CHAPTER

CAPACITANCE
OF
TRANSMISSION
LINES

As we discussed briefly at the beginning of Chap. 4, the shunt admittance of a
transmission line consists of conductance and capacitive reactance. We have
also mentioned that conductance is usually neglected because its contribution to
shunt admittance is very small. For this reason this chapter has been given the
title of capacitance rather than shunt admittance.

Capacitance of a transmission line is the result of the potential difference
between the conductors; it causes them to be charged in the same manner as
the plates of a capacitor when there is a potential difference between them. The
capacitance between conductors is the charge per unit of potential difterence.
Capacitance between parallel conductors is a constant depending on the size
and spacing of the conductors. For power lines less than about 80 km (50 mi)
long, the effect of capacitance can be slight and is often neglected. For longer
lines of higher voltage capacitance becomes increasingly important.

An alternating voltage impressed on a transmission line causes the charge
on the conductors at any point to increase and decrease with the increase and
decrease of the instantaneous value of the voltage between conductors at the
point. The flow of charge is current, and the current caused by the alternate
charging and discharging of a line due to an alternating voltage is called the
charging current of the line. Since capacitance is a shunt between conductors,
charging current flows in a transmission line even when it is open-circuited. It
affects the voltage drop along the lines as well as efficiency and power factor of
the line and the stability of the system of which the linc is a part.
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5.1 ELECTRIC FIELD OF A LONG, STRAIGHT CONDUCTOR 171

The basis of our analysis of capacitance is Gauss’s law for electric fields.
The law states that the total electric charge within a closed surface equals the
total electric flux emerging from the surface. In other words, the total charge
within the closed surface equals the integral over the surface of the normal
component of the electric flux density.

The lines of electric flux originate on positive charges and terminate on
negative charges. Charge density normal to a surface is designated Df and
equals kKE, where k is the permittivity of the material surrounding the surface
and E is the electric field intensity.!

5.1 ELECTRICFIELD OF A LONG, STRAIGHT
CONDUCTOR

If a long, straight cylindrical conductor lics in a uniform medium such as air and
is isolated from other charges so that the charge is uniformly distributed around
its periphery, the flux is radial. All points equidistant from such a conductor are
points of equipotential and have the same electric flux density. Figure 5.1 shows
such an isolated conductor. The electric flux density at x meters from the
conductor can be computed by imagining a cylindrical surface concentric with
the conductor and x meters in radius. Since all parts of the surface are
equidistant from the conductor, the cylindrical surface is a surface of equipoten-
tial and the electric flux density on the surface is equal to the flux leaving the
conductor per meter of length divided by the area of the surface in an axial
length of 1 m. The electric flux density is

D= —— C/m? (5.1)

 2mx

where g is the charge on the conductor in coulombs per meter of length and x
is the distance in meters from the conductor to the point where the electric flux
density is computed. The electric field intensity, or the negative of the potential
gradient, is equal to the elcctric flux density divided by the permittivity of the
medium. Therefore, the electric field intensity is

q

E =
2 xk

V/m (5.2)

E and g both may be instantaneous, phasor, or dc expressions.

"In SI units the permittivity of free space ky is 8.85 X 107'2 F/m (farads per meter). Relative
permittivity k, is the ratio of the actual permittivity k of a material of the permittivity of free space.
Thus, k, = k/ky. For dry air k, is 1.00054 and is assumed equal to 1.0 in calculations for overhead
lines. -

I



172 CHAPTER S CAPACITANCE OF TRANSMISSION LINES

FIGURE 5.1
Lines of electric flux originating on the positive charges uni-

formly distributed over the surface of an isolated cylindrical
conduclor.

5.2 THE POTENTIAL DIFFERENCE
BETWEEN TWO POINTS DUE TO A CHARGE

The potential difference between two points in volts is numerically equal to the
work in joules per coulomb necessary to move a coulomb of charge between the
two points. The electric field intensity 1s a measure of the force on a charge in
the field. The electric field intensity in volts per meter is equal to the force in
newtons per coulomb on a coulomb of charge at the point considered. Between
two points the line integral of the force in newtons acting on a coulomb of
positive charge is the work done in moving the charge from the point of lower
potential to the point of higher potential and is numerically equal to the
potential difference between the two points.

Consider a long, straight wire carrying a positive charge of g C/m, as
shown in Fig. 5.2. Points P, and P, are located at distances D, and D, meters,
respectively, from the center of the wire. The wire is an equipotential surface
and the uniformly distributed charge on the wire is equivalent to a charge
concentrated at the center of the wire for calculating flux external to the wire.
The positive charge on the wire will exert a repelling force on a positive charge
placed in the ficld. For this rcason and because D, i this casc is greater than

