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To cope with this situation, let us try instead the solutign
vit) = Bte ¥
with derivatives
yi=(-4Be* and  y(t)=(-8+ 1608

Substituting these into (16.48) will now yield: left side = —58¢~%. When this is equated to
the right side, we determine the coefficient to be 8 = —2/5. Consequently, the desired par-
ticular integral of (16.48) can be written as

-2

= Zre
yp 3

EXERCISE 16.6

1. Show that the method of undetermined coefficients is inapplicable to the differential
equation y“(f) —ay' () + by =1 ',

2. Find the particular integral of each of the following equations by the methad of unde-
termined coefficients:
@ y"+2y'+y=t © y'O+y ) +2y=¢
(b} v () 44y {) + y = 2t {d) y"(t)+ y'(t} + 3y =sin!{

16.7 Higher-Order Linear Differential Equations

The methods of solution introduced in the previous sections are readhly extended 1o an
ath-order lincar differential equation, With constant cocfficients and a constant term, such
an gquation can be written generally as

YO at MO+ a1 +ay =6 (16.50)

Finding the Solution
In this case of constant cocflicients and constant term, the presence of the higher deriva-
tives does not matcrially aflect the method of finding the particular mtegral discussed
earliet.

[f we try the simplest possible type of solution, 3 = #, we can see that all the derivatives
from v'(t) to v (¢) will be zero; hence (16.50) will reduce to a,4 = b, and we can write

b
Yu=k=— (HH Ji U) [_C[ { ]63)]
In case @, = 0, however, we must try a solution of the form v = k. Then, since y'(¢) = 4,
all the higher derivatives will vanish, (16.50) can be reduced to a, 14 = b, thereby viclding
the particular integral

b ,
Yy =kt = ——1 {g, =0 ay 1 #£0) [cf. (16.37)]
dr—|
[f it happens that a2, = a,—1 = 0, then this last solution will fail, too; instcad, a solution of
the form y = kz* must be tried. Further adaptations of this procedure should be obvious.
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As for the complementary function, inclusion of the higher-order derivatives in the dif-
ferential equation has the ctfect of raising the degree of the characteristic equation. The
complementary function is defined as the general solution of the reduced equation

WO+ap" )+t ay O +ay=0  (16.51)

Trying y = Ae” (# 0) as a solution and utilizing the knowledge that this implies
vty =rde”, y{t) = ride’, . .., yE) = r" e’ we can rewrite (16.51) as

A" tar™ e, +a,) =0

This cquation is satisfied by any value of » which satisfies the following (nth-degrec poly-
nomial) characteristic equation

rar T o ta, rta, =0 {16.51%)

There will, of course, be # roots to this polynomial, and each of these should be included in
the general solution of (16.51). Thus our complementary function should in gencral be in
the form

J)(‘ = Alerl{ + ‘429’-2]! + e + Aner”r — Z -4.&6’-!:)
=1

As before, however, some modifications must be made in case the # roots are not all real
and distinct. First, suppose that there are repeated roots, say, 7| = r2 = 3. Then, to avoid
“collapsing,” we must writc the first three terms of the solutions as 4"+
Azte™ + Azt?e™t [cf. (16.9)]. In case we have 4 = | as well, the fourth term must be
altered to A4£°e"’ . ete.

Second, suppose that two of the roots are complex, say,

Fa, Fg = h 3 vi

then the fifth and sixth tcrms in the preceding solution should be combined into the fol-
lowing expression:

e"( A5 cos vt + Ag sinvt) [cf. {16.24")]

By the same token, 1f two distinct pairs of complex roots are found, there must be two such
trigonometric expressions (with a ditferent set of values of 4, v, and two arbitrary constants
for each).” As a further possibility, if there happen to be two pairs of repeated complex
roots, then we should use ¢ as the multiplicative term for one but use /¢ for the other,
Also, even though # and v have 1dentical values in the repeated complex roots, a different
pair of arbitrary constants must now be assigned to each.

Onee y, and v, are found, the general sotution of the complete equation (16.30} follows
easily. As before, 1t 1s simply the sum of the complementary functien and the particular
integral: ¥(#) = y: + p,. In this general solution, we can count a total of » arbitrary con-
stants, Thus, to definitize the solution, as many as # initial conditions will be required.

