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This is a linear differential cquation with a constant cocfficient ¢ and a constant term b,
Thus, by formula (15.57), we have
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The substitution of z = &'~ will then yield the final solution
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where k(0) is the initial value of the capital-labor ratio 4.
This solution is what determines the time path of £. Recaliing that (1 - «) and 4 are
both positive. we sce that as ¢ — oo the exponential expression will approach zero:
consequently,
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Therefore, the capital-labor ratio will approach a constant as its cquilibrium value. This

equilibrium or steady-state value, (5/4)"" @, varies dircetly with the propensity to save s,
and inversely with the rate of growth of labor 4.

EXERCISE 15.7

1. Divide (15.30) through by k, and interpret the resulting equation in terms of the
growth rates of k, K, and L.

2. Show that, if capital is growing at the rate 7 (thatis, K = Ae™), net investment | must
also be growing at the rate A.

3. The original input variables of the Solow model are K and L, but the fundamental equa-
tion {15.30) facuses on the capital-labor ratio & instead. What assumption(s) in the
model is{are) responsible for (and make possible) this shift of focus? Explain.

4, Draw a phase diagram for each of the foliowing, and discuss the qualitative aspects of
the time path ¥{(1):

(@ y=3~y=Iny ) y=e-(y+2)



Chapter

Higher-Order Differential
Equations

In Chap. 15, we discusscd the methods of solving a first-order differential cquation, ong in
which there appears no derivative (or differential) of orders higher than 1. At times, how-
ever, the specification of a model may involve the second derivative or a derivative of an
even higher order. We may, for instance, be given a function describing “the rate of change
of the rate of change” of the income variable ¥, say,

4y
dit

from which we are supposed to find the time path of ¥, In this event, the given function con-
stitutes a second-order differential equation, and the tusk of finding the time path ¥(¢) is
that of selving the second-order differential cquation. The present chapter is concerned
with the methods of solution and the economic applications of such higher-order differen-
tial equations, but we shall confine our discussion to the /Jinear case only.
A simple variety of linear differential equations of order » is of the following form:
" dh | ¥

v ; dy
z = +4ay=bh .
S g T (16.1)

=iY

or, in an alternative notation,
SO +ay " O+ ey (D Aay=b  (16.1)

This equation is of order n, because the ath derivative {the first term on the left) is the high-
est derivative present. Tt s linear, since all the derivatives, as well as the dependent variable
¥, appear only in the first degree, and moreover, no product term occurs in which y and any
of its derivatives arc multiplied together. You will note, in addition, thal thig differential
equation is characterized by constant coefficienis (the &'s) and a constant term (b). The con-
stancy of the coefficients is an assumption we shall retain throughout this chapter. The
constant term b, on the other hand, is adopted here as a first approach; later, in Sec. 16.5,
we shall drop it in favor of a variable term.
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504 Part Five Dvpamic Analvsis

16.1 Second-Order Linear Differential Equations
with Constant Coefficients and Constant Term

Example 1

For pedagogic reasons, let us first discuss the method of solution lor the second-order case
{n = 2). The relevant differential equation is then the simple one

Vi tay @) tay =5 (16.2)

where ¢, a2, and b are all constants. If the lerm b is identically zero, we have a homoge-
neous equation, but 1f b 1s a nonzero constant, the equation is nenhomogeneous. Our
discussion will proceed on the assumption that (16.2) is nonhomogeneous; in solving the
nonhomogencous version of {16.2), the solution of the homogencous version will emerge
automatically as a by-product.

In this connection, we recall a proposition introduced in Sec. 15.1 which is equally
applicable here: 11 y, is the complemeniary function, i.c., the gencral selution (containing
arbitrary constants) ol the reduced equation of (16.2) and if y,, is the particular integral, 1.¢.,
any particular selution {containing no arbitrary constants} of the complete equation (16.2),
then y{t) = y, + », will be the general solution of the complete equation. As was explained
previously, the y, component provides us with the cquilibrium value of the variable y in the
intertemporal sense of the term, whereas the v, component reveals, for each pomt of time,
the deviation of the time path y(¢) from the equilibrium.

The Particular Integral

For the case of constant coefficients and constant term, the particular integral is relatively
easy to find. Since the particular integral can be any solution of (16.2), 1.c., any value of p
that satisfies this nonhomogeneous cquation, we should always try the simplest possible
type: namely, y = a constant. T v = a constant, it follows that

Y =y"=0
so that (16.2) in effect becomes @z 3 = b, with the solution v = £/a;. Thus, the desired par-
ticular integral 15
b

i

Vp = (casc of i £ ) (16.3)

[

Since the process of finding the value of y, involves the condition v'(z) = 0, the rationale
for considering (hat value as an intertemporal equilibrium becomes selt-evident.

Find the particular integral of the equation
y'(t+y(0-2y=-10

The relevant coefficients here are & = -2 and b = -10. Therefore, the particular integral is

What if 4; = 0- so that the expression b/a; is not defined? In such a situation, since the
constant solution for v, fails to work, we must try some nonconstant form of solution. Taking
the simplest possibility, we may try y = k£, Since a2 = {), the diffcrential cquation is now

Y +av (=5
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but if y = kt, which implies (1} = & and »"(#) = 0, this equation reduces to a k = 5.
This determines the value of 4 as b/a,, thereby giving us the particular intcgral

b
Vo= —1 (case of an = 0; a) # 0) (16.3")
i
[nasmuch as y,, 15 in this case a nonconstant function of time, we shall regard it as a mov-
ing ¢cquilibrium.

Find the y, of the equation y“(t)+ y'(t) = —10. Here, we have ¢; =0, & =1, and
b= -10. Thus, by (16.3), we can write

yP = ""10{

If it happens that ¢, is also zero, then the solution form of y = k¢ will also break down,
because the expression bf /a; will now be undefined. We ought, then, to try a solution of the
form p = k¢, With @, = a; = 0, the differential equation now reduces to the extreniely
simple form

Yt =b

and if y = k22, which implies v'(¢) = 24 and y“{f) = 24, the dilferential equation can be
written as 2k = b, Thus, we find £ = £/2, and the particular integral is

b
Yo = Erz (case of a) = a; = 0) (16.3)

The equilibrium represented by this particular integral is again a moving equilibriun.

Find the y, of the equation y"(t) = —10. Since the coefficients are & =2, =0 and
b= —10, formula (16.3") is applicable. The desired answer is y, = —5¢2,

The Complementary Function

The complementary function of (16,2) is defined to be the general solution of its reduced
{homogencous) cquation

i) +ayt) tay =0 (16.4)

This is why we stated that the solution of a homogeneous equation will alwavs be a
bv-product in the process of solving a complete equation.

Even though we have never tackled such an equation before, our experience with the
complementary function of the first-order differential equations can supply us with a use-
ful hint. From the solutions {15.3), {15.3), (15.5), and (15.5"), it is clear that exponential
expressions of the form Ae”™ figure very prominently in the complementary functions of
first-order differential equations with constant cocfficicnts. Then why not try a solution of
the form y = Ae”" in the second-order equation, too?

If we adopt the trial selution v = Ae"’, we must also accepl

Yty =rde™ and  y(r) =ride”
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as the derivatives of y. On the basis of these expressions for y, v (t), and y “(¢), the reduced
differential equation {16.4) can be transformed into

A" +ar+a) =0 (16.4)

As long as we choose those values of 4 and 7 that satisfy {16.4'), the trial solution p = Ae”!
should work. Since &™ can never be zcro, we must either let 4 = 0 or see to it that r salis-
fies the equation

rPtar+a; =0 (16.4")

Since the value of the (arbitrary) constant 4 is to be definitized by usc ol the initial condi-
tions of the problem, however, we cannot simply set 4 = 0 at will. Therelore, 1t 15 essential
1o look for values of r that satisfy (16.4").

Equation (16.4") is known as the characteristic equation (or auxitiary equation) of the
homogeneous equation (16.4), or of the complete equation (16.2), Because it is a quadratic
cquation in r, it yields two roots (solutions}, referred to in the present context as character-
istic roots, as follows:"

—a & \;faf —day

.7 = 3 (165)

These two roots bear a simple but intercsting relationship to cach other, which can scrve as
a convenicnt means of checking our calculation: The sum of the two roots is always equal to
—a,, and their product is always equal 10 4. The proof of this statement is straightforward:

—ay + \/a]z —day  —ay - \Xa]? —da; g4
it = + = = —daj
z 2 2 (16.6)

(—a))* — (af —4(?2) B i@
4 4

The values of these two roots arc the only values we may assign to  in the solution
y = Ae’ ., But this means that, in cffect, there are rwo solutions which will work, namely,

iz = =daz

Y= .r’-j]@hf and ¥ = AEEFIZJ

where A, and A, are two arbitrary constants, and 7 and r; are the characteristic roots
found from (16.5). Since we want only one general solution, however, there seems to be
ong too many. Two alternatives are now open to us: {1) pick either yy or y; at random, or
{2) combine them in somc fashion.

