Chapter

Continuous Time:
First-Order Differential
Equations

In the Domar growth model, we have solved a simple differential equation by direct inte-
gration, For more complicated dillerential equations, there are various established methods
of solution, Even in the latter cases, however, the fundamcental idea underlying the methods
of solution 1s still the techniques of iniegral calculus. For this reason, the solution to a
differential equation is often referred to as the integral of that cquation.

Only firsi-order differential equations will be discussed in the present chapter. In this
context, the word order refers to the highest order of the derivatives (or differentials)
appcaring in the differential equation; thus a first-order differential equation can contain
only the first derivative, say, dy/df.

15.1 First-Order Linear Differential Equations with Constant
Coefficient and Constant Term

The first derivative oy /¢t 15 the only onc that can appear in a first-order diflerential cqua-
tion, but it may enter in various powers: dy/dt, (dy/dt)?, or{dy/di) . The highest powcr
attained by the derivative in the equation is referred to as the degree of the differential
equation. In case the derivative dv/dt appears only in the first degree, and so does the
dependent variable v, and furthermore, no product of the form p(dy/dt) occurs, then the
cquation is sald to be /inear. Thus a [lirst-order linear differential equation will generally
take the form’

‘{ '
fj—; +ult)y = wir) (15.1)

" Note that the derivative term dy/dt in {15.1) has a unit coefficient. This is not to imply that it can
never actually have a coefficient other than one, but when such a coefficient appears, we can always
"normalize” the equation by dividing each term by the said coefficient. For this reason, the form
given in (15.1) may nonetheless be regarded as a general representation.
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where i and w are two functions of ¢, as is y. In contrast to dy/d¢ and y, however, no
restriction whatsoever is placed on the independent variable 7. Thus the functions 1 and w
may very well represent such expressions as #2 and e* or some tnore complicated functions
of t; on the other hand, # and w may also be constants.

This last point leads us to a further classification. When the function # (the coefficient of
the dependent variable ) is a constant, and when the function w 1s a constant additive term,
(15.1) reduces to the special case of a first-order linear differential equation with constan!
coefficient and constant term. In this section, we shall deal only with this simple variety of
differential equations,

The Homogeneous Case
If & and w are constant functions and if w happens to be identically zero, (15.1) will become

% +ay=10 (15.2)
where ¢ is some constant. This differcntial equation 1s said to be Aomogenesus on account
of the zero constant term (compare with homogeneous-equation systems), The defining
characteristic of 2 homogeneous equation is that when all the variables {here, dy/df and y)
are multiplied by a given constant, the equation remains valid. This characteristic holds if
the constant term is zero, but will be lost if the constant term is not zero.

Equation (15.2} can be written alternatively as
I dv
T ar
But you will recognize that the differential equation (14.16) we met in the Domar model is

precisely of this form. Therefore, by analogy, we should be able to write the sofution of
(15.2) or {15.2") immediately as follows:

—a (15.2)

(1) = de™ [general solution] (15.3)
or y{) = y(0)e [definite solution] (15.3)

In (15.3), there appears an arbitrary constant 4; therefore it is a generaf sofution. When any
particular vatue is substituted for 4, the solution becomes a partieular solution of (15.2).
There is an infinile number of particular solutions, one for ¢ach possible value of 4, in-
cluding the value p(0). This latter value, however, has a special significance: y(0} is the
only value that can make the solution satisfy the initial condition. Since this represents the
result of definitizing the arbitrary constant, we shall refer to {15.3") as the definite solution
of the differential equation (15.2) or (15.27),

You should observe two things about the solution of a difterential equation: (1) the solu-
tion is not a numericat value, but rather a function y{#)-  a time path if £ symbolizes time; and
(2) the solution v(¢) is free of any derivative or differential expressions, so that as soon as a
specific value of # is substituted into it, a corresponding valuc of y can be calculated dircctly.