Path of
integration

FIGURE 5.2

Path of integration between two points external to a
cylindrical conductor having a uniformly distributed
positive charge.
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D,, work must be done on a positive charge to move it from P, to P, and P, is
at a higher potential than P,. The difference in potential is the amount of work
done per coulomb of charge moved. On the other hand, if the one coulomb of
charge moves from P, to P,, it expends energy, and the amount of work, or
energy, in newton-meters is the voltage drop from P, to P,. The potential
difference is independent of the path followed. The simplest way to compute
the voltage drop between two points is to compute the voltage between the
equipotential surfaces passing through P, and P, by integrating the field
intensity over a radial path between the equipotential surfaces. Thus, the
instantaneous voltage drop between P, and P, is

D, o, 4 q D,
- [PEae= ("= T2y 5.3
Ui fgl C Ty 2mkx 2wk D, (5:3)

where ¢ is the instantaneous charge on the wire in coulombs per meter of
length. Note that the voltage drop between two points, as given by Eq. (5.3),
may be positive or negative depending on whether the charge causing the
potential difference 1s positive or negative and on whether the voltage drop is
computed from a point near the conductor to a point farther away, or vice versa.
The sign of g may be either positive or negative, and the logarithmic term is
either positive or negative depending on whether D, is greater or less than D;,.

5.3 CAPACITANCE OF A TWO-WIRE LINE

Capacitance between the conductors of a two-wire line is defined as the charge
on the conductors per unit of potential difference between them. In the form of
an equation capacitance per unit length of the line is

c=2F/m (5.4)

1%

where ¢ is the charge on (he line in coulombs per meter and v is the potential
dilfference between the conductors in volts. Hercafter, {for convenience, we refer
to capacitance per wiit length as capacitance and indicate the correct dimensions
(or the cquations derived. The capacitance between two conductors can be
found by substituting in Eq. (5.4) the expression for v in terms of ¢ from Eq.
(5.3). The voltage v, between the two conductors of the two-wire line shown in
FFig. 5.3 can be found by determining the potential difference between the two
conductors of the line, first by computing the voltage drop due to the charge g,
on conductor a and then by computing the voltage drop due to the charge g, on
conductor b. By the principle of superposition the voltage drop from conductor
a to conductor b due to the charges on both conductors is the sum of the
voltage drops caused by each charge alone.

The charge g, on conductor a of Fig. 5.3 causes surfaces of equipotential
in the vicinity of conductor b, which are shown in Fig. 5.4. We avoid the



174 CHAPTER S CAPACITANCE OF TRANSMISSION LINES

O &
:

D ,‘ FIGURE 5.3
| Cross section of a parallel-wire line.

distorted equipotential surfaces by intcgrating Eq. (5.3) along the altcrnate
rather than the direct path of Fig. 5.4. In determining v,, due to g,, we follow
the path through the undistorted rcgion and see that distance D, of Eq. (5.3) is
the radius r, of conductor a and distance D, is the center-to-center distance
between conductors a and b. Similarly, in determining v, duc to g, wc find
that the distances D, and D, arc r, and D, respcctively. Converting to phasor
notation (g, and g, bccomce phasors), we obtain

qu D (1[) )‘h _
Vip = In — + In—V (5.9)
27k I, 2k D
due to g, due to g,
and since g, = —gq, for a two-wire line,
Qa D rb
V., = In—=Iln—|V 5.6
& 2k [ r, D ) (5.6)

Equipotential
surfaces

Direct path of integration
from a to b FIGURE 5.4

- Equipotential surfaces of a por-
tion of the clectric field caused by
a charged conductor a (not
shown). Conductor b causes the
equipotential surfaces to become
distorted. Arrows indicate Qp-
tional paths of integration be-
tween a point on the equipoten-
tial surface of conductor b and
the conductor a, whose charge q,
creates the equipotential‘surfaces
shown.
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or by combining the logarithmic terms, we obtain

q D?
v “lhn—V (5.7)

_"b 2k oty

The capacitance between conductors is

q, 21k
Cpp= = = —— F/m (5.8)
Ve In(D?/r,r,)

Ifr,=r,=r,

Tk

Co = n(D /) F/m (5.9)

Equation (5.9) gives the capacitance between the conductors of a two-wire
line. If the line is supplied by a transformer having a grounded center tap, the
potential difference between each conductor and ground is half the potential
difference between the two conductors and the capacitance to ground, or
capacitance 10 neutral, is

C C c q, 2k
S oTen s ey /2 In(D/r)

F/m to neutral (5.10)

The concept of capacitance to neutral is illustrated in Fig. 5.5.

Equation (5.10) corresponds to Eq. (4.25) for inductance. One difference
between the equations for capacitance and inductance should be noted care-
fully. The radius in the equation for capacitance is the actual outside radius of
the conductor and not the geometric mean ratio (GMR) of the conductor, as in
the inductance formula.

Equation (5.3), from which Eqgs. (5.5) through (5.10) were derived, is based
on the assumption of uniform charge distribution over the surface of the
conductor. When other charges arc present, the distribution of charge on the
surface of the conductor is not uniform and the equations derived from Eq. (5.3)
are not strictly correct. The nonuniformity of charge distribution, however, can

O——C0O O 440

C CM=2C‘,3_, Cbn= 2Cﬂb
ad

(@) Representation of line-to-line capacitance (b) Representation of line-to-neutral capacitance

FIGURE S.5
Relationship between the concepts of line-to-line capacitance and line-to-neutral cagacilance.