The first alternative, though simpler, is unacceptable. There is only one arbitrary con-
stant in y; or vy, but to qualify as a general solution ol a second-order differential equation,
the expression must contain fwoe arbitrary constants. This requirement stems from the fact
that, in proceeding from a function y(¢) to its second derivative v"(z), we “lose” two
constants during the two rounds of differentiation; therefore, to revert from a second-order
differential equation to the primitive function ¥(7), two constants shouid be reinstated.
That leaves us only the alternative of combining y; and y», 50 as to include both constants

' Note that the quadratic equation (16.4"} is in the normalized form; the coefficient of the 2 termis 1.
In applying formula (16.5) to find the characteristic roots of a differential equation, we must first
make sure that the characteristic equaticn is indeed in the normalized form.
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A and A42. As it turns out, we can simply take their sum, v) + y2, as the general solution of
{16.4). Let us demonstrate that, if 3, and y9, respectively, satisty (16.4), then the sum
{¥1 + p2) will also do so. If y; and y, arc indeed solutions of (16.4), then by substituting
each of these info (16.4), we must find that the following two equations hold:

i +ayi)+ap =0

y&’(r] + ﬂ|}'i(f] +aryy =1

By adding these equations, however, we find that

D+ (O] +a (0D + 5(0] + @iy + ) =0

2 o
=5t =r(ntm
¥

Thus, like yy or yo, the sum ( p + y;) satisfies the equation (16.4) as well, Accordingly, the
general solution of the homogeneous equation {16.4} or the complementary function of the
complete equation {16.2) can, in general, be written as y, = ¥ + va.

A morc cargful examination of the characteristic-root formula (16.5) indicates, however,
that as far as the valucs of 1 and r; are concerned, three possible cases can arise, some of
which may neccssitate a modification of our result v, = y) + .

Case 1 (distinct real roots) When ¢} > 4a,, the square oot in (16.5) is a real number,
and the two roots 1 and r» will take distinct real values, because the square root is added to
—a for 7y, but subtracted from —a for ro. In this case, we can indeed write

Ye= WVt ¥ = A]em + Ag{?m (r| -‘,ﬁ F3) (167)

Because the two roots are distinct, the two exponential expressions must be linearly inde-
pendent {neither is a multiple of the other); consequently, 4, and A4; will always remain as
separate entities and provide us with two constants, as required.

Solve the differential equation
Yty +y' ) -2y =-10

The particular integral of this equation has already been found to be y, = 5, in Example 1,
Let us find the complementary function. Since the coefficients of the equation are a; = 1
and a; = —2, the characteristic roots are, by (16.5),

Lo 1EVIEB 1wy

1,02 = 2 — 2 = '
{Check: r+r; =1 =—m; nrp=-2=a.) Since the roots are distinct real numbers,
the complementary function is y. = A1e' 4+ Aze ', Therefore, the general solution can be
written as

YO = yo+ Yo = Are + A+ 5 (16.8)

In order to definitize the constants Ay and A», there is need now for two initial condi-
tions. Let these conditions be Q) = 12 and y'(0) = —2. That is, when t = 0, y(t) and y'(f)
are, respectively, 12 and —2. Setting t = 0 in (16.8), we find that

vi0)=A + Az +5
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Differentiating (16.8) with respect to t and then setting t = 0 in the derivative, we find that
vt = Aret =247 and  y(0) = A1 — 24;

To satisfy the two initial conditions, therefore, we must set y(0) =12 and y'(0) = -2,
which results in the following pair of simultaneous equations:

A+ Az=7/
Ay —2A;=-2

with solutions 47 = 4 and A; = 3. Thus the definite solution of the differential equation is
yWh =4e" + 3¢ 45 {16.8")

As before, we can check the validity of this solution by differentiation. The first and
second derivatives of (16.8") are

V) =4e'—6e 2 and  y()=4de 4127

When these are substituted into the given differential equation along with (16.8), the result
is an identity —10 = —10. Thus the solution is correct. As you can easily verify, (16.8") also
satisfies both of the initial conditions,

Case 2 (repeated real roots) When the cocllicients in the differential equation are such
that a% = a5, the square root in (16.5) will vanish, and the two characteristic roots take an
identical valuc;

Such roots arc known as repeated roots, ot mudtiple (here, double) routs.
[f we attempl to write the complementary function as y,. = y 4 . the sum will in this
case collapse into a single expression

Y. = A[e” + r‘fgt’” = (A] + Ag]é’” = A}E”

Jeaving us with only one constant. This is not sufficient to lcad us from a second-order
differential equation back to its primitive [unction. The only way out 1s to find another cli-
gible component term for the sum-- a term which satisfies (16.4) and yet which is lincarly
independent of the term A3, so as to preclude such “collapsing”

An expression that will satisfy these requirements is Aqre’’. Since the vanable ¢ has
entered into it multiplicatively, this component term is obviously linearly independent of
the As¢’ term; thus it will enable us to introduce another constant, A4. But does A4ze™
qualify as a solution of (16.4)? If we try ¥ = Aate™, then, by the product rule, we can find
its first and second derivatives to be

YO =+ DAge™  and  y(0) = (2 20) dge”

Substituting these expressions of v, y'. and y"” into the left side of {16.4), we get the
CXPIESSIOn

[(72 + 27) + ay (7t + 1) + aar] Age™
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Inasmuch as, in the present context, we have a; = da, and » = —a, /2, this last expression
vanishes identically and thus is always equal to the right side of (16.4); this shows that
Agte”™ docs indeed qualify as a solution.

Hence, the complementary function of the double-root case can be written as

Vo = Az 4 Agte” {16.9)

Solve the differential equation
yr(y+ 6y () +9y =27

Here, the coefficients are gy =6 and oy = 9; since af =4a;, the roots will be repeated,
According to formula (16.5), we have r = —gy/2 = —3. Thus, in line with the result in
(16.9), the complementary function may be written as

Vo= Aze 3 4 Agte ™

The general solution of the given differential equation is now also readily obtainable.
Trying a constant solution for the particular integral, we get y, = 3. It follows that the
general solution of the complete equation is

YO =Y+ y,=Ase? 4 Agte ¥ 13

The two arbitrary constants can again be definitized with two initial conditions. Suppese
that the initial conditions are y{0) =5 and y'(0) = —5. By setting t = 0 in the preceding
general solution, we should find y{0) = 5; that is,

HO)= A3 +3=5

This yields As = 2. Next, by differentiating the general solution and then setting t = 0 and
also A3 = 2, we must have y'(0} = —5. That s,

vty = —3A3e73 — 3Aste M+ Age
and Y(0)=—-6+A;=-5

This yields A; = 1. Thus we can finally write the definite solution of the given equation as

vty =2¢ 3 4 te™ +3

Case 3 (complex roots) There remains a third possibility regarding the relative magni-
tude of the coetficients @ and @z, namely, .r.r]2 < 4a;. When this eventuality occurs, formula
(16.5) will involve the square toot of a megative number, which cannot be handled before
we are properly introduced to the concepts of imaginary and complex numbers. For the
time being, therctore, we shalt be content with the mere cataloging of this case and shall
leave the full discussion of it to Secs. 16.2 and 16.3.

The three cases cited can be illustrated by the three curves in Fig, 16,1, each of which
represents a different version of the quadratic funclion f(r}=r®+air +a;. As we
learned earlier, when such 4 function is set equal to zero, the result is a quadratic equeation
J(r) =10, and to solve the lutter equation is merely to “find the zeros of the quadratic

Junction” Graphieally. this means that the roots of the equation are to be found on the

herizontal axis, where f{r) = 0.
The position of the lowest curve in Fig. 16.1, is such that the curve intersects the hori-
zontal axis twice; thus we can find two distinct roots #y and #;, both of which satisfy the
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FIGURE 16.1
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quadratic cquation f{#) = 0 and both of which, of course, are real-valucd. Thus the lowest
curve illustrates Case 1. Turning to the middle curve, we note that it meets the horizontal
axis only once, at r3. This lattet is the only value of # that can satisfy the cquation f(#) = 0.
Therefore, the middle curve illustrates Case 2. Last, we note that the top curve does not
meet the horizontal axis at all, and there is thus no real-valued root to the equation
Fir) = 0. While there exist no real roots in such a case, there are nevertheless two complex
mumbers that can satisfy the equation, as will be shown in Sec. 16.2.

The Dynamic Stability of Equilibrium
For Cascs 1 and 2, the condition for dynamic stability of equilibrium agam depends on the
algebraic signs of the characteristic roots,

For Case |, the complementary tunction (16.7) consists of the two exponential expres-
sions A" and 4.e™ . The coefficients 4y and A, are arbitrary constants; their values
hinge on the initial conditions of the problem. Thus we can be sure of a dynamically stable
equilibrivm ( ¥, = 0 as t — o), regardless of what the initial conditions happen to be, if
and only if the roots 71 and r, are both negative. We emphasize the word both here, because
the condition for dynamic stability docs nof permit even one of the roots to be positive or
zevo. [f #| =2 and 7y = —5, for instance, it might appear at first glance that the second
root, being larger in absolute value, can outweigh the first. In actuality, however, 1t 1s the
positive root that must eventually dominate, because as ¢ increases, e will grow increas-
ingly larger, but ¢~ will steadily dwindle away.

For Case 2, with repeated roots, the complementary function (16.9) contains not only
the familiar e*” expression, but also a multiplicative cxpression /e, For the former term to
approach zero whatever the initial conditions may b, it is necessary-and-sufficient to have
r < 0. But would that also ensute the vanishing of £e™*? As it turns out, the expression te”
(or, more generally, t*e”') possesses the same gencral type of time path as does e {r #0).
Thus the condition # < § is indeed necessary-and-sufficient for the entire complemen-
tary function to approach zero as 1 — o0, yielding a dynamically stable intertemporal
equilibrium.
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EXERCISE 16.1
1. Find the particular integral of each equation:
@ y"(t) -2y () + 35y =2 d)y" @+ 2y'() -y =4
By +y =7 (& y'(}=12

(@ y"(D+3y=9

2. Find the complementary function of each equation:
(@) y" (O + 3y () -4y =12 @y -2y'(h+y=3
(D) v (6 + 6y (th+ 5y =10 (@) y"() +8y (D +16y=0

3. Find the general solution of each differential equation in Prob. 2, and then definitize
the solution with the initial conditions y(0) = 4 and y'(0) = 2.

