In— H/m (4.28)

r

This value of inductance is sometimes called the inductance per loop meter or
per loop mile to distinguish it from that component of the inductance of the
circuit attributed to the current in one conductor only. The latter, as given by
Eq. (4.25), is one-half the total inductance of a single-phase line and is called
the tnductance per conductor.

4.7 FLUX LINKAGES OF ONE CONDUCTOR
IN A GROUP

A more general problem than that of the two-wire line is presented by one
conductor in a group of conductors where the sum of the currents in all the
conductors is zero. Such a group of conductors is shown in Fig. 4.7. Conduc-
tors 1,2,3,...,n carry the phasor currents /,, /,, I5,...,/,. The distances of
these conductors from a remote point P are indicated on the figure as
D,p,Dyp,Dsp,...,D,p. Letus determine A,p,, the flux linkages of conductor 1
due to /, including internal flux linkages but excluding all the flux beyond the
point P. By Egs. (4.14) and (4.20)

/ D
ApL = 2 + 2/, In J]IO“7 (4.29)
2 r
D ‘()
Aipy = 2 X 1077 I, In — Wbt/m (4.30)
r

I

The flux linkages A,,, with conductor 1 due ro I, but excluding flux beyond
point P is equal to the flux produced by /, between the point P and conductor

FIGURE 4.7

Cross-sectional view of a group-
of n conductors carrying cur-
rents whose sum is zero. Point
P is remote from the conduc-
tors. ;
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1 (that is, within the limiting distances D,, and D,, from conductor 2), and so

DZP

AMp=2%X 10771, 1n (4.31)

12

The flux linkages A, with conductor 1 due to all the conductors in the group
but excluding flux beyond point  is

D, D, D
A1P=2x10—7(1,ln—1"+121n =+ -+ n
ry Dy, D D

nf

In

(4.32)
which becomes, by expanding the logarithmic terms and regrouping,

1 1 1 1
A1P=2X10'7(1,ln—,+121n—+13]n—+ oo+ 1 In —
r D, 13 1n

\

Since the sum of all the currents in the group is zero,

AL AL+ A1, =0

H

and solving for /,, wc obtain

I!l='(1]+12+13+ ..‘-+_[u—‘1) (434)

Substituting Eq. (4.34) in the second term containing /, in Eq. (4.33) and
recombining some logarithmic tcrms, we have

1 1 1 1
Aip,=2x10""1,In—+LIn— +LIn—+ - +1, In—
o l r 2 Dy, ’ Di; Dy,
D D D D, _
== + LIn =2 + =2 + - 41, In——2| (4.35)
an DnP nP nP

Now letting the point P move infinitely far away so that the set of terms
containing logarithms of ratios of distances from P becomes infinitesimal, since
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the ratios of the distances approach 1, we obtain

1 1 1 1
Ay=2x1077\Lln—+LIn—+LIn—+ - +] In—| Wbt/m
T Dy, 13 Dy,

(4.36)

By letting point P move infinitcly far away, we have included all the flux
linkages of conductor 1 in our derivation. Therefore, Eq. (4.36) expresses all the
flux linkages of conductor 1 in a group of conductors, provided the sum of all
the currents is zero. If the currents are alternating, they must be expressed as
instantaneous currcnts to obtain instantaneous flux linkages or as complex rms
valucs to obtain the rms valuc of flux linkages as a complex number.

4.8 INDUCTANCE OF COMPOSITE-
CONDUCTOR LINES

Stranded conductors comc under the gencral classification of composite conduc-
tors, which means conductors composed of two or more elements or strands
electrically in parallel. We limit ourselves to the case where all the strands are
identical and share the current equally. The values of internal inductance of
specific conductors are generally available from the various manufacturers and
can be found in handbooks. The method to be developed indicates the approach
to the more complicated problems of nonhomogeneous conductors and unequal
division of current between strands. The method is applicable to the determina-
tion of inductance of lines consisting of circuits electrically in parallel since two
conductors in parall el can be treated as strands of a single composite conductor.