176 CHAPTER S CAPACITANCE OF TRANSMISSION LINES

be neglected entirely in overhead lines since the error in Eq. (5.10) is only
0.01%, even for such a close spacing as that where the ratio D /r = 50.

A question arises about the value to be used in the denominator of the
argument of the logarithm in Eq. (5.10) when the conductor is a stranded cable
because the equation was derived for a solid round conductor. Since electric
flux is perpendicular to the surface of a perfect conductor, the electric field at
the surface of a stranded conductor is not the same as the field at the surface of
a cylindrical conductor. Therefore, the capacitance calculated for a stranded
conductor by substituting the outside radius of the conductor for r in Eq. (5.10)
will be slightly in error becausc of the difference between thc field in the
neighborhood of such a conductor and the ficld near a solid conductor for which
Eq. (5.10) was derived. The error is very small, however, since only the field very
close to the surface of the conductor is affected. The outside radius of the
stranded conductor is used in calculating the capacitance.

After the capacitance to neutral has been determined, the capacitive
reactance existing between one conductor and neutral for relative permittivity
k, = 1is found by using the expression for C given in Eq. (5.10) to yicld

: 2502 107 | D 0 1 5.11
2 fC 7 n-— m to neutra ( )

Xc
Since C in Eq. (5.11) is in farads per meter, the proper units for X, must be
ohm-meters. We should also note that Eq. (5.11) expresses the reactance from
line to neutral for 1 m of line. Since capacitance reactance is in parallel along
the line, X in ohm-meters must be divided by the length of the line in meters
to obtain the capacitive reactancc in ohms to neutral for the entire length of the
line.

When Eq. (5.11) is divided by 1609 to convert to ohm-miles, we obtain

1.779

D
Xe 7 x 10 In — Q - mi to neutral (5.12)
.

I

Table A.3 lists the outside diameters of the most widely used sizes of
ACSR. If D and r in Eq. (5.12) are in feet, capacitive reactance at 1-ft spacing
X, is the first term and capacitive reactance spacing factor X}, is the second term
when the equation is expanded as follows:

1.779 1 1.779
Xc X 10 In — +
r

X 10%In D Q - mi to neutral (5.13)

Table A.3 includes values of X for common sizes of ACSR, and similar tables

‘are readily available for other types and sizes of conductors. Table A.5 in the
Appendix lists values of X, which, of course, is different from the synchronous
machine transient reactance bearing the same symbol.
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Example 5.1. Find the capacitive susceptance per mile of a single-phase line
operating at 60 Hz. The conductor is Partridge, and spacing is 20 ft between
centers.

Solution. For this conductor Table A.3 lists an outside diameter of 0.642 in, and so

0.642
r= = 0.0268 ft
2 x 12
and from Eq. (3.12)
y 1.779 106 ] .
= X = - mi
c 0 " G568 0.1961 x 10° €2 - mi to neutral

1

— =5.10 x 107% S/mi to neutral

or in terms of capacitive reactance at 1-It spacing and capacitive reactance spacing
factor from Tatles A.3 and A.S

X.=01074 MQ - mi

X: = 0.0889 MQ - mi

X =0.1074 + 0.0889 = 0.1963 M - mi per conductor
Line-to-line capacitive reactancc and susceptance are

Xe =2 % 0.1963 X 10° = 0.3926 X 10° Q - mi

1
BC = X_ =255 X 10_6 S/ml
(&

5.4 CAPACITANCE OF A THREE-PHASE LINE
WITH EQUILATERAL SPACING

The three identical conductors of radius r of a three-phase line with equilateral
spacing are shown in Fig. 5.6. Equation (5.5) expresses the voltage between two
conductors due to the charges on each one if the charge distribution on the
conductors can be assumed to be uniform. Thus, the voltage V,, of the
three-phase line due only to the charges on conductors a and b is

Ve=-—-|g,In—+g,In—| V (5.14)
r

due to g, and g,
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FIGURE 5.6
D € Cross scction of a three-phase line with equilateral spacing.

Equation (5.3) cnables us to include the cffect ol g, since uniform charge
distribution over the surface of a conductor is equivalent to a concentrated
charge at the ccnter of the conductor. Therefore, duc only to the charge ¢,

which is zero since g, is equidistant from a and b. However, to show that we
are considering all three charges, we can write

: ( ] P l ’ 1 o ) Vv 5.15)

Vip = n— + n—+gq.ln— :

ab = o P 9Ny T4 H (

vV, : 1 b l b ' ) 5.16

ac = a + ~ .
ek (% T ainp TV (516)

Adding Egs. (5.15) and (5.16) gives
1 D r

Vi T V. = o [2(;” fn — + (g, + g.}In 5] vV (5.17)