4. Are the intertemporal equilibriums found in Prob. 3 dynamically stabte?

3. Verify that the definite solution in Example 5 indeed (a) satisfies the two initial condi-
tions and {b) has first and second derivatives that conform ta the given differential
equation.

6. Show that, as t — oo, the limit of te™ is zero if r < 0, but is infinite if r > 0.

16.2 Complex Numbers and Circular Functions

When the coefficients of a second-order linear differentiyl equation, v“{t) + a3 (1) +
ayy = h, are such that ¢7 < 4uy, the characteristic-root formula (16.5) would call Tor (ak-
ing the square root of a negutive number. Since the square of any positive or negative real
number is invariably positive, whereas the square of zero is zero, only a ronregative real
number can ever yield a real-valued square root. Thus, it we confine our attention to the
real number system, as we have so far, no characteristic roots are available for this casc
(Cuse 3). This fact motivates us to consider numbers outside of the real-number system.

Imaginary and Complex Numbers

Conceptually, it is possible to define a number i = —1, which when squared will equal
—1. Because i is the square root of a negative number, il is obviously not real-valued; it is
therefore referred to as an imaginary aumber. With it at our disposal, we may write a host
of cther imaginary numbers, such as /—9 = VO/—1 = 3i and =2 = /2.

Extending its application a step further, we may construct yet another type of number - -
one that contains a real part as well as an imaginary part, such as (8 —7) and (3 + 5).
Known as complex numbers, these can be represented gencrally in the form (£ + vi),
where 4 and v are two real numbers.” OFf course, in case v = 0, the complex number will
reduce to 2 real number, whereas if 2 = ), it will become an imaginary number. Thus the
set of all real nunbers {call it R) constitutes a subset of the set of ali complex rumbers (cail
it C). Similarly, the ser of all imaginary numbers (call it 1) also constitutes a subset of C,
That 1s, R C €, and | C C. Furthermore, since the terms real and imaginary arc mutually
exclusive, the sets R and | must be disjoint; thatis R 1 1 = £,

' We ernploy the symbals # {for horizontal) and v (for vertical) in the general complex-number
notation, because we shall presently plot the values of hand v, respectively, on the horizontal and
vertical axes of a two-dimensional diagram.
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FIGURE 16.2
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A complex number (4 + v7) can be represented graphically in what is called an Argand
diagram, as iltustrated in Fig. 16.2. By plotting / horizontally on the rea! axis and v verti-
cally on the imaginary axis, the number (A + vi) can be specified by the point (&, v), which
we have alternatively labeled C. The values of & and v arc algebraically signed, of course,
so that if 2 < 0, the point C will be to the left of the point of origin; similarly, a negative v
will mean a location below the horizontal axis.

Given the values of & and v, we can also calculate the length of the line OC by applying
Pythagoras’s theorem, which states that the square of the hypotenuse of a right-angled
triangle is the sum of the squarcs of the other two sides. Denoting the length of OC by &
(for radius vector), we have

=i+ and R=vVh2+? (16.10)

where the square root is always taken to be positive. The value of R is sometimes called the
absolure value, or modulus, of the complex number (A + vi). (Note that changing the signs
of h and v will produce no effeet on the absolute value of the complex number, R.) Like 4
and v, then, R is real-valued, but unlike these other values, R is always positive. We shall
find the number R to be of great importance in the ensuing discussion.

Complex Roots

Meanwhile, let us return to formula (16.5) and examine the casc of complex characterisuc
roots. When the coefficients of a second-order differential equation are such that a} < 4as,
the square-root expression in {16.5) can be written as

Jat —day = Jao, 0}V = Jia — o
_a

Hence, if we adopt the shorthand
1/ 4(,.'2 — ai"
h=— and ¥=-——7—

2 2

the two roots can be denoted by a pair of conjugate complex numbers:

r.r=htuvi
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These two complex roots are said to be “conjugate” becausc they always appear together,
one being the sum of b and v, and the other being the difference between # and vi. Note
that they share the samc absolute value R.

Find the roots of the characteristic equation r% + r + 4 = 0. Applying the familiar formula,
we have

STEVEIS  AEVISVET -1 VIS

= -

2 2 2 2

which constitute a pair of conjugate complex numbers.
As before, we can use (16.6) to check our calculations. If correct, we should have
ntr=-al=-1)andrir; = a(=4). Since we do find

SR S DAL A WY e BT
1TREVT T 2 2

-1 -1

= — —:—1

Z 2

and o __1+¢1'§f ~1 V15
= 2 772

(:gz__iiz_l_;ﬁ_4
2 2 4 a4

Ll

our calculation is indeed validated.

Even in the complex-root case (Casc 3), we may express the complemientary function of
a differential equation according to (16.7}; that is,

ye = Aw[!ﬁv;)( + Aze(h—nr‘)r — Ehr(A]Et.-ir + Aze—w':) (1611)

But a new feature has been introduced: the number i now appears in the exponents of the two
expressions in parentheses. How do we interpret such imaginary cxponential functions?

To facilitate their inlerpretation, it will prove helpful first 1o transform these expressions
into equivalent circular-function forms, As we shall presently see, the latter functions char-
acteristically ivolve periodic fluctuations of a variable. Consequently, the complementary
function (16.11), being translatable into circular-function lorms, can also be expected to
generate a cyclical type of time path.

Circular Functions
Consider a circle with its center at the point of origin and with a radius of length R, as
shown in Fig. 16.3. Let the radius, like the hand of a clock, rotate in the counterclockwise
direction. Starting from the position Od, it will gradually move into the position OP, foi-
lowed successively by such positions as OB, OC, and OD: and at the cnd of a cycle, it will
return to 4. Thereafter, the cycle will simply repeat itself.

When in a specific position  say, OP—the clock hand will make a delinitc angic & with
line (4, and the tip of the hand () will determing 4 vertical distance v and a horizontal dis-
tance 4. As the angle & changes during the process of rotation, v and 4 will vary, although
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FIGURE 16.3
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R will not. Thus the ratios v/ R and £/R must change with §; that is, these two ratios arc
both functions of the angle . Specifically, v/ R and A/ R are called, respectively, the sine
(function) of & and the cosine (function) of &:

I

p—y

sing =

(16.12)

cosfl =

= T R

(16.13)

[n view of their connection with a circle, these functions are referred to as cirenlar func-
tions. Since they are atso associated with a triangle, however, they arc allernatively called
wigonometric functions, Another (and fancier) name lor them is sinusoidal functions, The
sin¢ and cosine functions are not the only circular functions; another frequently encoun-
tercd one is the taagent function, defined as

sinff v

tanf = — = —
cosd  h

(A0

Our major concern here, however, will be with the sine and cosine [unctions.

The independent variable in a circular function is the angle #, so the mapping involved
here is from an angle (o a ratio of two distances. Usually, angles are measured in degrees
(for example, 30, 45, and 90%); in analytical work., however, it is more convenicnl lo mea-
sure angles in radians instead. The advantage of the radian measure stems from the fact
that, when # is so measured, the derivatives of circular functions will come out in neater
expressions -much as the basc e gives us neater derivatives for expenential and logarith-
mic functions. But just how much is a radian? To cxplain this, let us rcturn to Fig. 16.3,
where we have drawn the point P so that the length of the are AP is exacily equal to the
radius R. A radiun (abbreviated as rad) can then be defined as the size of the angle #
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{in Fig. 16.3} formed by such an R-length arc. Since the circumierence of the circle has
a total length of 2 R {where @ = 3.14159 . .,), a complete circle must involve an angle
of 27 rad altogether. In terms of degrees, however, a complete circle makes an angle
of 360°; thus, by equating 360° to 27 rad, we can arrive at the {ollowing conversion
table:

Deqrees ‘ 360 ’2?0 ‘ 180 90 ‘ 45 ‘ 0
3

T

¥

T
4

E

Radians ‘ 27 ‘ ‘ brd

Properties of the Sine and Cosine Functions

Given the length of R, the value of siné hinges upon the way the value of v changes in re-
sponse to changes in the angle #. In the starting position O4, we have v = 0. As the clock
hand moves counterctockwise, v starts 1o assume an increasing positive value, culminating
in the maximum valuc of » = R when the hand coincides with OF, that is, when & =
/2 rad (= 907). Further movement will gradually shorten v, until its value becomes 7zero
when the hand 1% in the position OC, i.e., when § = 7 rad (= 1807). As the hand enters the
third quadrant, v begins to assume negative values; in the position O, we have v = — R,
In the fourth quadrant. v 1s still negative, but it will increase from the value of — R wward
the value of ¥ = 0, which 1s attained when the hand returns to O4—that is, when 0 =
27 rad (= 3607). The cycle then repeats itsclf,

When these illustrative values of v arc substituted into (16.12), we can ebtain the results
shown in the “sin & row of Table 16.1. For a more complete description of the sine func-
tion, however, see the graph in Fig. 16.4a, where the values of sin# are plotted against thosc
of # {expressed in radians).

