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As may be expected, the omissicn of the constants of integration serves to simplify the pro-
cedure substantially.

The differential equation d—:’ +uy =w in (15.12) is more general than the equation
dy

gt +ay = b in (15.4), since  and w are not necessarily constant, as are a and b. Accord-

ingly, selution formula (15.15) is also more general than sclution formula (15.5). In fact,
when we set v = g and w = b, (15.15) should reduce to (15.5). This is indeed the case. For
when we have

U=2a w=p and f udt=at [constant omitted]

then (15.15) becomes
) =e" (A + [!:Je“r dt) —e ¥ (A + ge"‘) [constant omitted]

= Ae ™ 4 b
a

whichi is identical with (15.5).

EXERCISE 15.3

Solve the following first-order linear differential equations; if an initial condition is given,
definitize the arbitrary constant:

dy
1. EE“I—S}M—L';

dy
2. E+2ty_0

dy 3
L 42ty =6 W0) = =
3dt+y £ %0} 5

4%+:2y:srz;y<0)=s

dy 6
. —_— ZtZO' = —
5 dr+12y+ e ; Y(0) 7

dy

6. — ==
dt” {

15.4 Exact Differential Equations

We shall now introduce the concept of cxact differential equations and use the solution
method pertaining thereto to obtain the solution formula (15.15) previously cited for the dif-
ferential equation {15.12). Even though our immediate purpose is to use it to solve a lineqr
differential equation, an exact differential cquation can be either linear or nonlincar by itself.

Exact Differential Equations
Given a function of two variables F( v, 1), its total differential 1s

aF o AF
dFOL 0 = o dy+ = dr
dy it
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When this differential is set equal to zero, the resulting equation
aF aF
—dy+—dt =0
Y

is known as an exacf differential equation, because its left side is exactly the differential of
the function F( v, ¢). For instance, given

F(y,ty=y¥ +4 (4 a constant)
the total differential is
dF =2vtdy + v dt

thus the differential equation

, dy
ytdy+y-dt=0 oo —4:—=0 (15.16)
dt 2wt
18 exact.
In general, a differential equation
Mdv+Ndt =0 (15.17)

1s exact it and only if there exists a function F(y, f) such that M = 37/dy and & =
9 F/d¢. By Young’s theorem, which states that 8% F/8r 3y = 8*F /8y ¢, however, we can

also state that (15.17) is exact if and only if
aM aN
— = 15.18
i ay ( )

This last equation gives us a simple test for the exaciness of a differential cquation. Applied
to (15.16), where M = 2y and N = v, this test yields M /87 = 2y = 3N /3y; thus the
exactness of the said differential equation is duly verified.

Note that no restrictions have been placed on the terms M and N with regard to the man-
ner in which the variable y occurs. Thus an exact differential equation may very well be
nonlinear (in y). Nevertheless, it will always be of the first order and the first degree.

Being exact, the differcntial equation merely says

dF(y,1) =10
Thus 1ts general solution should ¢learly be in the form
Fiy,th=¢

To solve an exact differential equation is basically, therefore, 1o scarch for the (primitive)
function F(y, 1) and then sel it equal to an arbitrary constant. Let us outline a method of
finding this for the equation M dv + N dt = 0.

Method of Solution

To begin with, since M = 9 F/dy, the function F must contain the integral of M with re-
spect to the vartable y; hence we can write out a preliminary result—in a yet indeterminate
form—as follows:

F(y.f) = fMderw(.f) (15.19)
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Example 1

Here M, a partial derivative, is to be integrated with respect to v only; that is, 7 is (o be
treated as a constant in the integration process, just as it was treated as a constant in the par-
tial differentiation of F{v, ) that resulted in M = 0 F/dy.” Since, in differentiating F'(y, ¢)
partially with respeet to y, any additive term containing only the variable £ and/or some con-
stants (but with no ¥} would drop out, we must now take care to reinstate such terms in the
integration process. This explains why we have introduced in (15.19) a general term (1)
which, though not exactly the same as a constant of integration, has a preciscly identical
role to play as the latter. It is relatively casy to get /M dy; but how do we pin down the
exact form of this ¥{f) term?