In deriving these equations, we have assumed that ground is far enough away to
have negligible effect. Since the voltages are assumed to be sinusoidal and
expressed as phasors, the charges are sinusoidal and expressed as phasors. If
there are no other charges in the vicinity, the sum of the charges on the three

conductors is zero and we can substitute —g, in Eq. (5.17) for g, + ¢, and
obtain

v, +V, = In— V (5.18)

Figure 5.7 is the phasor diagram of voltages. From this figure we obtajn the
following relations between the line voltages V,, and V,. and the voltage V,

an
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FIGURE 5.7
Phasor diagram of the balanced voltages of a three-phase line.

from line a to the neutral of the three-phase circuit:
Vo = V3V, /30° = /3V,,(0.866 + j0.5) (5.19)

Vm‘z - Vru = 1/:? V;mf _300 = EV011(0866 _105) (520)
Adding Eqgs. (5.19) and (5.20) gives

V., + V,. =3V, (5.21)

i

Substituting 3V, , for V,, + V,. in Eq. (5.18), we obtain

C

9, . D
V In—V (5.22)

“ " 2wk

Since capacitance to neutral is the ratio of the charge on a conductor to the
voltage between that conductor and neutral,

q, 2wk
"y In(D/r)

an

F/m to neutral (5.23)

Comparison ol Eqs. (5.23) and (5.10) shows that the two are identical.
These equations express the capacitance to neutral for single-phase and equi-
latcrally spaccd threc-phase lincs, respectively. Similarly, we recall that the
equations for inductance per conductor are the same for single-phase and
equilaterally spaced three-phase lines.

The term charging current is applied to the current associated with the
capacitance of a line. For a single-phase circuit the charging current is the
product of the hne-to-line voltage and the line-to-linc susceptance, or as a
phasor,

]chg = jwcabVab (524)

For a three-phase line the charging current is found by multiplying the voltage
to neutral by the capacitive susceptance to neutral. This gives the charging
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current per phase and is in accord with the calculation of balanced three-phase
circuits on the basis of a single phase with neutral return. The phasor charging
current in phase a is

Iy, = joC,V,, A/mi (5.25)

Since the rms voltage varies along the line, the charging current is not the same
everywhere. Often the voltage used to obtain a value for charging current is the
normal voltage for which the line is designed, such as 220 or 500 kV, which is
probably not the actual voltage at either a generating station or a load.

5.5 CAPACITANCE OF A THREE-PHASE LINE
WITH UNSYMMETRICAL SPACING

When the conductors of a three-phase line are not equilaterally spaced, thc
problem of calculating capacitance becomes more difficult. In the usual untrans-
posed line the capacitances of each phase to neutral are unequal. In a trans-
posed line the average capacitance to neutral of any phase for the complete
transposition cycle is the same as the average capacitance to neutral of any
other phase since each phase conductor occupies the same position as every
other phase conductor over an equal distance along the transposition cycle. The
dissymmetry of the untransposed line is slight for the usual configuration, and
capacitance calculations are carried out as though all lines were transposed.

For the line shown in Fig. 5.8 three equations are found for V,, for the
three different parts of the transposition cycle. With phase a in position 1, b in
position 2, and ¢ in position 3,

1
I/nb = 55
27k

Dy, r Dy,
g,In—+qg,In— +¢qg. In—|V (5.20)
r D, D,

With phase a in position 2, b in position 3, and ¢ in position 1,

FIGURE 5.8
Cross section of a three-phase line with unsymmetrical
3 spacing.
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and with a in position 3, b in position 1, and ¢ in position 2,

% | 1 Ds, In — 1 Do v 28
= =g, In — +g,ln — + g, In — 5.
b d r D Dy, q D, (528)

Equations (5.26) through (5.28) are similar to Egs. (4.51) through (4.53) for
the magnetic flux linkages of one conductor of a transposed line. However, in
the equations for magnetic flux linkages we note that the current in any phase
is the same in every part of the transposition cycle. In Eqs. (5.26) through (5.28),
if we disregard the voltage drop along the line, the voltage to neutral of a phase
in one part of a transposition cycle is equal to the voltage to neutral of that
phasc in any part of the cycle. Hence, the voltage between any two conductors is
the same in all parts of the transposition cycle. It follows that the charge on a
conductor must bc different when the position of the conductor changes with
respect to other conductors. A treatment of Eqs. (5.26) through (5.28) analogous
to that of Eqs. (4.51) through (4.53) is not rigorous.