The value of cos &, in contrast, depends instead upon the way that /f changes in response
to changes in 6. [n the starting position O4, we have & = R, Then 4 gradually shrinks, till
# =0 when 8 =x/2 (position OB). In the second quadrant, # turns negative, and when
# = m (position OC), h = —R. The value of 4 gradually increases from —R to zero in the
third quadrant, and when & = 37/2 (position OD), we find that # = 0. In the fourth quad-
rant, # turns positive again, and when the hand returns to position O4 (# = 27), we agan
have # = R, The cycle then repears itself.

The substitution of these illusirative values of 4 into (16.13) yields the results in the
bottom row of Table 16.1, but Fig. 16.44 gives a more complete depiction of the cosine
function.

The sin# and cos ¢/ functions share the same domain, namcly, the set of alt real numbers
(radian measurcs of 8). In this connection, it may be pointed out that a negadive angle
simply refers to the reverse rotation of the clock hand; for instance, a clockwise movement

1 3
é 0 Ezr x En 2n
sin & 0 ] 0 =1 0

cos g 1 0 -1 0 - i
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FIGURE 16.4

sin#
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from 04 to OD in Fig, 16.3 generates an angle of —7/2 rad (= —90%). There is also a
common range for the two functions, namely, the closed interval [—1, 1]. For this reason,
the graphs of sin# and cos & arc, in Fig. 16.4, confined (o a definite horizontal band.

A major distinguishing property of the sine and cosine functions is that both are peri-
odic: their values will repeat themselves for every 2z rad (a complete circle) the angle 8
travels through. Each function is therefore said to have a period of 2m. In view of this
periodicity feature, the following equations hald (for any integer »):

sin{6 4 2nm) = sind cos(f + 2nm) = cosf

That is, adding (or subiracting) any integer multiple of 2: to any angle & will atfect neither
the value of sin# nor that of cos 6.

The graphs of the sine and cosine functions indicate a constant range of fluctuation in
each period, namely, 1. This is sometimes altcrnatively described by saying that the
amplitude of fluctuation is 1. By virtue of the identical period and the identical amplitude,
we sec that the cos 8 curve, if shiflted rightward by /2, will be exactly coincident with the
siné curve. These two curves are therefore said to differ only in phase, i.e., to differ only
in the location of the peak in each period. Symbolically, this fact may be stated by the
equation

. T
cosf = s (6’ + E)



Example 2

Example 3

Chapter 16 Higher-Order Differential Fguations 517

The sine and cosine functions obey certain identities. Among these, ihe more frequently
used are

$in{—0) = —siné

_ 16.14

cos(—6) = cosf ( )

sin’ § + cos? 8 = | [wheresin® @ = (sin8)*, e1e.]  (16.15)
sin{#, £ 6;} = sinf cos(h £+ costh sinf

(th £ 62} ! p 1 8In6; (16.16)

cos(f) £ &) = cosé| costh Fsind sind

The pair of 1dentities {16.14) serves to underscore the facl that the cosing function is sym-
metrical with respect to the vertical axis (that is, 6 and —0 always yield the same cosine
value), while the sine function is not. Shown in (16.13) is the fact that, for any magnitude
of @, the sum of the squares of its sine and cosine is always unity. And the set of identities
in {16.16) gives the sine and cosine of the sum and difference of two angles 8, and 65

Finally, a word about derivatives, Being continuous and smooth, both siné and cos ¢ are
differentiable. The derivatives, d(sinf)/d¢ and d(cosé)/d6, are obtainable by tuking the
limits, respectively, of the difference quotients A(sin#)/A# and A{cos )/ A as A — 0,
The results, stated here without proof, are

d

7 siné = cos# {16.17)
q. s = —sind 16.18
77 c0s8 = —sin (16.18)

1t should be emphasized, however, that these derivative formulas are valid only when # is
measured in radians; if measured in deprees, for instance, (16.17) will become d(sin©)/
d6 = (m/180) cos? instcad. Tt is for the sake of getting rid of the factor (zr/180) that radian
measures are preferred to degree measures in analytical work.

Find the slope of the siné curve at ¢ = /2. The slope of the sine curve is given by its
derivative (= cosf). Thus, at @ = /2, the slope should be cos (w/2) = 0. You may refer to
Fig. 16.4 for verification of this result.

Find the second derivative of sin#. From {16.17), we know that the first derivative of sin¢ is
cas#, therefore the desired second derivative is
d2

. d o
de s5ing = ECOSU = —sinf/

Euler Relations

In See. 9.5, 1t was shown that any function which has finite, continuous derivatives up to the
desired order can be expanded into 2 polynomial function. Morcover, if the remainder term
R, m the resulting Taylor series (expansion at any point xg) or Maclaurin series (expansion
al xg = 0) happens to approach zero as the number of terms » becomes infinite, the poly-
nomial may be written as an infinite series. We shall now expand the sing and cosine func-
tions and then altempt o show how the imaginary exponential expressions ¢ncountered in
(16.11) can be transformed into circular functions having equivalent expansions,
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For the sine function, write ¢{#) = sin®; it then follows that ¢{0) =sm0 = 0. By

successive dervation, we can get

d'(B)=cos#
" (0) = —sinf
(@) = —cosl

N B) = sinb
dNE) = cosd

@' (0) = cos0 =1
¢"{0) = —sin) =0
" {0y = —cos0 = —1
{0 =sin(t =0
#™(0) = cos0 =1

When substituted into {9.14), where 8 now replaces x, these will give us the following
Maclaurin series with remainder:

3 5

a_

t (n+1)
Sin9:0+9+0'—§+0+§+...+¢, I(p)é,m-l—l

(n+ 1)

Now, the expression ¢'**1{ p} in the last (remainder) term, which represents the {n + 1)st
derivative evaluated at 6 = p, can only take the form of Tcos p or £sin p and. as such, can
only take a value in the interval [—1, 1], regardless of how large » 1s. On the other hand,
(n + 1) will grow rapidly as n — oo—in fact, much more rapidly than 6" "' as # increases.
Hence, the remainder term will approach zero as n — 20, and we can thercfore express the
Maclawrin scrics as an infinite series:

(16.19)

Similarly, if we write v(8) = cosf, then ¥{0) = cos0 = 1, and the successive deriva-
tives will be

() = —siné P'(0) = —sinl =0
i (8) = —cosf (0} = —cos 0 = —1
W () =sind (0} = sin0 =

P0) = cosd | = ' (0) = cosl =
(@) = —sind w0} = —sin0 =0

On the basis of these derivatives, we can expand cos# as follows:

f? g4 1/,h:+1)(p)
cosf =14+0— — +0+ — 4. 4 ———agi!
2! 41 (n+ 1)
Since the remainder term will again tend toward zero as # — o0, the cosine function 1s also
expressible as an infinite series, as follows:
6> e+ @b
cosﬂzlni-i—ﬁﬂa"b'-*
You must have noticed that, with (16.19} and (16.20) at hand, we are now capable of
constructing a table of sine and cosine values for all possible values of § (in radians). How-
ever, our immediate interest lies in finding the relationship between imaginary exponential
expressions and circular functions, To this end, let us now expand the two exponential

(16.20)
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expressions ¢ and ¢ The reader will recognize that (hesc are but special cases of the

cxpression e, which has previeusly been shown. in (10.6), to have the expansion

x_l 1,2 1,3 I 4
¢ = +x—|——2-ix —l—i.x —1—4—!)( + -

Letting x = i#, therefore, we can immcdiately obtain

iy} Gy (0t (i8)

oy U8 L uoy Gy
2! 3! 4 51

AR A (&

(. (8

Similarly, by setting x = —if}, the following result will cmerge:

(=6 (—ify (=gt (-it)’
21+3!+4I+5!+
A A

LA TRt i

_{; 92 94 (g 03 95

By substituting (16.1%) and (16.20) mto thesc two results, the following pair of identities—
known as the Euler relations—can readily be established:

e =1+if+

e = —i0+

¢ = cost) +isind (16.21)
e = cost ~ jsing (16.219)

These will enable us to translate any imaginary exponential function into an cquivalent
linear combination of sine and cosine functions, and vice versa.

Find the value of e/, First let us convert this expression into a trigonometric expression. By
setting ¢ == in (16.21), it is found that e = cosx + fsinx. Since cosz = —1 and
sin =0, it follows that ¢'™ = —1.

Show that e=*/2 = —, Setting # = 7/2 in (16.21"), we have

e-fﬂ-*2=c05%-~15|n§=0—1(U=—’

Alternative Representations of Complex Numbers

So far, we have represented a pair of conjugate complex numbers in the general lorm
(h = vi). Since /4 and v refer to the abscissa and ordinate in the Cartesian coordinate sys-
tem of an Argand diagram, the expression (& £ vi) represents (he Cartesian form of a pair
of conjugate complex numbers. As a by-product of the discussion of circular functions and
Euler relations, we can now express (A + »f) in two other ways.
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Example 6

Example 7

TABLE 16.2

Referring to Fig. 16.2. we see that as soon as h and v are specified, the angle 8 and the
value of R also become determinate, Since o given £ and a given R can together identify a
urique point in the Argand diagram, we may employ  and R to specily the particular pair
of complex numbers. By rewriting the definitions of the sine and cosime functions 1n
(16.12) and (16.13) as

y=Rsm# and &= Kcosé (16.22)
the conjugate complex numbers (4 £ vi) can be transformed as follows:
h+vi=Rceosd + Risin® = R(cos +isini)

In so doing, we have in effect switched from the Cartesian coordinates of the complex
numbers (4 and ©) o what are called their polar coordinates (R and #). The right-hand
expression in the preceding equation, accordingly, exemplifics the potar form of a pair of
conjugate complex numbers.