The trick is to utilize the fact that N = 9 F7/8¢. But the procedurc 15 best explained with
the help of specific examplcs.
Solve the exact differential equation

2ytdy+ytdt=0  [reproduced from (15.16)]
In this equation, we have
M=2yt and N=y?

STep i By (15.19), we can first write the preliminary resuit
P = [ 2yt dy £ 000 = 't 900

Note that we have omitted the constant of integration, because it can automatically be
merged into the expression (f).

STer i If we differentiate the result from Step 1 partially with respect to t, we can obtain

JF
3t—y+W()

But since N = aF /3t, we can equate N = % and 3F /at = y2 + ¢'(f), to get
(=0

Step i Integration of the last result gives us

P = fw(r dt—f{)dr_

and now we have a specific form of y(t). It happens in the present case that (f) is simply
a constant; more generally, it can be a nonconstant function of &.

Steriv - The results of Steps | and i can be combined to yield
Fly, = yPi+k

The solution of the exact differential equation should then be F{y, t) = c¢. But since the con-
stant k can be merged into ¢, we may write the solution simply as

yit=c or  py=c 2
where ¢ i5 arbitrary.

T Same writers employ the operator symbot {{-« ) 3y to emphasize that the integration is with respect
to y only. We shall still use the symbol [ (- - -} dy here, since there is little possibility of confusion.
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Solve the equation (t+ 2y) dy+ (v + 3t2) dt = 0. First let us check whether this is an
exact differential equation. Setting M =t + 2y and N = y+ 3t%, we find that aM/at =
T =aN/dy. Thus the equation passes the exactness test. To find its solution, we again
follow the procedure outlined in Example 1.

Steri Apply (15.19) and write
Fly, ) = f(t +20 dy+ ¢ =yi+y2 + () [constant merged into ¥(t)]
Srerii Differentiate this result with respect to t, to get
aF ,
3=t ¥(t)
at
Then, equating this to N = y + 3t2, we find that

v(t) = 3¢

STepiii  Integrate this last result to get
wit) = f3£2 dt=t  [constant may be omitted]

Step iv. Combine the results of Steps i and i to get the complete form of the function
F(y. by

Fly,0=yt+y?+0
which implies that the solution of the given differential equation is
yt+y?+=c

You should verify that setting the total differential of this equation equal to zero will indeed
produce the given differential equation.

This four-step procedure can be used to solve any cxact differential equation. Interest-
ingly, it may even be applicable when the given equation is zof cxact. To see this, however,
we must first introduce the concept of integrating factor.

Integrating Factor

Sometimes an inexact differential equation can be made exact by multiplying every term of
the equation by a particular common factor. Such a factor is called an integrating factor.

The differential equation
2tdy+ydt=0
is not exact, because it does not satisfy (15.18):

amM i N il
—=—{2)=24£—=—(y=1

TG R Ml Mt

However, if we multiply each term by y, the given equation will turn into (15.16), which has
been established to be exact. Thus y is an integrating factor for the differential equation in
the present example.
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When an integrating factor can be found for an inexact differential equation, it 1s always
possible to render it exact, and then the four-step solution procedurc can be readily put
Iy nse.

Solution of First-Order Linear Differential Equations
The general first-order linear differential cquation

dv by =
7 Hy = w

which, in the format of (15.17), can be cxpressed as

dv + (uy —w) dt =0 (15.20)

e " < exp ( f ” a’t)

This integrating factor, whose form is by no means intuitively obvious, can be “discov-
ered” as follows. Let 7 be the {yet unknown) integrating factor. Multiplication of (15.20)
through by [ should convert it into an exact differential cquation

] d o IT — W d[ =
v+ H{uy —w) 0

fuy =») (15.20')
o N

has the integrating factor

The exactness test dictates that 9 M /dr = dN /dy. Visual inspection of the M and N
expressions suggests that, since M consists of / only, and since u and w are functions of ¢
alone, the exactness test will reduce to a very simple condition if / is also a function of
t alone. For then the test 8 M /51 = 9N /0y becomes

di dl/dt

— =lu or =

dt /
Thus the special form [ = /(!) can indeed work, provided it has a rate of growth cqual to
i, or more explicitly, #{¢). Accordingly, £(#) should take the specific form

1= Ael ™™ [ef, (15.13) and (15.14)]

I

As can be casily verified, however, the constant 4 can be set equal to 1 without affecting the

ability of 7{#) to meet the exactness test. Thus we can use the simpler form o 4 the
integrating factor.
Substitution of this integrating factor into {15.2F) yields the exact difterential cquation

I gy el ey —wy di =0 (15.20")
which can then be solved by the four-step procedure.