The rigorous solution for capacitances is too involved to be practical
except perhaps for flat spacing with equal distances between adjacent conduc-
tors. With the usual spacings and conductors, sufficient accuracy is obtained by
assuming that the charge per unit length on a conductor is the same in every
part of the transposition cycle. When the above assumption is made with regard
to charge, the voltage between a pair of conductors is different for each part of
the transposition cycle. Then an average value of voltage between the conduc-
tors can be found and the capacitance calculated from the average voltage. We
obtain the average voltage by adding Eqs. (5.26) through (5.28) and by dividing
the result by 3. The average voltagc between conductors a and b, assuming
the same charge on a conductor rcgardless of its position in the transposition
cycle, 1s

" 1 | D3 DDy + g In r’ + g ln Dy; D53 D5,
ab - q(l n i 7 ~N ~ N C ~ N N
, 67K r’ [ D> D53 D, D\, Dy D5,
i In — (5.29)
= —— — + n— )
2k (10" %D
where D,, = YD, Dy Dy, (5.30)
Similarly, the average voltage drop from conductor @ to conductor ¢ 1s
: In =% g ln— | v (5.31)
V = — n -+ n— .
ac 27Tk qa qC Deq




182 CHAPTER S CAPACITANCE OF TRANSMISSION LINES

Applying Eq. (5.21) to find the voltage to neutral, we have

3V—V+V—1210":q ' ’
an ab ac_2ﬂ_k q, nT+qblnD_ +qclnD— Vv (532)

eq eq

Since g, + g, + g, = 0,

3V, ’ 1 Dey Y% 5.33

an 27qua n r ( . ‘)
q, 2wk

and C, = = F/m to neutral (5.34)

© Vo In(Dy/r)

Equation (5.34) for capacitance to neutral of a transposed three-phase line
corresponds to Eq. (4.56) for the inductance per phase of a similar line. In
finding capacitive reactance to neutral corresponding to C,. we can split the
reactance into components of capacitive reactance to neutral at 1-ft spacing X
and capacitive reactance spacing factor X/, as defined by Eq. (5.13).

Example 5.2. Find the capacitance and the capacitive reactance for 1 mi of the
line described in Example 4.4. If the length of the line is 175 mi and the normal
operating voltage is 220 kV, find capacitive reactance to neutral for the entire
length of the line, the charging current per mile, and the total charging

megavoltamperes.

Solution

1.108
2 X 12

= 0.0462 ft

)
I

24 .8 ft

27 X 8.85 X 10 2

C = - v 10-12
" TIn(24.8/0.0462) 8.8466 « 1072 F/m

1012

Xc = = 0.1864 x 10° Q1 - mi
27 X 60 X 8.8466 X 1609

or from tables
X, =0.0912 x 10° X, =0.0953 x 106

Xc = (0.0912 + 0.0953) x 10° = 0.1865 x 10% Q - mito neutral ’
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For a length of 175 mi

_ 0.1865 x 10°
Capacitive reactance = 175 = 1066 (1 to neutral
™ 220,000 1 220,000 x 10°® 81 A
chel = ————— = = 0.681 i
W T TR X, /3 x 0.1865 /mi

or 0.681 x 175 = 119 A for thc line. Reactive power is O = V3 x 220 X 119 X
1073 = 43.5 Mvar. This amount of reactive power absorbed by the distributed
capacitance is negative in keeping with the convention discussed in Chap. 1. In
othcr words, positive rcactive power is being  gencrated by the distributed
capacitance of the lince.

5.6 EFFECT OF EARTH ON THE
CAPACITANCE OF THREE-PHASE
TRANSMISSION LINES

Earth affects the capacitance of a transmission line because its presence alters
the electric field of the line. If we assume that the earth is a perfect conductor
in the form of a horizontal plane of infinite extent, we realize that the electric
field of charged conductors above the earth is not the same as it would be if the
equipotential surface of the earth were not present. The electric field of the
charged conductors is forced to conform to the presence of the earth’s surface.
The assumption of a flat, equipotential surface is, of course, limited by the
irregularity of terrain and the type of surface of the earth. The assumption
enables us, however, to understand the effect of a conducting earth on capaci-
tance calculations.

Consider a circuit consisting of a single overhead conductor with a return
path through the earth. In charging the conductor, charges come from the earth
to reside on the conductor, and a potential difference exists between the
conductor and the earth. The earth has a charge equal in magnitude to that on
the conductor but of opposite sign. The clectric flux from the charges on the
conductor to the charges on the earth is perpendicular to the earth’s equipoten-
tial surface since the surface is assumed to be a perfect conductor. Let us
imagine a fictitious conductor of the same size and shape as the overhead
conductor lying directly below the original conductor at a distance equal to
twice the distance of the conductor above the plane of the ground. The fictitious
conductor 1s below the surface of the carth by a distance equal to the distance
of the overhead conductor ahove the earth. If the earth is removed and a charge
equal and opposite to that on the overhead conductor is assumed on the
fictitious conductor, the plane midway between the original conductor and the
fictitious conductor is an equipotential surface and occupies the same position
as the equipotential surface of the earth. The electric flux between the overhead
conductor and this equipotential surface is the same as that wbich existed
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between the conductor and the earth. Thus, for purposes of calculation of
capacitance the earth may be replaced by a fictitious charged conductor below
the surface of the earth by a distance equal to that of the overhead conductor
above the earth. Such a conductor has a charge equal in magnitude and
opposite in sign to that of the original conductor and is called the image
conductor.