Furthermore, in view of the Euler relations, the polar form muay also be rewritten into the
exponential form as follows: R{cosf £ ising) = Re*". Hence, we have a total of three
alternative representations of the conjugate complex numbers:

h=vi = Ricos® £isinf) = Re*" (16.23)

I we are given the values of R and £, the transformation to & and ¥ 1s straightforward.
we use the two equations in (16.22). What about the reverse transformation? With given
values of # and v, no difficulty arises in finding the corresponding valuc of R, which is
equal to A2 + v2. But a slight ambiguity arises in regard to 4. the desired value o 0 {in
radians) is that which satisfies the two conditions cas# = /R and sin¥ = »/R; but for
given values of 1 and v, ¢ is not unique! {Why?) Fortunately, the problem is not serious. for
by confining our attention to the interval [0, 2z) in the domain, the indetermmancy is
quickly resolved.

Find the Cartesian form of the complex number 5¢*7/4. Here we have R = Sand i/ = 31/2;
hence, by {16.22) and Table 16.1,

h:Scos%ﬂ:O and v:Ssin%{:—S

The Cartesian form is thus simply A —vi = -5i.

Find the polar and exponential forms of (1 + V30). In this case, we have h=1 and v = V'3;
thus R = /1 +3=2. Table 16.1 is of no use in locating the value of & this time, but
Table 16.2, which lists some additional selected values of sin# and cos#, will help. Specifically,

g il z z 3
6 4 3 4

sin g ! il (: ﬁ) V3 1 (= @)
2 ) 2 2 p; 2
V3 1 N 1 1 =2

cosf 5 E (: T) 3 :/H_E (: T)
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we are seeking the value of 8 such that cosé = h/R = 1/2 and sind = v/R = +/3/2. The
value # = 7 /3 meeis the reguirements. Thus, according to (16.23), the desired transforma-
tion Is

3

Before leaving this topic, let us note an important extension of the result in (16.23).
Supposing that we have the nth power of a complex number—say, (A + vi)"—how do we
write its polar and expenential forms? The exponential form is the easier to derive, Since
h+vi=Re' it follows that

1++/3i :2(:05% + 1 sin f) — 2pin3

(h+vi)' = (Re")" = R"!"
Similarly, we can write
(h—vi)" = (Re™)" = R~
Note that the power n has brought abaut two changes: (1) R now becomes R", and (2) 4

now becomes nt. When these two changes are inserted into the polar form in {16.23), we
find that

(h£vi)" = R"(cosnd £ isinng) (16.23"
That is,
[R{cos# = ising)]" = R"(cosnd £ i sinnd)

Known as De Moivre’s theorem, this result indicates that, to raise a complex number to the
nth power, one must simply modify its polar coordinates by raising R to the nth power and
multiplying ¢ by n.

EXERCISE 16.2

1. Find the roots of the following guadratic equations:
(6) r2~3r+9=0 (2 +x+8=0
(B r24+2r+17=0 ()22 ~x+1=0
2. {a) How many degrees are there in a radian?
{b) How many radians are there in a degree?
3. With reference to Fg. 16.3, and by using Pythagoras’s theorem, prove that
. 2 - . X i
(a) sin“ @ + cos? 6 = (.b)ls.rn:’::coszzﬁ
4. By means of the identities {16.14), (16.15), and {16.16), show that;
{a) sin 26i = 2sind cos#
() cos26 =1 - 2sin? 8
() sin{ty + 62) +sin{é) — &) = 25inFy coséy

i
2 =
()1 +tan“d = cosZ0

(e) sin (% —H) = costt (f) cos(g —(J) = sind

5. By applying the chain rule:

d d
(g) Write out the derivative formulas for p sin f(#) and e cos f(0), where f{0) is a
function of 9. v

(b) Find the derivatives of cos 83, sin(42 + 38), cose”, and sin(1/6),
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6. From the tuler refations, deduce that;

(o) e =1 (0 "/ = ‘2—5(1 + )
(by e"* = 12(1 +V3iy  (d)e —?(1 +i)
7. Find the Cartesian form of each complex number:
(a) 2(cos 3;— + i sin :;-) {b) de'/3 (() +Zeini4
8. Find the polar and exponential forms of the following complex numbers:
(@) % + 3—2@; (B 4(V3+1)

16.3 Analysis of the Complex-Root Case

With the concepts of complex numbers and circular functrons at our disposal, we are now
prepared to approach the complex-root casc {Case 3), referred to 1n Sec. 16.1. You will re-
call that the classification of the three cases., according to the nature of the characteristic
roots, i$ concerned only with the complementary tunction of a differential equation. Thus,
we can continue to focus our attention on the reduced equation

Y Oy +avi{ty+ay =0 [reproduced from (16.4)]

The Complementary Function

When the values of the coefficients ¢; and a; arc such that af < 4a, the characteristic
roots will be the pair of conjugate complex numbers

ri.r=htu
1 L

where h = —-2—r11 and = Ev‘ das — af

The complementary function, as was already previewed, will thus be in the form
v =" (4" + ™) [reproduced from (16.113]

Let us first transform the imaginary exponential expressions in the parentheses mnto
equivalent trigonometric expressions, so that we may interpret the complementary function
as 4 circular function. This may be accomplished by using the Euler rclations. Letting
#=wvtin(1621)yand (16,21, we find (hat

e =cosvt+isinvr and e " =gosvi —fsinul

From these, it toltows that the complementary function in (16.11) can be rewrliten as
Yo = @[ A (cos vt + i sinvr) + As{cos vt ~ 7 sin ot}]

; _ (16.24)
=e"[{A + Ayycosvt + (4 — A2)isinve]
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Arc Al =
rR=1

{ (radians)

Furthermore, if we employ the shorthand symbals
As= A+ 42 and Ag=(4)— Ao}
it 18 possible to simphily (16.24) into’
v, = eM(A5cos vt + Ay sinve) (16.24)

where the new arbitrary constants As and 44 arc later to be definitized.

[[ you are meticulous, you may fecl somewhat uncasy about the substitution of @ by vt
in the foregoing procedure. The variable # measures an angle, but vz 15 a magnitude in units
of t (in aur context, time). Therefore, how can we make the substitution @ = v¢? The answer
to this question can best be explained with reference to the unit cirele {a circle with radius
R = 1) in Fig. 16.5. True. we have been using ¢ to designate an angle; but since the angle
15 measured in radian units, the value of 0 1s always the ratio of the length of arc A8 to the
radius R. When K = 1, we have specifically

arc AB _ arc A B

g IR =arc AB

In other words, 6 is not only the radian measure of the angle, but also the length of the
arc A8, which 1s a number rather than an angle. If the passing of time 1s charted on the
circumference of the unit circle (counterclockwise), rather than on a straight line as we do
in plotting a time series, it really makes no difference whatsoever whether we consider the

! The fact that in defining Ag, we include in it the imaginary number /is by no means an attempt to
“sweep the dirt under the rug.” Because Ag is an arbitrary constant, it can take an imaginary as well
as a real value. Nor is It true that, as defined, A will necessarily turn out to be imaginary. Actually,
if Ay and Az are a pair of conjugate complex numbers, say, m - ni, then As and Ag will both be
real: A = Ay + Ag=(m+ni)+{m-ni)=2m, and 4g = {4 — A2} =[{m+n) —(m-ni)]i =
(2ni)i = -2n.
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lapsc of time ag an increase in the radian measure of the angle # or as a lengthentng of the
arc AB. Even if R # |, moreover, the same line of rcasoning can apply, except that in that
case # will be cqual to (arc AB)/ R instead; i.e., the angle 8 and the arc 4B will bear a fixed
proportion to cach other, instead of being equal. Thus, the substitution & = w7 is indeed
legitimate.

An Example of Solution

Let us find the solution of the differcntial equation
YO+ 2y + 17y =34
with the initial conditions y(0} = 3 and y'(0) = 11.
Sincea; = 2.4 = 17, and b = 34, we can immediately find the particulur integral to be
h 34
.]-';!J = = — =
s 17
Moreover, since a = 4 < 4a; = 68, the characteristic roots will be the pair of conjugate
complex numbers (# & vi), where

1 1 !
h:_imz_l and V=g 4&'2-—(5,2:-2“«/@=4

Hence, by (16.24"), the complementary function is

2 [by(16.3)]

yo =& (Ascosdt + Agsindt)
Combining y, and y,, the general solution can be expressed as
(1) = e (Ascosdt + Agsindr) + 2
To definitize the constants As and A4g, we utilize the two initial conditions. First, by
setting ¢ = 0 in the general solution, we find (hat
(0) = ¢"( A5 cos 0 + Agsin0) +2
=(As+0)+2=A4A5+2 [cos = 1;sin0 = 0]
By the initial condition v(0) = 3, we can thus speeify A5 = 1. Next, let us differentiatc the
general solution with respect to r—using the product rule and the derivative formulas
(16.17} and (16.18) while bearing in mind the chain rule [Exercise 16.2-5]—to find v'(t)
and then v'(0):
V(1) = —e (A5 cosdt + Ag sindi) + e [As(—4sindt) + 44, cosde]
s0 that
¥(0) = —(As cos0+ Agsin0) + (—4A4ssin 0+ 44¢ cos )
= —(As+0)+(0+44) =44 - 45
By the second initial condition y'(0) = 11, and in view that 45 = 1, it then becomes clear
that 45 = 3.7 The definite solution is, therefore,

y(t) = e " (cosdf 4+ 3sinde) + 2 (16.25)

¥ Note that, here, Ag indeed turns out to be a real number, even though we have included the
imaginary number {in its definition,
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As before, the y, component (= 2) can be interpreted as the intertemporal equilibrium
level of y, whereas the v, component represents the deviation from equilibrium. Because of
the presence of eircular functions in y,, the time path (16.25) may be expected to exhibit a
fluctuating pattern. But what specific pattern will it involve?