Step i First, we apply (15.19) to obtain
F 0= [of " ayrutn = yel w0

The result of integration emerges in this simple form because the integrand is independent
of the variable y.
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Sterii - Next, we differentiate the result from Step i with respect to ¢, to get
% = yuef YLty [chain rule]
And, since this can be equated to N = f“d‘(uy — w), we have
¢'(0) = el
STep it Straight integration now yields

W) = — f wel vt gt

Irasmuch as the functions & = w(t) and w = w(t) have not been given specific forms, noth-
ing further can be done about this integral, and we must be contented with this rather
general expression for y(t).

Stepiv Substituting this ¥{(t) expression into the result of Step i, we find that
Fly, ) = }’efm — f*.«wzfl"dI dt

So the general solution of the exact differential equation (15.20"}—and of the equivalent,
though inexact, first-order finear differential equation (15.20)—is

yef udat _f welfudr dt = ¢

Upon rearrangement and substitution of the (arbitrary constant) symbol c by 4, this can be
written as

ity = fut (A +/wef““f dr) (15.21)

which is exactly the result given earlier in (15.15).

EXERCISE 15.4

1. Verify that each of the following differential equations is exact, and solve by the
four-step procedure:

(@) 2yt3 dy+ 3y? dt =0
(b) 3ytdy+ (> +20) dt =0
() t(t+2y) dy+y( +y) dt=0

dy 2y*t+ 32 o
(d) pr + —ape =0 [Hint: First convert to the form of (15.17}.]
2. Are the following differential equations exact? If not, try ¢, y, and y? as possible
integrating factors.

(@) 208 + V) dy+3ytldt=0
(B) 4y3tdy+(2yt + 30 dt=0
3. By applying the four-step procedure to the general exact differential equation

M dy+ N dt =0, derive the following formula fer the general solution of an exact
differential equation:

fMdyfdet*f(%fM'dy)dtmc
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15.5 Nonlinear Differential Equations
of the First Order and First Degree

Example 1

In a linear differential equation, we restrict to the firsi degree not only the derivative dy/dt,
but also the dependent variable v, and we do not allow the product p(dy/df) to appear.
When y appears in a power higher than one, the equation becomes nonfinear even if it only
contains the derivative dy/dt in the first degree. [n general, an equation in the form

Fly, tydy + gy, 1)dt =0 (15.22)
or
d
2 b, (15.22)
dt

where there is no restriction on the powers of y and ¢, constitutes a first-order first-degree
nonlinear differential equation because dy/df is a first-order derivative in the first power.
Certain varietics of such equations can be solved with relative case by more or less routine
procedures. We shall briefly discuss three cases.

Exact Differential Equations
The first is (he now-familiar case of exact differential equations. As was pointed out earlier,
the y variable can appear in an exact equation in a high power, as in (13.16) 2yrdy +
y? df = 0—which you should compare with (15.22). True, the cancellation of the common
factor v from both terms on the left will reduce the equation to a lincar form, but the exact-
ness property wilt be lost in that event. As an exact differential equation, thercfore, it must
be regarded as nonlinear.

Since the solution method for exact differcntial equations has already been discussed,
no further comment 1s necessary here,

Separable Variables
The dilferential cquation in (15.22}
Sy 0ydy +gly.0)dt=0

may happen to possess the convenient property that the function £ 15 in the variable y alone,
while the function g involves only the variable ¢, so that the cquation reduces to the special
form

fr)dy +elnydt =0 (15.23)
In such an event, the variables are said to be separable, because the terms involving y—
consolidated into f(y} can be mathematically separated from the terms involving f,
which are collected under g(1). To solve this special type of equation, only simple integra-
tion techniquces are required.
Solve the equation 3y2 dy — tdt = 0. First let us rewrite the equation as
3y’ dy =tdt

Integrating the two sides (each of which is a differential) and equating the results, we get

1
f3y2dy=ftdt or y3+C1:§t2+c2
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Thus the general solution can be written as

1 1 3
y3:§t2-|—c or y(t):(fﬂ—c)

The notable point here is that the integration of each term is performed with respect to
a different variable; it is this which makes the separable-variable equation comparatively
easy to handle.