T It is of interest to note that, inasmuch as complex roots always come in conjugate pairs, we can be
sure of having af feast one real root when the differential equation is of an odd order, i.e,, when nis
an odd number.
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Example 1

Find the general solution of
v + 6y (D) + 14y () + 16y/(1) + 8y = 24
The particular integral of this fourth-order equation is simply
24
W=7g = 3

Its characteristic equation is, by {16.517},

P60 +14r7 +16r +8=0
which can be factored into the form

F+2G+(r*+2r+2)=0

From the first two parenthetical expressions, we can obtain the double roots r = r; = =2,
but the last {quadratic) expression yields the pair of complex roots r3, ra = —144, with
h= -1 and v = 1. Conseguently, the complementary function is

Ve = Aje + Agte 2 e Y(Ascost+ Agsint)
and the general solution is
W) = Are 2t + Apte™® 1 e (Azcost+ Agsin) +3

The four constants A1, Ay, As, and A4 can be definitized, of course, if we are given four
initial conditions.

Note that all the characteristic roots in this example either are real and negative or are
complex and with a negative real part. The time path must therefore be convergent, and
the intertemporal equilibrium is dynamically stable.

Convergence and the Routh Theorem

The solution of a high-degree characteristic equation is not always an easy task. For this
reason, it should be of tremendous help il we can find a way of ascertaining the conver-
gence or divergence of a time path without having to solve for the charactenstic roots,
Fortunately, there does exist such a method, which can provide a qualitative {though non-
graphic) analysis of a differcntial equation.

This method is to be found in the Routh theorem,” which states that:

The real parts of all of the roots of the nth-degree polynomial equation
apr” + " | +oitay g pta, =0

are negative if and only if the first # of the following sequence of determinants

M 45 dy
[ : (@ ds :
ty 3 dn 2 fg g

lens|: N |e ar sl &
Pehy O ¢ a a3 as.

| Daral g g m o

U a1 B

ali are positive.

In applying this theorem, it should be remembered that ||| = a;. Further, it is to be
understood that we should take a,, = 0 for all m > n. For example, given a third-degree

1 For a discussion of this theorem, and a sketch of its proof, see Paul A, Samuelson, Foundations of
Economic Analysis, Harvard University Press, 1947, pp. 429435, and the references there cited.
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polynomial equation (# = 3}, we need to examing the signs of the first three determinants
listed in the Routh thearen; {or that purpose, we shoutd set wq = a5 = 0.

The relevance of this theorem 1o the convergence problem should become self-evident
when we recall that, in order for the time path v(7) to converge regardless of what (he ini-
tial conditions happen to be, all the characteristic roots of the differential equation must
have negative real parts. Since the characteristic equation ( 16.51') is an ath-degree polyno-
mial equation, with ey = |, the Routh theorem can be of dircet help in the testing of con-
vergence. In fact. we note that the coeflicients of the characteristic equation {16.517) are
wholly identical with those of the given differenual equation (16.51}. so it 13 perfectly
acceptable to substitute the coefficients of {16.51) directly 1nto the scquence of determi-
nants shown in the Routh theorem for testing, provided that we always take wy = 1.
[rasmuch as the condition cited mn the theorem 1s given on the “if and only 1™ basis. it

obviously constitutes 4 necessary-and-sufficient condition.
Example 2 Test by the Routh theorem whether the differential equation of Example 1 has a convergent
—————— time path. This equation is of the fourth order, 50 n = 4, The coefficientare gg =1, &1 = 6,
& =14, a3 =16, a4 = 8, and a5 = 65 = a7 = 0. Substituting these into the first four deter-
minants, we find their values to be 6, 68, 800, and 6,400, respectively. Because they are all
positive, we can conclude that the time path is convergent.
EXERCISE 16.7

1. Find the particular integral of each of the folowing:
@y +2y"@+yt)+2y=8
(B) y“ (0 +y" (O +3y'(t) =1
@ 3y"(O+9y"(1) =
(d) YD+ y" (6 =4
2. Find the ¥, and the y, (and hence the general solution) of:
(@ y" -2y (B -y () + 2y =4
[Hint: £3 - 2r2 - r 4 2={r = D{r + 1)r — 2)]
&) y"(O+7y"(H+ 15y (1 + 9y =0
[Hint: r* + 7r2 +15r £9 = (r — 1)(r2 4+ 6r § 9)]
© y (O + 6y () +10y'(t) -8y =8
[Hint: r* +6r2 +10r + 8 = (r — )(r? + 2r + 2)]
3. On the basis of the signs of the characteristic roots obtained in Prob. 2, analyze the
dynamic stability of equilibrium. Then check your answer by the Routh theorem.

4. Without finding their characteristic roots, determine whether the following differential

equations will give rise to convergent time paths:
(@) y" () - 10y"(5y + 27y'(t) - 18y = 3
(B) y"(t) = 11y"(t) + 34y'(t) + 24y = 5
(@ y™ () +4y™() =5y’ () - 2y = -2
5. Deduce from the Routh theorem that, for the second-order finear differential equation

¥ () < a1y () + ;¥ = b, the solution path will be convergent regardless of initial con-
ditions if and only i the coefficients ¢y and &y are both positive,