The Time Path

We are famihar with the paths of a simple sine or cosine function, as shown in Fig. 16.4.
Now we must study the paths of certain variants and cembinations of sine and cosine func-
tions so that we can interpret, in general, the complementary function (16.24°)

v = e™( A5 cos vt + Agsinur)

and, in particular, the v component of (16.25).

Let us first examine the term (A5 cos vt). By itself, the expression (cos vf) is a circular
function of (vt), with period 2m (= 6.2832) and amplitude 1. The period of 2 means that
the graph will repeat its configuration every time that (/) increases by 2. When /£ alone is
taken as the independent variable, howcever, repetition will occur every time # increases by
Zm fv, so that with reference to +  as is appropriate in dynamic economic analysis  we
shall consider the period of (cosvt) 1o be 27 /v. (The amplitude, however, remains at [.)
Now, when a multiplicative constant As is attached to (cos vf), it causes the range of
fluctuation to change from £l to £4s. Thus the amplitude now becomes As, though
the period is unaffected by this constant. In short, (4s cos ut) is a cosine function of t, with
period 2w /v and amplitude 45. By the same token, (4 sinvt) is a sine function of ¢,
with period 27 /v and amplitude 4.

There being a commeon period, the sum {45 cos vt + 4 sinve) will also display a re-
peating cycle cvery time / increases by 2 /v. To show this more rigorously, let us note that
tor given values of 45 and 45 we can always [ind two constants 4 and £, such that

As = Adcose and Ay = —Asine
Thus we may express the said sum as

Ascosuvf + Agsmmuvf = 4 cosecosnt — Asinesinuf
= A(cos vt cose — sin s sing)
= dcos(vr + €) [by (16.106)]

This is a modified cosine function of ¢, with amphitude 4 and period 27t /v, because cvery
time that ¢ increases by 27 /v, (vf + &) will increase by 27, which will complete a cycle on
the cosing curve,

Had y. consisted only of the expression (A5 cos vt + A4 sinvr), the implication would
have been that the time path of y would be a never-ending, constant-amplitude fluctuation
around the cquilibrium value of y, as represented by v,.. But there is, in fact, also the mul-
tiplicative term €™ to consider. This latter term is of major importance, for, as we shall see,
it holds the key to the question of whether the time path will converge,

I 2 = 0, the value of e will increase continually as ¢ increases. This will produce a
magnifying effect on the amplitude of (A5 cos v + Aq sinvt) and causce ever-greater devi-
ations from the equilibrium in cach successive cycle. As illustrated in Fig. 16.64, the time
path will in this case be characterized by explosive fluciuation. A = 0, on the other hand,
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FIGURE 16.6
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then e® =1, and the complementary function will simply be (Ascosvf + Agsinve),
which has been shown to have a constant amplitude. In this second case, each cycle will
display a uniform pattern of deviation from the cquilibrium as illustrated by the time path
in Fig. 16.6h. This is a time path with unjform fluctuation. Last, if b < 0, the term ¢* will
continually decrease as ¢ increases, and each successive cycle will have a smaller amplitude
than the preceding one, much as the way a ripple dies down. This case is illustrated in
Fig. 16.6¢, where the time path is characterized by damped fluciuvation. The solution in
{16.25), with & = — 1, exemplifies this last casc. 1t should be clear that only the casc of
damped fluctuation can produce a convergent time path; in the other two cases, the time
path is nonconvergent or divergent.’

In all three diagrams of Fig, 16.6, the intertemporal equilibrium is assumed to be sla-
tionary. If it is a moving one, the three types of tme path depicted will still fluctuate around
it, but since a moving equilibrium generally plots as a curve rather than a horizontal straight

" We shall use the two words nonconvergent and divergent interchangeably, although the latter is
more strictly applicable to the explosive than to the uniform variety of nonconvergence.
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line, the fluctuation will take on the naturc of, say, & scries of business cyeles around a
secular trend.

The Dynamic Stability of Equilibrium

The concept of convergence of the time path of a variable is inextricably tied to the concept
of dynamic stability of the intertemporal equilibrium of that variable. Specifically, the cqui-
librium 1s dynamically stable if, and only if; the time path is convergent. The condition for
convergence of the y(t) path, namely, i < 0 (Fig. 16.6¢), is therefore also the condition
for dynamic stability of the intertemporal equilibrium of v.

You will recall that, for Cases | and 2 where the characteristic roots are real, the condi-
tion for dynamic stability of equilibrium is that every characleristic root be negative. [n the
present case (Case 3), with complex roots, the condition seems to be more specialized; it
strpulates only that the real part (A1) of the complex roots (h + »i) be negative, However, it
i1 possible 1o unify all three cases and consolidate the seemingly different conditions into a
single, generally applicable ene. Just interpret any real root » as a complex root whose
imaginary part is zero (¢ = 0). Then the condition “the reaf part of every characteristic
root be negative™ clearly becomes applicable to all three cases and emerges as the only
condition we need,

EXERCISE 16.3

Find the y, and the y., the general solution, and the definite solution of each of the
following:

YD -4y () + 8y =0; {0 =3,y (0) =7

y(6) + 4y () +8y = 2; ®0) = 23, y'(0) = 4

y+3y(0-4y =12 y(0) =2,y (0) = 2

y'{8) = 2y ()~ 10y = 5; Y(0) = 6, y'(0) = 85

yiiy+9y=3y0) =1,y(0)=3

2y7(8) ~12y'(H) + 20y = 40; Q) = 4, y'(0) =5

Which of the differential equations in Probs. 1 to 6 yield time paths with (a) damped
fluctuation; (b) uniform fluctuation; {¢) explosive fluctuation?

NS RN

16.4 A Market Model with Price Expectations

In the earlier formulation of the dynamic market model, both Q4 and Q, arc taken 1o be
functions of the current price P alone. But sometinies buyers and sellers may base their
market behavior not only on the current price but also on the ptice trend prevailing at the
time, for the price trend 15 likely lo lead them to certain capectations regarding the price
level in the future, and these expectations can, in turn, influence their demand and supply
decisions,

Price Trend and Price Expectations

In the continuous-time context. the price-trend information is to be found primarily in the
two derivatives dP/di (whether price is rising) and &° P/dt* (whether increasing at an
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increasing rate). To take the price trend into account, let us now include these derivatives as
additional arguments in the demand and supply functions:

Qs = DIP(), P'(1). PU(1)]
Q, = S[P(r), P'{1), P7(1)]

If we confine ourselves to the linear version of these functions and simplity the notation for
the independent variables to P, ', and P”, we can write

Qu=a—FP+mP +nP" (e, B> 0)
(o =—y +EP+uP +wP"  (y.8 =0}

where the paramcters ¢, £, ¥, and § are merely carryovers from the previous market
models, but m, &, i, and w arc new.

The four new parameters, whose signs have not been restricted, cmbody the buyers” and
sellers’ price expectations, [fm > 0, for instance, a rising price will cause 0, to increase.
This would suggest that buyers expect the rising price to contimee to rise and, hence, prefer
to increase their purchases now, when the price is still relatively low. The opposite sign for
m wauld, on the other hand, signify the expectation of « prompt reversal of the price trend.
so the buyers would prefer to cut back current purchases and wait for a lower price to ma-
terialize later. The inclusion of the parameter 7 makes the buyers” behavior depend also on
the rate of change of dP /dt. Thus the new parameters m and # inject a substantial element
of price speculation into the model. The parameters # and w carry a similar implication on
the sellers’ side of the picture.

A Simplified Model

For simplicity, we shail assume that only the demand function contains price expectations,
Specifically, we let m and # be nonzero, but let # = w = 0 1n (16.26). Further assumc that
the market is cleared at every pomt of time. Then we may equate the demand and supply
functions to obtain (after normalizing} the difterential equation
f+3 _aty

. " ;
P"+—P - P=
H f #

(16.26)

(16.27)

This cquation is in the form of (16.2) with the following substitutions:

m )
y=P =" agz—ﬁ+ L 4
H H H

Since this pattern of change of P involves the second derivative P¥ as well as the first
derivative P', the present model is certainly distinet from the dynamic market madel
presented in Sec. 15.2,

Note, however, that the present model differs from the previous model in yet another
way. In Sec. 15.2, a dynamic adjustment mechanism, 4P /dt = j(Qy — ;) 1s present.
Since that equation implies that dP/di = 0 il and only if O, = ©,. the intertemporal
sense and the markct-clearing sense of cquilibrium are cotncident in that model. In con-
trast, the present model assumes market clearance at every moment of time. Thus every
price attained in the market is an equilibrium price in the market-cicaring sense, although
it may not qualify as the intertemporal equilibrium price. In other words, the two senses
of equilibrium are now disparate. Note, also, that the adjustment mechanism dP /dr =
J(Q4 — ), containing a derivative, is what makes the previous market mode!l dynamie.
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In the present medel, with no adjustment mechanism, the dynamic nature of the model
emanates instcad from the expectation terms m P* and n P,

The Time Path of Price

The intertemporal cquilibrium price of this model —the particular integral £, (lormerly
¥p)—is easily lound by using (16.3). It is
b a+
P,=— = Y
a P+
Because this 15 a (positive) constant, it represents a stationary equilibrium.
As for the complementary function 2. (formerly y,.), there are three possible cases.