Solve the equation 2t dy + y dt = &, Atfirst glance, this differential equation does not seem
to belong in this spot, because it fails to conform to the general form of (15.23). To be
specific, the coefficients of dy and dt are seen to invalve the “wrong” variables. However, a
simple transformation—dividing through by 2yt (# 0)—will reduce the equation to the
separable-variable form

i 1
L @ gy d=0

From our experience with Example 1, we can work toward the solution (without first trans-

posing a term) as foliows:'
1 1
:

50 Iny+§Int:c or  In(pt'=c

Thus the solution is
ytZ=e"=k o y(H=kt"?

where k is an arbitrary constant, as are the symbols c and A employed elsewhere,

Note that, instead of solving the equation in Example 2 as we did, we could also have
transtormed it first into an exact differential cquation (by the integrating fuctor v) and then
solved it as such. The solution, already given in Example | of Sec. 15.4, must of course be
identical with the onc just obtained by separation of variables. The point is that a given dif-
ferential equation can often be solvable in more than one way, and therefore onc may have a
choice of the method to be used. In other cases, a diffcrential equation that is not amenable
to a particular methed may nenctheless become so after an appropriate transformation.

Equations Reducible to the Linear Form
If the differential equation dv/dt = (y, ¢) happens to take the specific nonlinear form

dy

— +Ry="1y" 15.24

o HRy=T) (15.24)
where R and 7" are two functions of ¢, and m is any number other than 0 and 1 {what if
m = 0 orm = 17}, then the equation -tcferred to as a Bernoulli equation—can always be
reduced to a linear differential equation and be solved as such.

" In the integration result, we should, strictly speaking, have written In|y| and J In [t]. If y and t can
be assumed to be positive, as is appropriate in the majority of economic contexts, then the resuit
given in the text will occur,
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Example 3

Example 4

The reduction procedure is relatively simple. First, we can divide (15.24) by v*, to get

i
}:—mg + Ry1—m =T
dt

if we adopt a shorthand variable z as follows:

dz
| —m -5
=y sothat — = — — = {1 — -
’ [ dt  dy dt (t=my df

then the preceding equation can be written as

1 o=
—+Rz=T
| — dl‘+ g

Moreover, after multiplying through by (1 — m) df and rearranging, we can transform the
equation into

dz+[(1-m)Rz = (1 -a)T)dt =0 (15.24)

This is seen to be a first-order linear diffcrential cquation of the form {15.20), in which the
varigble 7 has taken the place of y.

Clearly, we can apply formula (15.21) to find its solution z(z). Then, as a final step. we
can translate z back to y by reverse substilution.

Solve the equatmn dy/dt + ty = 3ty?. This is a Bernoulli equation, with m = 2 (giving us
z=y" =y 1), R=t, and T = 3t. Thus, by (1524, we can write the linearized differ-
ential equation as

dz+{-tz+3f) dt =

By applying formula (15.21), the solution can be found to he
(D= Aexp(lztz) +3

(As an exercise, trace out the steps leading to this solution.)

Since our primary interest lies in the solution v (t} rather than z (t), we must perform a
reverse transformation using the equation z= y~', or y = 77!, By taking the reciprocal of
z (), therefore, we get

y ()= 1
Aexp (%tz) +3

as the desired solution. This is a geperal solution, because an arbitrary constant A is present.

Solve the equation dy/dt + (1/t)y = y*. Here, we have m = 3 {thus z= y~9), R =1/t, and
T = 1; thus the equation can be linearized into the form

dz+ (_—tzz+ 2) dt=0
As you can verify, by the use of formula {15.21), the solution of this differential equation is

(= A2+ 2t
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It then follows, by the reverse transformation y = 27172, that the general solution in the
original variable is to be written as

y() = (At 4 257172

As an exercise, check the validity of the solutions of these last two examples by
differentiation.

EXERCISE 15.5

1. Determine, for each of the following, (1} whether the variables are separable and (2}
whether the equation is linear or else can be linearized:

dy t
2tdy+2ydt=10 =
(@) 2tdy+ 2y () p ”
y 2t dy 2

b) —dy+ —dt="0 o
()y+t Y+y+t (d)dr 3yt

2. Solve (@) and (b} in Prab. 1 by separation of variables, taking v and ¢ to be positive.
Check your answers by differentiation.