Figure 4.8 shows a single-phase line composed of two conductors. In order
to be more general, each conductor forming one side of the line is shown as an
arbitrary arrangement of an indefinite number of conductors. The only restric-
tions are that the parallcl filaments are cylindrical and share the current
equally. Conductor X is composed of n identical, parallel filaments, each of
which carries the current //n. Conductor Y, which is the return circuit for the
current in conductor X, is composed of m identical, parallel filaments, each of
which carries the current —//m. Distances between the elements will be
designated by thc lctter D with appropriate subscripts. Applying Eq. (4.36) to

CO booc'
ao ”O o’
O mo FIGURE 4.8

N~ — SN Single-phase line consisting of two composite con-
Cond. X Cond. Y ductors. .
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filament a of conductor X, we obtain for flux linkages of filament a

1 1 1 1
A,=2X107"~fIn—+In — +In— + -+ + In —
n ra ab ac an J
{ 1 1 1
—2x1077—|ln— +In— + In + - +1In (4.37)
m ad’ ab’ ac’ Dam
from which
”Vb;:::ijub’ Dm" T Dam
A, =2 1077 In ——— Wbt/m (4.38)
\/;.:J ])nb {)m' o Jlr)uﬂ

Dividing Eq. (4.38) by the current //n, we find that the inductance of filament
ais

Hi

Aa D ’Da "a' Dam
L, = = 2n % 10~7 In ‘/n aq b o H/m  (4.39)
]/12 J‘?‘;DabDac o Dan
Similarly, the inductance of filament b is
A VDowDow D D
y = I—*’- =21 x 1077 In 2R “ H/m o (4.40)
/ﬂ \/Dbnr;)Dbc T Dbn
The average inductance of the filaments of conductor X is
L,+L,+L.+ - +L,
Lo, = (4.41)

n

Conductor X is composed of n filaments electrically in parailel. If all the
filaments had the same inductance, the inductance of the conductor would be
1/n times the inductance of one filament. Here all the filaments have different
inductances, but the inductance of all of them in parallel is 1/n times the
average inductance. Thus, the inductance of conductor X is

L, L,+L,+L_+ - ---+L,

Substituting the logarithmic expression for inductance of each filament in Eqg.
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(4.42) and combining terms, we obtain

Ly=2x10""

\/(Dna'Dab'Dac’ Danx)(Dba'Dhb'Dhc' Dbm)“. (Dna'Dnb'Dnc' Dnm)
X ln - . H/m

"
\/(DaaDabDar Dnn)(DhathDhr Dhn) (Dnanthc Dlm)

(4.43)

where s, r,, and r, have been replaced by D _,,,
make the expression appear more symmetrical.

Note that the numerator of the argument of the logarithm in Eq. (4.43) is
the mnth root of mn terms, which are the products of the distances from all the
n filaments of conductor X to all the mn filaments ot conductor Y. For each
filament in conductor X there are m distances to filaments in conductor Y, and
therc are n filaments in conductor X. The product of /1 distances for each of n
flaments results in smn terms. The mnth root of the product of the mn
distances is called the geometric mean distance between conductor X and
conductor Y. It is abbreviated D, or GMD and is also called the mutual GMD
between the two conductors.

The denominator of the argument of the logarithm in Eq. (4.43) is the n?
root of n? terms. There are n filaments, and for each filament there are n terms
consisting of r* for that filament times the distances from that filament to every
other filament in conductor X. Thus, we account for n° terms. Sometimes r/, is
called the distance from filament @ to itself, especially when it is designated as
D,,. With this in mind, the terms under the radical in the denominator may be
described as the product of the distances from every filament in the conductor
. to itself and to every other filament. The n® root of these terms is called the self
GMD of conductor X, and the - of a separate filament is called the self GMD
of the filament. Self GMD s also called geometric mean radius, or GMR. The
corrcct mathematical expression is sclf GMD, but common practicc has made
GMR more prevalent. We use GMR in order to conform to this practice and
identify it by D..