The method of calculating capacitance by replacing the carth by the image
of an overhead conductor can be extended to more than one conductor. If we
locate an image conductor for cach overhead conductor, the flux between the
original conductors and their images is perpendicular to thc plane which
replaces the earth, and that plane is an equipotential surface. The flux above
the plane is the same as it is when the carth is present instead of the image
conductors.

To apply the mcthod of images to the calculation ol capacitance for a
three-phase line, refer to Fig. 5.9. Wc assumc that the linc s transposcd and

Hy

ST

FIGURE 5.9
-q, %2 Three-phase line and its image.




5.6 LEFFLECT OF EARTH ON THE CAPACITANCE OF THREE-PHASE TRANSMISSION LINES 185

that conductors, a, b, and ¢ carry the charges g, g,, and g. and occupy
positions 1, 2, and 3, respectively, in the first part of the transposition cycle. The
plane of the earth is shown, and below it are the conductors with the image
charges —g,, —q,, and —q,. Equations for the three parts of the transposition
cycle can be written for the voltage drop from conductor a to conductor b as
determined by the three charged conductors and their images. With conductor
a in position 1, b in position 2, and ¢ in position 3, by Eq. (5.3)

1 S De | Ha T
= —— _— —_— + - = [
T R e N T
n 2 H"’"]] (5.35)
+4g.|1n - ln —— .
DSI H3l

Similar equations for V,, are written for the other parts of the transposition
cycle. Accepting the approximately correct assumption of constant charge per
unit length of each conductor throughout the transposition cycle allows us to
obtain an average value of the phasor V,,. The equatior for the average value
of the phasor V,, Is found in a similar manner, and 3V, is obtained by adding
the average values of V/,, and V.. Knowing that the sum of the charges is zero,
we then find

21k
C,= F/m 10 neutral (5.36)

3
I (ch) l V[112H23H3l
n — nj - -

3
VH1H2H3

F

Comparison of Egs. (5.34) and (5.36) shows that the effect of the earth is
to increcase the capacitance of a line. To account {or the carth, the denominator
of Eq. (5.34) must have subtracted from it the term

3

H[ZHZ;':H.H

_:/Fi_Hz H3

In

If the conductors are high above ground compared with the distances between
them, the diagonal distances in the numerator of the correction term are nearly -
equal to the vertical distances in the denominator, and the term is very small.
This is the usual case, and the effect of ground is generally neglected for
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three-phase lines except for calculations by symmetrical components when the
sum of the three line currents is not zero.

5.7 CAPACITANCE CALCULATIONS
FOR BUNDLED CONDUCTORS

Figure 5.10 shows a bundlcd-conductor linc for which we can write an cquation
for the voltage from conductor a to conductor b as we did in deriving Eq. (5.26),
except that now we must consider the charges on all six individual conductors.
The conductors of any one bundle are in parallel, and we can assume the charge
per bundle divides equally between the conductors of the bundle since the
separation between bundles is usually more than 15 times the spacing between
the conductors of the bundle. Also, since D, is much grcater than d, we can
use D, in place of the distances D, — d and D, + ¢ and makc other similar
substitutions of bundle separation distances instead of using thc more exact
expressions that occur in finding V,,. The difference due to this approximation
cannot be detected in the final result for usual spacings even when the
calculation is carried to five or six significant figures.

If charge on phase a is q,, each of conductors a and a’ has the charge
q,/2; similar division of charge is assumed for phases 6 and c. Then,

1 |4, Dy, D, dp r d
Ve=7>—|—=|In— +In— | + —|{In— + In —
2wk | 2 r d 2 D, Dy,
a @ b b’
q. D D
+ =< tn =2 + == (5.37)
2 k 1).‘1 D:‘ll
c c

The letters under each logarithmic term indicate the conductor whose charge is
accounted for by that term. Combining tecrms gives

voo 2 n D (5.38)
= g, In + g, In + g, In :
CTamk 7" Vrd " Dy, T Dy,
- D3y -
- Dy, Dy — FIGURE 5.10
aop o a bo ob o O ¢  Cross section of a bundled-con-

|+d —~ [+—d—] |+—d —| ductor three-phase line. ¢
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Equation (5.38) is the same as Eq. (5.26), except that Vrd has replaced r. It
therefore follows that if we consider the line to be transposed, we find

C, = ——= F/m to neutral (5.39)

The Vrd is the same as D! for a two-conductor bundle, except that r has
rcplaced D,. This leads us to the very important conclusion that a modified
gcometric mean distance (GMD) mcthod applies to the calculation of capaci-
tance of a bundlcd-conductor three-phase linc having two conductors per
bundle. The modification is that we are using outside radius in place of the
GMIR of a single conductor.