3. Solve () in Prob. 1 as a separable-variable equation and, also, as a Bernouili equation.

4. Solve (d) in Prob. 1 as a separable-variable equation and, also, as a Bernouili equation.

5. Verify the correctness of the intermediate solution 2(f) = At* + 2t in Example 4 by
showing that its derivative dz/dt is consistent with the linearized differential equation.

15.6 The Qualitative-Graphic Approach

The several cases of nonlinear differential equations previously discussed (exact differen-
tial equations, separable-variable equations, and Bernoulli equations) have all been solved
guaniitatively. That 1s, we have in every case sought and found a time path v(7) which. for
each valuc of 7, tells the specific corresponding value of the variable y,

At limes, we may not be able to find a quantitative solution from a given differential
equation. Yet, in such cases, it may nonetheless be possible to ascertain the quafitative
properties of the time path-—primarily, whether y(#) converges—by directly obscrving the
differential equation itself or by analyzing its graph. Even when guantitative solutions are
available, moreover, we may still cmploy the techniques of qualitative analysis if the gual-
itative aspect of the time path 1s our principal or exclusive concern.

The Phase Diagram

Given a first-order differentiai equation in the general form

dy
_— = Y

" Sy

erther lincar or nonlinear in the variable v, we can plot /v /d¢ against y as in Tig. 15.3. Such
a geometric representation, feasible whenever dy/dt is a function of y alone, is called a
phase diagram, and the graph representing the function /. a phaye fine. (A differential cqua-
tion of this form—in which the time variable ¢ does not appear as a separate argument of
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FIGURE 15.3

ey

dr

the function f—is said to be an autonomous differential equation.) Once a phase linc 15
known, its configuration will impart significant qualitative information regarding the time
path y(r). The clue to this lies in the following two general remarks:

1. Anywhere above the horizontal axis {where dy/dr = 0), vy must be increasing over time
and, as far as the y axis is concerned, must be moving from left to right. By analogous
reasoning, any point below the horizontal axis must be associated with a lefiward move-
ment in the variable y, because the negativity of dv/eft means that y decreases over time.
These directional tendencies explain why the arrowheads on the illusirative phase fincs
in Fig. 15.3 are drawn as they are. Above the horizontal axis, the arrows are uniformly
pointed toward the right—toward the northeast or southeast or due east, as the casc may
be. The opposite is true below the y axis. Moreover, these results are independent of the
algebraic sign of v; even if phase linc 4 (or any other) is transplanted to the left of the
vertical axis, the dircction of the arrows will not be affected.

2. Anequilibrium level of y—in the intertemporal sense of the term  if'it exists, can oceur
only on the horizontal axis, where dv/dt = 0 ( y stationary over (ime). To find an cqui-
libtium, therefore, it is necessary only to consider the intersection of the phase ling with
the y axis.” To test the dynamic stability of equilibrium, on the other hand, we shouid
also check whether, repardless of the initial position of y, the phase line will always
guide it toward the equilibrivm position at the said intersection.

Types of Time Path
On the basis of the preceding generat remarks, we may observe three different types of time
path from the illustrative phase tines m Fig. 15.3.

Phase line 4 has an equilibrium at point y,; but above as well as befow that pomt, the
arrowheads consistently lead away from equilibrivm. Thus, although equilibrium can be
attained if it happens that y(0) = v, the more usual case of y(0} # y, will resultin y being
ever-increasing [if ¥(0) = y,] or ever-decreasing (if y{0) < y,]. Besides, in this case the
deviation of y from y, tends to grow at an increasing pacc because, as we follow the
arrowheads on the phase line, we deviate farther from the y axis, thereby encountering ever-
increasing numetical values of dy/dt as well. The time path y(f) implied by phase line A
can therefore be represented by the curves shown in Fig. 15.4a, where y is plotted against ¢
(rather than dy/df against y). The equilibrium v, is dynamically unstable.

t However, not all intersections represent equilibrium positions. We shall see this when we discuss
phase line Cin Fig. 15.3.
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In contrast, phase line B implics a stable equilibrium at y;. If 3(0) = s, equilibrium
prevails at once. But the important feature of phase line B is that, even if v(0) #£ v, the
movement along the phase line will guide y toward the level of y;. The time path (¢} cor-
responding to this type of phase linc should therefore be of the form shown in Fig. 15.45,
which is reminiscent of the dynamic market model.