In terms of D, and D, Eq. (4.43) becomes

D,,, and D

nn?

respectively, to

[)IH
Ly=2x10 "In
D

y

H/m (4.44)

The reader should compare Egs. (4.44) and (4.25).
The inductance of conductor Y is determined in a similar manner, and the
inductance of the line is

L=L,+L,
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Example 4.2. One circuit of a single-phasc transmission linc is composed of threce
solid 0.25-cm-radius wires. The return circuit is composed of two 0.5-cm-radius
wires. The arrangement of conductors is shown in Fig. 4.9. Find the inductance
due to the current in each side of the linc and the inductance of the complete line
.in henrys per meter (and in millihenrys per mile).

Solution. Find the GMD between sides X and Y:

D

G
Dm = ‘/Dm.' D::( th D e Dce

he
Dad = Dbf.‘ = 9 m
th‘.‘ = Df?t!’ == D(“, = 62 + 92 = Jll?

D.,=V9%+ 122 = I5m

4]
D, = V92 x 15 ¥ 117%/? = 10.743 m

Then, find the GMR for side X

9
Ds = \/DaaDabDacDbanbDbchaDc.’;ch

9
= v(0.25 X 0.7788 x 1072)° x 6% x 127 = 0.481 m

i—-‘ 9m :—!i
—rOa Od
6m
*_C_'Ob Oe
6m
JV_O ‘

c
FIGURE 4.9
Side X Side ¥ Arrangement of conductors for Example 4.2
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and for side ¥

4

D, = V(0.5 x 0.7788 x 10-2)? x 62 = 0.153 m

10.743
Ly=2x10""In
: 0.481

=6.212 x 107" H/m

10.743
0.153

= 8.503 x 10" H/m

L=L,+L,=14715%x10""H/m

(L =14.715x 1077 x 1609 x 10* = 2.37 mH/mi)

In Examplc 4.2 thc conductors in parallel on one side of the line are
separatcd by 6 m, and thc distance betwcen the two sides of the line is 9 m.
Here the calculation of mutual GMD is important. For stranded conductors the
distance between sides of a line composed of one conductor per side is usually
so great that the mutual GMD can be taken as equal to the center-to-center
distance with negligible error.

If the effect of the steel core of ACSR is neglected in calculating
inductance, a high degree of accuracy results, provided the aluminum strands
are in an even number of layers. The effect of the core is more apparent for an
odd number of layers of aluminum strands, but the accuracy is good when the
calculations are based on the aluminum strands alone.

4.9 THE USE OF TABLES

Tables listing values of GMR are generally available for standard conductors
and provide other information for calculating inductive reactance as well as
shunt capacitive reactance and resistance. Since industry in the United States
continues to use units of inchces, fect, and miles, so do these tables. Therefore,
some of our examples will usc feet and miles, but others will use meters and
kilometers.

Inductive reactance rather than inductance is usually desired. The induc-
tive reactance of one conductor of a single-phase two-conductor line is

n

D

5

X, =27fL =27 x2x10""1In

D!‘}‘i

5

Dn]
or X, =2.022x 107 In D Q/mi (4.46)

¥
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where D, is the distance between conductors. Both D,, and D, must be in the
same units, usually either méters or feet. The GMR found in tables is an
equivalent D,, which accounts for skin effect where it is appreciable enough to
affect inductance. Of course, skin effect is greater at higher frequencies for a
conductor of a given diameter. Values of D, listed in Table A.3 of the Appendix
are for a frequency of 60 Hz.