It is logical to conclude that the modificd GMD mecthod applies to other
bundling configurations. If we let N/ stand for thc modified GMR to be used
in capacitance calculations to distinguish it from Df uscd 1n inductance calcula-
tions, we have

2K
(¢, = ———— F/m to neutral (5.40)

1 D.eq
in| —;
DxC

Then, for a two-strand bundle

4

. Dho=(rxd)? = Vd (5.41)

for a threc-strandl bundle

1}

j J—
D= (rxdxdy = Vrd® (5.42)

and for a four-strand bundle

16 - - 4
DEo= V(rxdxdxdx V) = 1.09 Yl ©(5.43)

Example 5.3. Find thc capacitive rcactance to neutral of the line described in
Example 4.5 in ohm-kilometers (and in ohm-miles) per phase.
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Solution. Computed from the diameter given in Table A.3

€q

m

Xe=

xe

1.382 X 0.3048
2X12

= 0.01755 m

/0.01755 X 0.45 = 0.0889 m

3
V8 X 8 X 16 =10.08 m
27 X 8.85 x 10712
10.08
In( )
0.0889
10'2 x 10~
2760 X 11.754

=11.754 x 10" "2 F/m

0.2257 x 10°®

= (.2257 x 10° €) - km pcr phasc to ncutral

1.609

= 0.1403 X 10° Q - mi per phase to neutral

5.8 PARALLEL-CIRCUIT THREE-PHASE

LINES

If two three-phase circuits that are identical in construction and operating in
parallel are so close together that coupling exists between them, the GMD
method can be used to calculate the inductive and capacitive reactances of their
equivalent circuit.

Figure 5.11 shows a typical arrangement of parallel-circuit three-phase
lines on the same tower. Although the line will probably not be transposed, we
obtain practical values for inductive and capacitive reactances if transposition is
assumed. Conductors a and a’ are in parallel to compose phase a. Phases b and

Typical arrangement of conductors of a parallel-

a G 18. OC W
10°
G 21 '
b Ob, X
10
FIGURE 5.11
‘G- 18’ Oa’ L circuit three-phase line.
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c are similar. We assume that a and a’ take the positions of b and b’ and then
of ¢ and ¢’ as those conductors are rotated similarly in the transposition cycle.

To calculate D, the GMD method requires that we use Dj,, Df,, and
Dr , where the superscript indicates that these quantities are for parallel lines
and where D/, means the GMD between the conductors of phase a and those
of phase b.

For inductance calculations D, of Eq. (4.56) is replaced by Df, which is-
the geometric mean of the GMR values of the two conductors occupying first
the positions of a and &', then the positions of b and &', and finally the
positions of ¢ and ¢’

Because of the similarity between inductance and capacitance calculations,
we can assume that the D/ for capacitance is the same as Df for inductance,
except that r is uscd instcad of D, of the individual conductor.

Following each stcp of Example 5.4 is possibly the best means of under-
standing the proccdure.

Example 5.4. A threc-phase double-circuit line is composed of 300,000-cmil 26 /7
Ostrich conductors arranged as shown in Fig. 5.11. Find the 60-Hz inductive
reactance and capacitive susceptance in ohms per mile per phase and siemens per
mile per phase, respectively.

Solution. From Table A.3 for Ostrich

D, = 0.0229 ft
Distance a to b: original position = V10> + 1.5° = 10.1 ft
Distance @ to b": original position = \/102 +19.52 =219 ft

The GMDs between phascs are

X . —
ros DP = (101 x 21.9)2 = 1488 1t

il

4

D2, = V(20 x 18)° = 18.97 ft

3
D.q = Y1488 x 14.88 X 18.97 = 16.1 ft

For inductance calculations the GMR for the parallel-circuit line is found after
first obtaining thc GMR values for the three positions. The actual distance from a
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to @ is V202 + 182 = 269 ft. Then, GMR of each phase is

In position a —a’:  v26.9 X 0.0229 = 0.785 ft

In position b — b': 21 X 0.0229 = 0.693 ft

In position ¢ — ¢': v26.9 x 0.0229 = 0.785 ft

Therefore,

a -
DP = 0.785 X 0.693 x 0.785 = 0.753 11

16
L=2x10""In
0.75

3~ 6.13 x 1077 H/m per phase

X, =2760 x 1609 x 6.13 x 1077 = 0.372 £)/mi per phasc

For capacitive calculations D/ is the same as that of D?, except that the outside

radius of the Ostrich conductor is used instead of its GMR. The outside diameter
of Ostrich is 0.680 in:

0.680
r= = 0.0283 ft
2 %X 12
Df: = (¥26.9 x 0.0283 V21 x 0.0283 y26.9 x 0.0233 ) "’
= v0.0283 (26.9 x 21 x 26.9)'7° = 0.837 f
27 X 8.85 x 10 "2
C, = . = 18.807 x 1072 F/m

In
0.837

B, =27 X 60 x 18.807 x 1609

= 11.41 x 107% S /mi per phase to neutral

5.9 SUMMARY

The similarity between inductance and capacitance calculations has been em-
phasized throughout our discussions. As in inductance calculations, computer
programs are recommended if a large number of calculations of capacitance is

required. Tables like A.3 and A.5 make the calculations quite simple, however,
except for parallel-circuit lines.
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The important equation for capacitance to neutral for a single-circuit,
three-phase line is