The preceding discussion suggests that, in general, it is the slope of the phase line at its
intersection point which holds the key 1o the dynamic stability of cquilibrium or the con-
vergence of the time path. A {finite) positive slope, such as at point y,, makes for dynamic
instability, whereas a (finite} negative slope, such as at y;,, implies dynamic stabifity.

This generalization can help us to draw qualitative inferences about given differential
equations without even plotting their phase lines. Take the linear diflerential equation in
{15.4), for instance:

dy dy
E?+ay—b or E__Q”H_b
Since the phase line will obviously have the {constant) slope —«, here assumed nonzero,
we may immediately infer {without drawing the line) thai

CONVETECS 1o

} H]
ezl & ) m[diverges from

’ equilibrinm
As we may expect, this result coincides perfectly with what the quantitative solution of this
cquation tells us;

y(i) = [y(ﬁ) — é:[ e + -!-}— [from (15.57]
aq 1

We have learned that, starting from a nonequilibrium position, the convergence of 1(¢)

hinges on the prospect that e — 0 as # — oo, This can happen if and only if a > 0; if

a < 0, then e™ — oo ast — ¢, and y(¢)} cannot converge, Thus, our conclusion is one

and the same, whether it 1s arrived at quantitatively or qualitatively.

It remains to discuss phase line C, which, being a closed loop sitting across the hori-
zontal axis, does not qualify as a finction but shows instead a relation between dy/dt and
y." The interesting new element that emcrges in this case is the possibility of a periodically
fluctuating time path. The way that phase line C is drawn, we shall find ¥ fluctuating
between the two values v, and y; in a perpetual metion. In order to gencrate the periodic

' This can arise from a second-degree differential equation (dy/dt)* = f(y).
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fluctuation, the loop must, of course, straddle the hortzongal axis in such a manner that
dy/dt can alternatcly be positive and ncgative. Besides, at the two intersection points y,
and y., the phase linc shoutd have an imnfinite slope; otherwise the ntersection will resem-
ble either 3, or ys, ncither of which permits a continual tlow of arrowheads. The type of
time path v(#) corresponding to this looped phase line 15 illustrated in Fig. 13.4c. Note that,
whenever p(#) hits the upper bound ¥, or the lower bound v, we have dy/dt = 0 (local
extrema); but these values certainly do not represent equilibrium values of v. In terms
of Fig. 15.3, this means thal not all intersections between a phasc line and the y axis are
equilibrium positions.

In sum, for the study of the dynamic stability of cquilibrium (or the convergence of the
time path), one has the alternative either of finding the time path 1tself or else of simply
drawing the inference from its phase line. We shall illustrate the application of the latter
approach with the Solow growth model. Hengeforth, we shall denote the intertemporal
cquilibrium value of p by ¥, as distinct from y*.

EXERCISE 15.6
1. Plot the phase line for each of the following, and discuss its qualitative implications:
dy dy ¥
(ﬂ)a—}’“i (C)E—‘*—E
dy _ dy _
{D)E_'I—Sy (d)a_gy—ﬂ

2. Plot the phase line for each of the following and interpret:

@%—e12-16 (20

(b) % = %y— vt =0
3. Given dy/dt = (y — D(y— 5) = y* ~ By + 15:
(@) Deduce that there are two possible equilibrium levels of y, one at y = 3 and the
other at y = 5.

(b) Find the sign of 4 (ﬂ) at y = 3 and y = 5, respectively. What can you infer from
these? dy \ at

15.7 Solow Growth Model

The growth model of Professor Robert Solow.” a Nobel laureate, is purported to show,
among other things, that the razor’s-edge growth path of the Domar model is primarily a
result of the particular production-function assumption adopted therein and that, under
alternative circumstances, the need for delicate balancing may not arise.