Some tables give values of inductive reactance in addition to GMR. One
method is to expand the logarithmic term of Eq. (4.46), as follows:

Ay

]
X, =2.022 x 107 In ot 2.022 x 10 *f In D,, Q0 /mi (4.47)

Xu ’k,u'

If both D, and D,, arc in fect, the first term in Eq. (4.47) is the inductive
reactance of one conductor of a two-conductor line having a distance of 1 ft
between conductors, as may bc scen by comparing Eq. (4.47: with Eq. (4.46).
Therefore, the first term of Eq. (4.47) is culled the inductive reactance at 1-fi
spacing X,. It depends on the GMR of the conductor and the frequency. The
second term of Eq. (4.47) is called the inductive reactance spucing factor X,.
This second term is independent of the type of conductor and depends on
frequency and spacing only. Table A.3 includes values of inductive reactance at
1-ft spacing, and Table A.4 lists values of the inductive reactance spacing factor.

Example 4.3. Find the inductive reactance per mile of a single-pnase line operating
at 60 Hz. The conductor is Partridge, and spacing is 20 ft between centers.

Solution. For this conductor Table A3 lists D, = 0.0217 ft. From Eq. (4.46) for
onc conductor

20
X, =2.022x 107 %x 60In -———
L " 0.0217

= 0.828 QO /mi

The above calculation is used only if D, is known. Table A.3, however, lists

inductive reactance at 1-ft spacing X, = 0.465 {)/mi. From Tablz A.4 the inductive
reactance spacing factor is X, = 0.3635 Q/mi, and so the inductive reactance of
one conductor is

0.465 + 0.3635 = 0.8285 )/mi

Since the conductors composing the two sides of the line arc identical, the
inductive reactance of the line is

2X, =2 x0.8285 = 1.657 Q1 /mi '
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FIGURE 4.10
a ¢ Cross-sectional view of the equilaterally spaced conductors of a
D three-phasc line.

4.10 INDUCTANCE OF THREE-PHASE LINES
WITH EQUILATERAL SPACING

So far in our discussion we have considered only single-phase lines. The
equations we have developed are quite easily adapted, however, to the calcula-
tion of the inductance of three-phase lincs. Figurc 4.10 shows the conductors of
a three-phase line spaced at the corners of an equilateral triangle. If we assume
that there is no neutral wire, or if we assume balanced three-phase phasor
currents, [, + [, + /.= 0. Equation (4.36) determines the flux linkages of
conductor a:

1 1 1
A, =2X1077|,In— + 1, In— + I _In— | Wht/m (4.48)
D » »

£
i

Since I, = —(I, + 1), Eq. (4.48) becomes

1 1 D
A, =2X 10”[& In 5T I, In b] =2x 10777, In = Wbt/m (4.49)

¥ 5

D
and L,=2x10""1n o H/m (4.50)

$

Equation (4.50) is the samc in form as Eq. (4.25) for a single-phase line except
that D, replaces r’. Because of symmetry, the inductances of conductors & and
¢ are the same as the inductance of conductor a. Since each phase consists of
only onc conductor, Eq. (4.50) gives the inductance per phase of the thrce-phase
line.

4.11 INDUCTANCE OF THREE-PHASE LINES
WITH UNSYMMETRICAL SPACING

When the conductors of a three-phase line are not spaced equilaterally, the
problem of finding the inductance becomes more difficult. The flux linkages and
inductance of each phase are not the same. A different inductance in each
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Pos. 1 Cond. a Cond. ¢ Cond. b
12
Q&‘ Pos. 2 Cond. b Cond. a Cond. ¢
AV Pos. 3 Cond.e Cond. b Cond. a
FIGURE 4.11

Transposition cycle.

phase results in an unbalanced circuit. Balance of thc threc phascs can be
restored by exchanging the positions of the conductors at regular intervals along
the line so that cach conductor occupics the original position of every other
conductor over an equal distance. Such an exchange of conductor positions is
called transposition. A complete transposition cycle is shown in Fig. 4.11. The
phase conductors are designated a, b, and ¢, and thc positions occupied are
numbered 1, 2, and 3, respectively. Transposition results in each conductor
having the same average inductance over the whole cycle.