() -5

The complementary function of this casc is, by (16.7),
R: - Aleﬂ‘ﬁ + Azerlt

2 .
h,ﬁ"g:i —Ei\/(ﬁ) -1-4(@) (16.28)
2 H # n

Accordingly, the general solution 15

Case 1 (distinct real roots)

where

PU) = Pt Py= Ayt 4 g + 211 (16.29)
B+48
Case 2 (double real roots)
2
5
S
H 7
In this case, the characteristic roots take the single value
m
F=——
2n
thus, by (16.9), the gencral solution may be written as
—_— oa+y
P(ty = Ase ™I qupemmin 4 =10 16.29’
(t} 3 44 E ,B 148 ( )

Case 3 (complex roots)

m\* B+35
Y o4
f 1

In this third and last case, the characieristic roots are the pair of conjugaie complex

numbers

P, =htui
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Example 1

where

1
h=—"" and t.-':i —4(ﬁ+5)—(ﬂ)
2n 2 i 7t

Therefore, by (16.24'), we have the general solution

P(t) = e ( A5 cos vt + Agsin vi) + . (16.29")

p+d

A couple of general conclusions can be deduced from these results. Fiest, if n > 0, then
—4(B + 8)/n must be negative and hence less than (m/#)?. Hence Cases 2 and 3 can im-
mediately be ruled out. Moreover, with # positive (as are f and d), the cxpression under
the square-root sign in (16.28) necessarily exceeds {m/n)?, and thus the square root must
be greater than |m/#|. The < sign in (16.28) would then produce one positive root {r;) and
ong negative root (r2). Consequently, the intertemporal equilibrium is dynamically unsta-
ble, unless the definitized value of the constant A, happens to be zero in (16.29).

Second, if » < 0, then all three cases become [eastble. Under Case [, we can be sure
that both toots will be negative if m is negative. (Why?) [nterestingly, the repeated root of
Case 2 will also be negative if m is negative. Moreover, since k, the real part of the complex
roots in Case 3, takes the same value as the repeated root » in Casc 2, the negativity of »1
will also guarantee that / is negative. In short, for all three cases, the dynamic stability of
equilibrium is ensured when the parameters m and # arc both negative.

Let the demand and supply functions be
Qi =42—4P — 4P + p*
Qs =—6+8P

with initial conditions P(0) = 6 and £'(0) = 4. Assuming market clearance at every point of
time, find the time path P(t).
In this example, the parameter values are

0=42 f=4 y=6 45=8 m=-4 n=1

Since n is positive, our previous discussion suggests that only Case 1 can arise, and that the
two (real} roots ry and ro will take opposite signs, Substitution of the parameter values into
{16.28) indeed confirms this, for

1 1

The general solution is, then, by (16.29),
PO = A1 + Aze ¥+ 4

By taking the initial conditions intoe account, moreover, we find that Ay = A2 =1, so the
definite solution is

P(y=6"+e% 1+ 4

in view of the positive root 1 = 6, the intertemporal equilibrium (P, = 4} is dynamically
unstable.
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The preceding solution is found by use of formulas (16.28) and (16.29). Alternatively, we
can first equate the given demand and supply functions to obtain the differential equation

PY 4P —12P = —48

and then solve this equation as a specific case of (16.2).

Given the demand and supply functions
Qu=40-2p —2p — p*
Q,=-5+3P

with P(0) =12 and P/(0) =1, find P(t) on the assumption that the market is always
cleared.

Here the parameters i and n are both negative. According to our previous general dis-
cussion, therefore, the intertemporal equilibrium should be dynamically stable. To find the
specific solution, we may first equate Qg and Q, to obtain the differential equation (after
multiplying through by —1)

P+ 2P +5P =45
The intertemporal equilibrium is given by the particular integral

45

From the characteristic equation of the differential equation,
P2 45=0

we find that the roots are complex:
1 1
Ml = E(_Zi V4 -20) = E(—Zifh‘) =-1=x2

This means that h = —1 and v = 2, so the general solution is
P(t) = e ' (Ascos2t+ Agsin2t) + 9

To definitize the arbitrary constants As and Ag, we set t = 0 in the general solution, to
get

P(0) = e®(AscosO+ Agsin0}+9= A5+ 9  [cosl=1; sin0 = 0]
Moreover, by differentiating the general solution and then setting t = 0, we find that

P'(H) = —e (A5 cos 2t + Agsin 2t) + e (=2 A5 5in 2t + 2 Ag cos 2¢)
[product rule and chain rule]
and  P'(0) = —e%(As cos O + Agsin0) + €°(—2 A5 sin0 + 2 A4 cos 0)
=—{As +0) + (0 + 24¢) = —As 4 24s

Thus, by virtue of the initial conditions £{0) =12 and P'(0) =1, we have As =3 and
Ag = 2. Consequently, the definite solution is

P(y=e ‘(3cos2t+2sin26) +9
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This time path is obviously one with periodic fluctuation; the period is 27 /v = 7. That s,
there is a complete cycle every time that ¢ increases by w = 3.14139. ... In view of the
multiplicative term ¢!, the fluctuation is damped. The time path, which starts from the
initial price P{0) = 12, converges to the intertemporal equilibrium price P, = 9 in a cyclical
fashion.

EXERCISE 16.4

1. Let the parameters m, 5, u, and w in {16.26) be all nonzero,
(g) Assuming market clearance at every point of time, write the new differential
equation of the modet.
{b) Find the intertemparal equilibrium price.
(€) Under what circumstances can periodic fluctuation be ruled out?

2. Let the demand and supply functions be as in {16.26), but with 1 =w =0 as in the
text discussion.
(m) If the market is not always cleared, but adjusts accerding to

T —ju-0) (>0
write the appropriate new differential equation.

(b} Find the intertemporal equilibrium price P and the market-clearing equilibrium
price P*,

(¢) State the condition for having a fluctuating price path, Can fluctuation occur if
n> 07

3. Let the demand and supply be
deng—f—P"—}—EP" Q5:“‘1+4P""PI'."5P”

with P(0) =4 and P'(0) = 4.
{a) Find the price path, assuming market clearance at every point of time.
{) Is the time path convergent? With fluctuation?

16.5 The Interaction of inflation and Unempioyment

In this scction, we illustrate the use of a second-order differential equation with a macro
model dealing with the problem ol inflation and unemptoyment.

The Phillips Relation

One of the most widely used concepts in the modern analysis of the problem of inflation
and unemployment is the Phillips relation,” In its original formulation, this relation depicts
an empirically based negative relation between the rate of growth of money wage and the
rate of uncmployment:

w= fU) [(U) < 0] (16.30)

T A. W Phillips, “The Retationship Between Unemployment and the Rate of Change of Money Wage
Rates in the United Kingdom, 1861-1957," Economica, November 19538, pp. 283-299.
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where the lowercase letter w denotes the rate of growth of moncy wage W (ie., w= W/ W)
and U'is the rate of unemployment. 1t thus pertains only to the labor market, Later usage,
however, has adapted the Phillips relation into a function that links the rate of inflation
(instcad of w) to the rate of unemployment. This adaptation may be justified by arguing that
mark-up pricing 1s in wide use, so that a positive w, reflecting growing moncy-wage cost,
would necessarily carry inflationary implications. And this makes the rate of inflation, like
w, a function of U. The inflationary pressure of a positive w can, however, be offsct by an
increase in labor productivity, assumed to be exogeneous, and denoted here by 7. Specifi-
cally, the inflationary effect can materialize only to the extent that money wage grows faster
than productivity. Denoting the rate of inflation—that is, the rate of growth of the price
level P—by the lowercase letter p, (p = P/P), we may thus write

p=w-T (16.31)

Combining (16.30) and (16.31}, and adopting the linear version of the function f{{/), we
then get an adapted Phillips relation

p=a—T—8U (af>0) (16.32)

The Expectations-Augmented Phillips Relation

More recently, cconomists have preferred to use the expectafions-augmented version of the
Phullips relation

w= f(U)+gr  (0<g<]) (16.30")

where 7 denotes the expected rate of inflation. The underlying idea of (16.30'), as pro-
pounded by the Nobel laurcate Professor Friedman,” is that if an inflationary trend has been
in effect long enough, people are apt to form certain inflation expectations which they then
attempt to incorporate into their money-wage demands. Thus w should be an increasing
function of 7. Cartied over to (16.32), this idea results in the equation

p=o—T—pU+ygx D<g=1) (16.33)

With the introduction of a new variable to denote the expected rate of inflation, it
becomes necessary to hypothesize how inflation expectations are specifically formed.*
Here we adopt the adaptive expectations hypothesis

d

—=jp-m  (O<jsD) (16.34)

Note that, rather than explain the absolute magnitude of 7, this equation describes instead
its pattern of change over time. If the actual rate of inflation p turng out to exceed the
cxpected rate &, the latter, having now been proven to be too low, is revised upward
(dn /dt = 0). Conversely, if p falls short of 7, then 7 1s revised in the downward direction.
In format, (16.34) closely resembles the adjustment mechanism d P/dt = j(Qy —~ Q) of

" Milton Friedman, “The Role of Monetary Palicy,” American Economic Review, March 1968, pp. 1-17.