The Framework

In the Domar medel, output is explicitly stated as a function of ¢apital alone: & = pK (the
productive capacity, or potential output, is a constant multiple of the stock of capital). The

" Robert M. Solow, A Contribution to the Theary of Economic Growth,” Quarterly Journal of
Economics, February 1956, pp. 65-94.
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absence of a labor input in the production function carries the implication that labor is
always combined with capital in a fixed proportion, so that it 1s feasible to consider explic-
itly anly one of these factors of production. Solow, in contrast, seeks to analyze the case
where capital and labor can be combined in verying propertions. Thus his production
function appears in the form

Q=7(K, L) (K, L=0)

where () is output (net of depreciation), X is capital, and L is labor—all being used in the
macra sense, |t s assumed that fx and f; are positive {positive marginal products), and
Jix and fy; are negative (diminishing returns to each input). Furthermore, the production
function £ is taken to be linearly homogeneous (constant returns to scale). Consequently, it
1s possible to write

O=1Lf (%, 1) =Lep(k) wherekh = ;E (15.25)

-

[n view of the assumed signs of fx and fxx, the newly introduced ¢ function (which, be
it noted, has only a single argument, &) must be characterized by a positive first derivative
and a negative second derivative. To verify thig claim, we first recall from (12.49) that

fx = MPPg = ¢'(k)

henee fi > 0 automatically means ¢'(4) > 0. Then, since

do'(k) ok o 1 (1248
P aK—ﬁb()L [sce (12.48)]
the assumption fxx < 0 leads directly to the result @"(k) < ), Thus the ¢ function—
which, according to (12.46), gives the APP; lor cvery capital-labor ratio—is one that
increases with 4 at a decreasing rate.

Given that £ depends on K and £, 1t 15 necessary now to stipulate how the latter two vari-
ablcs themselves are determined. Solow’s assumptions are:

i
Frx = é}-ﬁf)!(_k.} =

- dK

K (E W) =5  [constant proportion of  is invested]  (15.26)
L dLjdty . .
== =4 (A>0) [labor force grows cxponentially]  (15.27)

The symbel s represents a (constant) marginal propensity to save, and 4. a {constant) raie
of growth of labor. Note the dynamic nature of these assumptions; they specify not how the
fevels of K and L are determined, but how their rates of change are.

Equations (15.25) through (15.27) constitute a complete model. To solve this model, we
shall first condense 1t info & single cquation in one variable. To begin with, substitute
{15.25) into {15.26) to get

K =sLo(k) (15.28)

Sinee k= K /L, and K = k1., however, we can obtain another expression for K by differ-
entiating the latter identity:
K="Lk+kL [product rule]

' (15.29)
—Lk+kl  [by(15.27)]
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FIGURE 15.5

When (15.29) is equated to (15.28) and the common factor L eliminated, the result emerges
that

k=sd(ky — Mk (15.30)

This cquation—a differential equation in the variable 4, with two paramcters s and A—is
the fundamental equation of the Selow growth model.

A Qualitative-Graphic Analysis

Because (15.30) is stated in a general-function form, no specific quantitative solution 15
available. Nevertheless, we can analyze it qualitatively. To this end, we should plot a phase
line, with k on the vertical axis and k on the horizontal,

Since {15.30} contains two terms on the right, however, let us [irst plot these as two sepa-
rate curves. The Ak term, a lincar function of 4, will obviously show up in Fig. 15.3a as a
straight linc, with a zero vertical intcreept and a slope equal to 4. The s (k) term, on the other
hand, plots as a curve that increascs al a decreasing ratc, like ¢(4), since s¢ (k) is merely a
constant fraction of the ¢{(k) curve. [f we consider K to be an indispensable factor of produc-
tion, we must start the 5@ (k) curve [rom the point of origin; this is because if K = 0 and thus
k = 0, @ must also be zero, as will be ¢{k) and s¢{k). The way the curve is actually drawn
also reflects the implicit assumption that there exists a set of & valucs for which s¢(k)
exceeds Ak, so that the two curves intersect at some positive value of &, namely £.

Based upon these two curves, the value of & for each value of & can be measured by the
vertical distance between the two curves. Plotting the values of k against , as in Fig. 15.55,
will then yield the phas¢ line we need. Note that, since the two curves in Fig. 15.5¢ inter-
scet when the capital-labor ratio is &, the phase line in Fig. 15.5b must cross the horizontal
axis at k. This marks £ as the intertemporal equilibrium capitai-labor ratio.