Modern power lines are usually not transposed at regular intervals al-
though an interchange in the positions of the conductors may be made at
switching stations in order to balance the inductance of the phases more closely.
Fortunately, the dissymmetry between the phases of an untransposed line is
small and neglected in most calculations of inductance. If the dissymmetry is
neglected, the inductance of the untransposed line is taken as equal to the
average value of the inductive reactance of one phase of the same line correctly
transposed. The derivations to follow are for transposed lines.

To find the average inductance of one conductor of a transposed line, we
first determine the flux linkages of a conductor for each position it occupies in
the transposition cycle and then determine the average flux linkages. Applying
Eq. (4.36) to conductor ¢ ol Fig. 4.11 to lind the phasor expression for the ux
linkages of a in position 1 when b s in position 2 and ¢ is in position 3, wc
obtain

1 1 ]
A, =2x10"71In— +/,In— + 1/ In—| Wbt/m (4.51)
D DlZ D31

R
With a in position 2, b in position 3, and ¢ in position 1,

1 1 1
AL,=2X10"7{I In— +1I1 In— + [ In—| Wht/m 4.52
a2 [a D b Dzs c Du) / ( )

5
and, with a in position 3, b in position 1, and ¢ in position 2,

1 1 1
= -7 — + [, In— + I in— | Wbt/m 4.53
Ags =2 %10 [lalnD Lw "nDzs) /m o (4.53)

)
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The average value of the flux linkages of a is

Anl + Aa2 + /\03

)lﬂ'
3
2% 1077 (3[ 1 1 1 ]
= —— {3, In —+ i In——— + [ In ———— | (4.54)
3 D, Dy DDy, D3 D53 Dy
With the restriction that {, = —(/, + 1),
2% 1077 1 1
Ay = —— |3/, In—— -1, In ———
[')\ { DI?_DZR.JI
R S
VD102, 0;
=2x 1071, 1In 5 Wbt ‘m (4.55)
and the average inductance per phase is
D,
Ln =2 X 10—711'1?1‘1/11’1 (456)

S

3

and D, is the GMR of the conductor. D,,, the geometric mean of the three
distances of the unsymmetrical line, is the equivalent equilateral spacing, as may
be seen by a comparison of Eq. (4.56) with Eq. (4.50). We should note the
similarity between all the equations for the inductance of a conductor. If
the inductance is in henrys per meter, the factor 2 X 10~7 appears in all the
equations, and the denominator of thc logarithmic term is always the GMR of
the conductor. The numerator 1s the distance between wires of a two-wire line,
the mutual GMD betwcen sides of a composite-conductor single-phase line, the
distance between conductors of an equilaterally spaced line, or the equivalent

equilateral spacing of an unsymmetrical linec.
Example 4.4. A single-circuit three-phase hne operated at 60 Hz is arranged, as

shown in Fig. 4.12. The conductors arc ACSR Drake. Find the inductive reactance
per mile per phase.

. ; FIGURE 4.12
O/ 38’ \@ Arrangement of conductors for Example 4.4,
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Solution. From Table A.3

D,=00373ft D, =V20x 20 X 38 = 24.8 1

0.0373

L=2x10"In

=13.00 X 107" H/m

X, =260 X 1609 X 13.00 X 1077 = 0.788 Q/mi per phasc

Equation (4.46) may be uscd also, or from Tables A3 and A4
X, = 0.399
and by interpolation for 24.8 11

X, = 0.3896

X, =0.399 + 0.3896 = 0.7886 {1/mi per phase

4.12 INDUCTANCE CALCULATIONS
FOR BUNDLED CONDUCTORS

At extra-high voltages (EHV), that is, voltages above 230 kV, corona with its
resultant power loss and particularly its interference with communications is
excessive if the circuit has only one conductor per phase. The high-voltage
gradient at the conductor in the EHV range is reduced considerably by having
two or more conductors per phase in close proximity compared with the spacing

- between phases. Such a line is said to be composed of bundled conductors. The
bundle consists of two, three, or four conductors. Figurc 4.13 shows the
arrangements. The current will not divide exactly between the conductors of the -
bundle uniess there is a transposition ol thc conductors within the bundle, but
the difterence is of no practical importance, and the GMD mcthod is accurate
for calculations. .