21k
C= ch F/m to neutral (5.44)
In
DSC

D, is the outside radius r of the conductor for a line consisting of one
conductor per phase. For overhead lines k is 8.854 x 107 '2 since k, for air is
1.0. Capacitive reactance is ohm-meters is 1 /27 fC, where C is in farads per
meter. So, at 60 Hz

DC
Xe=477x10"In D—q ) - km to neutral (5.45)
sC

or upon dividing by 1.609 km/mi, wc have

De
X =2.965 % 10%In D—q € - mi to neutral (5.46)

Sc

Values for capacitive susceptance in siemens per kilometer and siemens per
mile are the reciprocals of Egs. (5.45) and (5.46), respectively.
Both D,, and D,- must be in the same units, usually feet. For bundled

conductors DZ is substituted for D, .. For both single- and bundled-conductor
lines

3
Deq.= VDathcha (547)

For bundled-conductor lines D,,, D,., and D_., are distances between the
centers of the bundles of phases a, b, and c.

For lines with one conductor per phase it is convenient to determine X
by adding X, for the conductor as found in Table A.3 to X/, as found in Table
A5 corresponding to D,

Inductance, capacitance, and the associated rcactances of parallel-circuit
lines are found by following the procedure of Example 5.4.

PROBLEMS

S.1. A three-phasc transmission linc has flat horizontal spacing with 2 m between
adjacent conductors. At a ccrtain instant the charge on one of the outside
conductors is 60 nC/km, and the charge on the center conductor and on the other
outside conductor is —30 pC/km. The radius of each conductor is 0.8 cm. Neglect
the effect of the ground and find the voltage drop between the two identically
charged conductors at the instant specificd.

i
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5.2.

5.3.
5.4.

S.S.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.
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The 60-Hz capacitive reactance to neutral of a solid conductor, which i1s one
conductor of a single-phase line with 5-ft spacing, is 196.1 kQ-mi. What value of
reactance would be specified in a table listing the capacitive reactaace in ohm-miles
to neutral of the conductor at 1-ft spacing for 25 Hz? What is the cross-sectional
area of the conductor in circular mils?

Solve Example 5.1 for 50-Hz operation and 10-ft spacing.

Using Eq. (5.23), determinc the capacitancc to neutral (in p«F /kmj of a threc-phasc
linc with three Cardinal ACSR conductors cquilaterally spaced 20 ft apart. What is
thc charging currcnt of the linc (in A/km) at 60 Hz and 100 kV linc to linc?

A three-phasc 00-Hz transmission line has its conductors arranged i a triangular
formation so that two of the distances between conductors arc 25 1t and the third is
42 ft. The conductors are ACSR Osprey. Determine the capacitance to ncutral in
microfarads per milc and the capacitive rcactance to ncutral i ohm-miles. If the
linc is 150 mi long, find the capacitance to ncutral and capacitive rcactance ol the
linc.

A thrce-phase 60-Hz linc has flat horizontal spacing. The corductors have an
outside diamcter of 3.28 cm with 12 m between conductors. Determine the
capacitive reactance to ncutral in ohm-mecters and the capacitive rcactance of the
line in ohms if its length is 125 mi.

(a) Derive an equation for the capacitance to neutral in farads per mecter of a
single-phase line, taking into account the cffect of ground. Use the same nomencla-
ture as in the equation derived for the capacitance of a three-phesc line where the
effect of ground is represented by image charges.

(b) Using the derived equation, calculate the capacitance to neuiral in farads per
meter of a single-phase line composed of two solid circular conduc:ors, each having
a diameter of 0.229 in. Thc conductors are 10 ft apart and 25 ft above ground.
Compare the result with the value obtained by applying Eq. (5.10).

Solve Prob. 5.6 while taking into account the effect of ground. Assume that the
conductors arc horizontally placed 20 m above ground.

A 60-Hz three-phase line composed of onc ACSR Bluejay conductor per phase has
flat horizontal spacing of 11 m bctween adjacent conductors. Comparc the capaci-
tive rcactance in ohm-kilomcters per phasc of this linc with tha: of a linc using a
two-conductor bundle of ACSR 26/7 conductors having thc samc total cross-
sectional arca of aluminum as the single-conductor linc and thc 11-m spacing

measured between bundles. The spacing between conductors in the bundle is
40 cm.

Calculate the capacitive reactance in ohm-kilometers of a bundled 60-Hz three-
phase line having three ACSR Rail conductors per bundle with 45 cm between
conductors of the bundle. The spacing between bundle centers is 9, 9, and 18 m.
Six conductors of ACSR Drake constitute a 60-Hz double-circuit three-phase line
arranged as shown in Fig. 5.11. The vertical spacing, however, is 14 ft; the longer
horizontal distance is 32 ft; and the shorter horizontal distances are 25 ft. Find
(a) The inductance per phase (in H/mi) and the inductive reactance (in £/mi).
(b) The capacitive reactance to neutral (in - mi) and the charging current in
A /mi per phase and per conductor at 138 kV.