Tnasmuch as the phase line has a negative slope at £, the equilibrium is readily identified
as a stable one; given any (positive) initial valuc of 4, the dynamic movement of the mode]
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must lead us convergently to the equilibrium level k. The significant point is that once this
cquilibrium is attained—and thus the capital-labor ratio is (by definition} unvarying over
timc—vapital must thereafter grow apacc with labor, at the identical rate . This will imply.
in turn, that net Investment must grow at the rate 2 (see Exercise 15.7-2). Note, however,
that the word mutsf is used here not in the sense of requirement, but with the implication of
automaticity, Thus, what the Solow model serves to show is that, given a rate of growth of
labor 4, the cconomy by itself, and without the delicate balancing & la Domar, can cventu-
ally reach a state of steady growth in which investment will grow at the rate A, the same as
K and L. Moreover, in order to satisfy (15.25), Q must grow at the same rate as well because
¢(k) is a constant when the capital-labor ratio remains unvarying at the level £. Such a
situation, in which the relevant variables all grow al an identical rate, is called a steady
state—a generalization of the concept of stationary state (in which the relevant variables
all remain constant, or in other words all grow at the zero rate).

Note that, in the preceding analysis, the production function is assumed for convenience
to be invariant over time. If the state of technology is allowed to improve, on the other hand,
the production functien will have to be duly modified. For instance, it may be writlen
Instead in the form

: - dT
Q=T /(K L) (E > ﬂ)

where T, some measure of technology, is an increasing function of time. Because of the in-
creasing multiplicative term T'(f), a fixed amount of K and L will turn out a larger output at
a future date than al present, In this event, the s¢ (k) curve in Fig, 15.5 will be subject to a
secular upward shift, resulting in successively higher intersections with the Ak ray and
also in larger values of . With technological improvement, therefore, it will become
possible, in a succession of steady states, (o have a larger and larger amount of capital
equipment available to cach representative worker in the cconomy, with a concomitant rise
in productivily.

A Quantitative lllustration

The preceding analysis had to be qualitative, owing to the presence of 4 general function

@(k) in the model. But if we specify the production function to be a lincarly homogeneous

Cobb-Douglas function, for instance, then a quantitative solution can be found as well.
Let us write the production function as

K o
Q=K'L'"™" =1 (—) = Lk*
L
so that (k) = &%, Then (15.30) becomes
k=sk" -k or k4 k= sk

which 1s a Bernoulli cquation in the variable k [sce (15.24)], with R =4, T =3, and
m = q. Letting = = k"%, we obtain its linearized version

dz+[(l —a)az — {1 ~o)s]dt =0
or Cr O —apz=(—a)s
e e O il

e,
i h
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This is a linear differential cquation with a constant cocfficient ¢ and a constant term b,
Thus, by formula (15.57), we have

§ PP

o{t) = [Z(Q] — 7]6’ Hmear o -

A A

The substitution of z = &'~ will then yield the final solution

k1—u — |:£(0]l o i](_f {1—uw)ar + i
A .
where k(0) is the initial value of the capital-labor ratio 4.
This solution is what determines the time path of £. Recaliing that (1 - «) and 4 are
both positive. we sce that as ¢ — oo the exponential expression will approach zero:
consequently,

¢ ¢ 0] —u)
s T ar ko (—) as § — 00
A A

Therefore, the capital-labor ratio will approach a constant as its cquilibrium value. This

equilibrium or steady-state value, (5/4)"" @, varies dircetly with the propensity to save s,
and inversely with the rate of growth of labor 4.

EXERCISE 15.7

1. Divide (15.30) through by k, and interpret the resulting equation in terms of the
growth rates of k, K, and L.

2. Show that, if capital is growing at the rate 7 (thatis, K = Ae™), net investment | must
also be growing at the rate A.

3. The original input variables of the Solow model are K and L, but the fundamental equa-
tion {15.30) facuses on the capital-labor ratio & instead. What assumption(s) in the
model is{are) responsible for (and make possible) this shift of focus? Explain.

4, Draw a phase diagram for each of the foliowing, and discuss the qualitative aspects of
the time path ¥{(1):

(@ y=3~y=Iny ) y=e-(y+2)