Reduced reactance is the other equally important advantage of bundling.
Increasing the number of conductors in a bundle reduces the effects of corona
and reduces the reactance. The reduction of reactance results from the in-
creased GMR of the bundle. The calculation of GMR is, of course, exactly the
same as that of a stranded conductor. Each conductor of a two-conductor
bundle, for instance, is treated as one strand of a two-strand conductor. If we let
D? indicate the GMR of a bundled conductor and D, the GMR of the

d

d FIGURE 4.13
o—=0 -

d d Bundle arrangements.
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individual conductors composing the bundle, we find, referring to Fig. 4.13:

For a two-strand bundle

Df = 4\/(1_)5 X d) = /D, xd (4.58)

For a three-strand bundle

4] -;
DY = (D, x d x d)* =D, x & (4.59)
For a four-strand bundle
16 - 4
D! = \/([)‘_xdxdx »5([) =1.09 VD, x d° (4.60)

In computing inductance using Eq. (4.506), DS" of the bundle replaces D, of
a single conductor. To compute D, . the distance from the center of one bundle
to the center of another bundle is sufficiently accurate for D,,, D,., and D.,.
Obtaining the actual GMD bctween conductors of one bundle and those of
another would be almost indistinguishable from the center-to-center distances
for the usual spacing.

Example 4.5. Each conductor of the bundlcd-conductor line shown in Fig. 4.14 is
ACSR, 1,272,000-cmil Pheasant. Find the inductive rcactance in ohms per
kilometer (and per mile) per phasc for ¢ = 45 cm. Also, find the per-unit series
reactance of the linc if its length is 160 km and the base is 100 MV A, 345 kV.

Solution. From Table A3 D, = 0.0406 {t, and wc multiply fect by 0.3048 to convert
to meters.

D! = J0.0466 x 0.3048 X (.45 = 0.080 m

P —
D, = V8 X8 X 16 = 10.08 m

10.08
0.08

X, =2m60 X 2% 10 7 x 10" In

0.365 2 /km per phase

= 0.365 x 1.609 = 0.587 ) /mi per phase

(345)°
Base Z = = 1190 O)
100
0.365 x 160

—— = 0.049 per unit .
1190
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g %

| l O’ cO | Oc’ '
" 8 m o 8 m \ FIGURE 4.14

Spacing of conductors of a bun-
d=45cm dled-conductor line.

4.13 SUMMARY

Although computer programs are usually available or written rather easily for
calculating inductance of all kinds of lines, some understanding of the develop-
ment of the equations used is rewarding from the standpoint of appreciating the
effect of variables in designing a line. However, tabulated values such as those
in Tables A.3 and A.4 make the calculations quite simple except for parallel-cir-
cuit lines. Table A.3 also lists resistance.

The important equation for inductance per phase of single-circuit three-
phase lines is given here for convenience:

D,
L=2x10""In Fq H/m per phase (4.61)

N

Inductive reactance in ohms per kilometer at 60 Hz 1s found by multiplying
inductance in henrys per meter by 27760 x 1000:

D
X, = 0.0754 X In ch Q /km per phase (4.62)

5

D,
or X, =0.1213 x In 7“ Q/mi per phase (4.63)

RY

Both D., and D, must be in the same units, usually feet. If the line has one
conductor per phase, D, is found directly from tables. For bundled conductors

Df, as defined in Sec. 4.12, is substituted for D,. For both single-conductor and
bundled-conductor lines

3 -
D, = vD,,D,.D., (4.64)

For bundled-conductor lines D,,, D,., and D., are distances between the
centers of the bundles of phases a, b, and c.