* This is in contrast to Sec. 16.4, where price expectations were discussed without introducing a new
variable to represent the expected price. As a result, the assumptions regarding the formation of
expectations were only implicitly embedded in the parameters m, 1, v, and win (16.26).
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the market model. But here the driving force behind the adjustment 1s the discrepancy
between the actuad and expected rates of inflation, rather than (4 and 0.

The Feedback from Inflation to Unemployment

It is possible 1o consider {16.33) and (16.34) as constituting a complete maodel. Since there
are three variables in a two-equation system, however, ong of the variables has to be taken
as exogenous. If # and p are considered endogenous, for instance, then I/ must be treated
as exogenous. A more satisfying alternative is to introduce a third equation to explain the
variable U/, so that the model will be richer in behavioral characteristics. More significantly,
this will provide us with an opportunity to take into account the feedback etfect of inflation
on unemployment. Equation (16.33) tells us how U affects p—Ilargely from the supply side
of the economy. But p surcly can affect U in return. For example, the rate of inflation may
influence the consumption-saving decisions of the public, hence also the aggregate demand
for domestic production, and the later will, in turn, affect the rate of uncmployment. Even
in the conduct of government policies of demand management, the rate of inflation can
makc a difference in their effectiveness. Depending on the rate of inflation, a given level of
money expenditure {fiscal policy) could translate inte varying levels of real expenditure,
and similarly, a given rate of nominal-money expansion (monctary policy) could mean
varying rates of real-money expansion. And these, in turn, would mmply differing effects on
output and unemployment.

For simplicity, we shall only take into consideration the feedback through the conduct of
monetary policy. Denoting the nominal moncy balance by M and its rate of growth by
m = M/M, let us postulate that'

W km—p k> 0) (16.35)

dt
Recalling (10.25), and applying it backward, we see that the expression (m — p) represents
the rate of growth of real moncy:

MoP
m—p= WP =Ty — e =Ry

Thus (16.35) stipulates that dU/dt 1s negatively related to the rate of growth of rcal-money
balance. Inasmuch as the variable p now enters into the determination of {//dt, the model
now contains g feedback from inflation o unemployment.

The Time Path of »

Together, (16.33) through {16.35) constitute a closed model in the three variables 7, p, and
{/. By eliminating two of the three variables, however, we can condense the model into a
single differential cquation in a single variable. Suppese that we let that single variable be
. Then we may first substitute (16.33) into (16.34) to get

dm

= = e =T=pU)~j(l —g)m (16.36)

# In an earlier discussion, we denoted the money supply by M, to distinguish it from the demand tor
money Mg. Here, we can simply use the unsubscripted letter M, since there is no fear of confusion,
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Had this equation contained the expression dU/dt instead of {/, we could have substituted
(16.33) nto (16.36) directly. But as (16.36) stands, we must first deliberately create a
dU/dt term by differentiating (16.36) with respect to ¢, with the result

dn du dn
it il e (16.37)

dt
Substitution of (16.35} into this then yields

dg?T ] . . dm ’
P = jfkm — jpkp — j{1 —84 (16.37)
There 15 still a p variable (o be eliminated. To achieve that, we note that (16.34) implics
ldn
- 16.38
J2 i + { )

Using this result i {16.37'}, and simplifying, we finally obtain the desired differential
equation in the variable m alone:

ki 1% e =

il [} h

The particular integral of this equation is simply
b

Ty = = —
d (45
Thus, in this model, the intertemporal ¢quilibrium value of the expected rate of inflation
hinges exclusively on the rate of growth of nominal money.

For the complementary function, the two roots are, as betfore,

I bl
Fl,F2 = E (—m + y dy — 4(12) (1639)

where, as may be noted from (16.37"), both ¢; and a are positive. On a priori grounds, it
is not possible to determine whether af would exceed, equal, or be less than 4a;. Thus all
three cascs of characteristic roots—distinct real roots, repeated real roots, or complex
roots—can conceivably arise. Whichever case presents itself, however, the intertemporal
equilibrium will prove dynamically stable in the present model, This can be explained as
follows: Suppose, first, that Case | prevails, with @7 > 4as. Then the square root in (16.39)

yields a real number. Since @ is positive, ./a? — 4a; is necessarily less than ﬁf =ap. [t
follows that | is negative, as is r», implying 4 dynamically stable equilibrium. What if
a]z = 4a; {Case 2)? In that cvent, the square root is zero, sothatr) = r; = —ay /2 < 0, And
the negativity of the repeated roots again implies dynamic stability. Finally, for Case 3, the
real part of the complex roots s # = —aj /2. Since this has the same value as the repeated
roots under Case 2, the identical conclusion regarding dynamic stability applies.

Although we have only studied the time path of 7, the model can certainiy yield infor-
mation on the other variables, t0o. To find the time path of, say, the {/ variable, we can
either start off by condensing the model into a dilferential cquation in L/ rather than 7 (see
Exercise 16,5-2) or deduce the U path from the 7 path already found (see Example 1).
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Example 1 Let the three equations of the model take the specific forms

p:%—?,u o (16.40)

dr 3
- 16.41

G =P (16.41)
du 1
= {m- 16.
= —5m=p) (16.42)

Then we have the parameter values § =3, h=1, j = %, and k = %; thus, with reference to
(16.37"), we find

, 3 : 9 , G
:ﬁk+;(1—g}_i ag_,rﬁk_-g and b_;ﬁkm.rgm

The particular integral is b/g, = m. With af < 445, the characteristic roots are complex:

B ¥ (RE S LA P —E:t3f)——§ﬂ:ii
PPV 2 ‘2(2 2 44

That is, = —% and v = %. Consequently, the general soluticn for the expected rate of
inflation is

3
() = e3>t (A;, cos Zt I Agsin ‘—it) +m (16.43)

which depicts a time path with damped fluctuation around the equilibrium value m.
From this, we can also deduce the time paths for the p and U variables. According to
(16.41), p can be expressed in terms of = and d=z/dt by the equation

4 e

P=3a

The = path in the general solution (16.43) implies the derivative

d,'T 3 —3t/4 3 . 3
_ == - i A — -
a0 4e ( 5cos4t+ A(,sm4t)

3 33 3 .
4 g3t (—ZAS sin Zrt + ZAG Cos EE) [product rule and chain rule]

Using the solution (16.43) and its derivative, we thus have
374 | 3 3
pfy=e " | Ascos fo_ Az sin Zt +m (16.44)

Like the expected rate of inflation =, the actuai rate of inflation p also has a fluctuating time
path converging to the equilibrium value m.

As for the U variable, (16.40) tells us that it can be expressed in terms of x and p as
follows:

i O
U:g(ﬂ'_p)fﬁ

By virtue of the solutions (16.43) and (16.44), therefore, we can write the time path of the
rate of unemployment as

: 1
Uit = %9‘3”4 [(As Ag)cos ;I + (As + Ag}sin Et} 8 (16.45)
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This path is, again, one with damped fluctuation, with ]1—3 as U, the dynamically stable
intertemporal equilibrium value of I/,

Because the intertemporal equilibrium values of = and p are both equal to the monetary-
policy parameter m, the value of m—the rate of growth of nominal money—provides the
axis around which the time paths of = and p fluctuate. If a change occurs in m, a new equi-
libriurm value of = and p will immediately replace the old ene, and whatever values the =
and p variables happen to take at the moment of the monetary-policy change will become
the initial values from which the new = and p paths emanate.

In contrast, the intertemporal equilibrium value U does not depend on m. According to
(16.45), U converges to the constant .[T—S regardiess of the rate of growth of nominal money,
and hence regardless of the equilibrium rate of inflation, This constant equilibrium value of
Uis referred to as the natural rate of unemployment. The fact that the natural rate of unem-
ployment is consistent with any equilibrium rate of inflation can be represented in the Up
space by a vertical straight line parallel to the p axis. That vertical line relating the equilib-
rium values of U and p to each other, is known as the fong-run Phillips curve, The vertical
shape of this curve, however, is contingent upon a special parameter value assumed in this
example. When that value is altered, as in Exercise 16.5-4, the long-run Phillips curve may
no longer be vertical.

EXERCISE 16.5

1. In the inflation-unemployment model, retain (16.33) and (14.34) but delete {16.35)
and let U be exogenous instead.

() What kind of differential equation will now arise?

(b} How many characteristic roots can you obtain? Is it possible now to have periodic
fluctuation in the complementary function?

2. In the text discussion, we condensed the inflation-unemployment mede! into a differ-
ential equation in the variable z. Show that the model can alteratively be condensed
into a second-order differential equation in the variable U, with the same & and @
coefficients as in {16.37"}, but a different constant term b = kj[w - T — (1 — g)m].

3. Let the adaptive expectations hypothesis (16.34) be repfaced by the so-called perfect
feresight hypothesis = = p, but retain (16.33) and (16.35).

(@) Derive a differential equation in the variable p,
{{) Derive a differential equation in the variable U.

{c) How do these equations differ fundamentally from the one we obtained under the
adaptive expectations hypothesis?

(d) What change in parameter restriction is now necessary to make the new differen-
tial equations meaningful?
4. In Example 1, retain (16.41) and (16.42) but replace (16.40) by
1 1
p= z- U+ EI
(a) Find p(t}, 7(t), and U(?).
{(b) Are the time paths still fluctuating? Still convergent?
(¢) What are pand U, the intertemporal equilibrium values of p and /?

(df) Is it stitl true that U is functionally unrelated to 77 If we now fink these two equilib-
rium values to each other in a long-run Phitlips curve, can we still get a vertical
curve? What assumption in Example 1 is thus crucial for dertiving a vertical fong-run
Phitlips curve?