For lines with one conductor per phase it is convenient to determine X,
from tables by adding X, for the conductor as found in Table A3 to X, as
found in Table A.4 corresponding to D,q.
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PROBLEMS

4.1.

4.2,

4.3.

4.4,

The all-aluminum conductor (AAC) identified by the code word Bluebell is
composed of 37 strands, each having a diameter of 0.1672 in. Tables of characteris-
tics of AACs list an area of 1,033,500 cmil for this conductor (1 cmil = (7 /4) X
107% in?). Are these values consistent with each other? Find the overall area of the
strands in squarc millimeters.

Determine the dc resistance in ohms per km of Bluebell at 20°C by Eq. (4.2) and
the information in Prob. 4.1, and check the result against the value listed in tables
of 0.01678 Q1 per 1000 ft. Compute the dc resistance in ohms per kilometer at S0°C
and comparc the result with the ac 60-Hz resistance of 0.1024 Q0 /mi listed in tables
for this conductor at 5S0°C. Explain any differcnce in valucs. Assume that the
increasc in resistance duc to spiraling is 2%.

An AAC is composed of 37 strands, cach having a diamcter of 0.333 cm. Compute
thc dc resistance in ohms per kilometer at 75°C. Assume that the increcase in
resistance duc Lo spiraling is 2%.

The cnergy density (that s, the encrgy per unit volume) at a point in a magnctic
ficld can bc shown to be B?/2u, where B is the flux density and g is the
pcrmeability. Using this result and Eq. (4.10), show that the total magnetic field
energy stored within a unit length of solid circular conductor carrying current /7 is
given by pf?/167. Neglect skin cffect, and thus verify Eq. (4.15).

4.5. The conductor of a single-phase 60-Hz linc is a solid round aluminum wire having a

diameter of 0.412 cm. The conductor spacing is 3 m. Determine the inductance of
the line in millihenrys per mile. How much of the inductance is duc to internal flux
linkages? Assume skin effect is negligible.

4.6. A single-phase 60-Hz overhead powecr linc is symmetrically supported on a horizon-

4.7.

tal crossarm. Spacing between the centers of the conductors (say, a and 6) is 2.5 m.

A telephone line is also symmetrically supported on a horizontal crossarm 1.8 m

directly below the power line. Spacing between the centers of these conductors

(say, ¢ and d)is 1.0 m.

(a) Using Eq. (4.36), show that the mutual inductance per unit length between
circuit a-b and circuit ¢-d is given by

D, Dy,
4 x 10 "In e H/m
D, D,

where, for cxample, D, denotes the distance in meters between conductors a
and d.

(b) Hencee, compute the mutual inductance per kilometer between the power line
and the tclephone linc.

(¢) Find the 60-Hz voltage per kilomcter induccd in the telephone line when the

powcr linc carrics 150 A.

ad

If the power linc and the tclephonce linc described in Prob. 4.6 are in the same
horizontal plane and the distancc between the ncarest conductors of the two lines
is 18 m, usc the result of Prob. 4.6(a) to find the mutual inductance between the
power and telephone circuits. Also, find the 60-Hz voltage per kilometer induced in
the tclephonce line when 150 A flows in the power linc.

a
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4.8.
4.9.

% @ % % FIGURE 4.15
(a) (b) () {ch

4.10.

4.11.

4.12.
4.13.

4.14.

4.15.

4.16.

4.17.

4.18.
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Find the GMR of a three-strand conductor in terms of r of an individual strand.

Find the GMR of each of the unconventional conductors shown in Fig. 4.15 in
terms of the radius r of an individual strand.

Crass-sectional  view  of  unconven-
tional conductors for ProbL. 4.9.

The distance bctween conductors ol a single-phase line is 10t Each of 1its
conductors is composcd of six strands symmctrically placed around onc center
strand so that there are seven equal strands. The diameter of cach strand is 0.1 in.
Show that D, of each conductor is 2.177 times the radius of each strand. Find the
inductance of the line in mH /mi.

Solve Example 4.2 for the case where side Y of the single-phase line is identical to
side X and the two sides are 9 m apart, as shown in Fig. 4.9.

Find the inductive reactance of ACSR Rail in ohms per kilometer at 1-m spacing.

Which conductor listed in Table A.3 has an inductive reactance at 7-ft spacing of
0.651 (}/mji?

A three-phase line has three equilatcrally spaced conductors of ACSR Dove. If the
conductors are 10 ft apart, determinc the 60-Hz per-phase reactance of the line in
Q/km.

A three-phase line is designed with equilateral spacing of 16 ft. It is decided to
build the line with horizontal spacing (D,; = 2D, = 2D,;). The conductors are
transposed. What should be the spacing between adjacent conductors in order to
obtain the samce inductance as in the original design?

A thrce-phasc 00-Hz transmussion line has its conductors arranged in a triangular
formation so that two of the distances between conductors are 25 ft and the third
distancc is 42 ft. The conductors arc ACSR Osprey. Determine the inductance and
inductive rcactance per phasc pcr mile.

A thrce-phasce 60-Hz line has flat horizontal spacing. The conductors have a GMR
of 0.0133 m with 10 m bectween adjacent conductors. Determine the inductive
reactance per phasc in ohms pcr kilometcr. What is the name of this conductor?

For short transmission lines if resistance is neglected, the maximum power which
can be transmittcd pcr phase is cqual to

Vsl X Vel
| X|

where Vs and Vj; are the line-to-neutral voltages at the sending and receiving ends
of the line and X is the inductive reactance of the line. This relationship will
become apparent in the study of Chap. 6. If the magnitudes of ; and V/,, are held
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4.21.

4.22.
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constant, and if the cost of a conductor is proportional to its cross-sectional area,
find the conductor in Table A.3 which has the maximum power-handling capacity
per cost of conductor at a given geometric mean spacing.

A three-phase underground distribution line is operated at 23 kV. The three
conductors are insulated with 0.5-cm solid black polyethvlene insulation and lie
flat, side by side, directly next to each other in a dirt trench. The conductor is
circular in cross section and has 33 strands of aluminum. The diameter of the
conductor is 1.46 cm. The manufacturer gives thc GMR as 0.561 cm and the cross
scction of the conductor as 1.267 cm?. The thermal rating of the line buried in
normal soil whose maximum tempcraturc is 30°C is 350 A. Find the dc and ac
resistance at S0°C and the inductive reactance in ohms per kilometer. To decide
whether to consider skin effect in calculating resistance, determine the percent skin
effcct at S0°C in the ACSR conductor of the sizc nearest that of the underground
conductor. Note that thc series impcdance of the distribution line is dominated by
R rather than X, bccausc of thc very low inductance due to the close spacing of
the conductors.

The single-phase power linc of Prob. 4.6 is rcplaced by a threc-phase line on a
horizontal crossarm in thc samc position as that of the original singlc-phase line.
Spacing of the conductors of the power linc is D3 = 2D,. = 2D,3, and equivalent
equilatcral spacing is 3 m. The telephonc linc remains in the position described in
Prob. 4.6. If the current in the power line is 150 A, find the voltage per kilometer
induced in the telephone line. Discuss the phase relation of the induced voltage
with respect to the power-line current.

A 60-Hz three-phase line composed of one ACSR Bluejay conductor per phase has
flat horizontal spacing of 11 m between adjacent conductors. Compare the induc-
tive reactance in ohms per kilometer per phase of this line with that of a line using
a two-conductor bundle of ACSR 26 /7 conductors having the same total cross-sec-
tional area of aluminum as the single-conductor line and 11-m spacing measured
from the center of the bundles. The spacing betwecn conductors in the bundle is
40 cm.

Calculate the inductive reactance in ohms per kilometer of a bundled 60-Hz
three-phase line having three ACSR Rail conductors per bundle with 45 cm
between conductors of the bundle. The spacing between bundle centersis 9, 9, and
18 m.