The Nonhomogeneous Case
When a nonzero constant takes the place of the zero in {15.2), we have a nonhomogeneous
linear differential equation

dy
ol y— b .
5 +ay {15.4)
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The solution of this equation will consist of the sum of two terms, one of which is called
the complementary function (which we shall denote by y.), and the other known as the
particular integral (1o be denoted by p,). As will be shown, each of these has a significant
economic interpretation. Here, we shall present only the method of solution; its rationale
will become clear later.

Even though our objective is to solve the norhomogeneous equation (13.4), frequently
we shall have to refer to its homogencous version, as shown in (15.2). For convenient ref-
crence, we call the latter the reduced equation of (15.4). The nonhomogencous cquation
(15.4) itsclf can accordingly be referred to as the compleie eguation. It turns out that the
complementary function y, is nothing but the general solution of the reduced equation,
whereas the particular integral v, is simply any particular solution of the complete
equation.

Our discussion of the homogeneous case has already given us the general solution of the
reduced cquation, and we may therefore write

y.o = Ae™ [by (15.3)]

What about the particular integral? Since the particular integral is any particular solution
of the complete equation, we can first try the simplest possible type of solution, namely, v
being some constant { y = k). [f'y is 4 constant, then it follows that dv/dr = 0, and (15.4)
will become ay = &, with the selution y = b/a. Therefore, the constant solution will work
as long as ¢ # 0. [n that case, we have

Yp = 2 {a # 0}

The sum of the complementary function and the particular integral then constitutes the
gencral solution of the complete equaition (15.4):

b
yity=y. +y, =4e™™ + -  [general solution, case of ¢ # 0]  (15.5)
a

What makes this g general solution is the presence of the arbitrary constant 4. We may,
of course, definitize this constant by means of an initial condition, Let us say that y takes
the value ¥(0) when £ = 0, Then, by setting = 0 in (15.5), we find that
b

b
WO =A+= and  A=y(0)~2
I 1]

Thus we can rewrite (15.5) into
h —i b : :
yy=|p0)—— ¢+ -  [definite solution, case of a £ 0]  {15.5")
a 4

1t should be noted that the usc of the initial condition to definitize the arbitrary constant
is—and should be—undertaken as the final step, after we have found the gencral solution
to the complete equation. Since the values of both y, and y,, are related to the value of ¥(0},
both of these must be taken into account in definitizing the constant A.

Solve the equation dy/dt+ 2y = 6, with the initial condition wW0) = 10, Here, we have
a =2 and b = 6; thus, by (15.5"), the solution is

W) =(10~3e?+3=7e %43
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Example 2

Example 3

Solve the equation dy/dt+4y =0, with the initial condition ¥{0)=1. Since u =4 and
b =0, we have
W= -0 +0=¢

The same answer could have been obtained from (15.3"), the formula for the homogeneous
case. The homogeneous equation (15.2) is merely a special case of the nenhomogeneous
equation {15.4) when b = 0. Consequently, the formula (15.3") is also a special case of for-
mula (15.5) under the circumstance that b= 0.

What if @ = 0, so that the solution in (15.5") is undefined? In that case, the differential
equation is of the extremely simple form
dv
=8 15.6
1 (15.6)

By straight integration, its general solution can be readily found to be
wWy=h+e (15.7)

where ¢ is an arbitrary constant, The two component terms 1n (15.7) can, in fact, agamn be
identificd as the complementary function and the particular integral of the given differen-
tial equation, respectively. Since ¢ = 0, the complementary functien can be expressed
simply as

yo = de ™ = Ae’ = 4 (A = an arbitrary constant)

As to the particular integral, the fact that the constant solution » = & fails to work in the
present case of @ = 0 suggests that we should try instead a nonconsiant solution. Let us
consider the simplest possible type of the latter, namely, y = ki. [fy = kt, thendy /dt = &,
and the complete equation (15.6) will reduce w0 £ = A, so that we may write

Yp =i (a=0)
Our new trial solution indeed works! The general solution of (15.6) s therefore

Wiy=y.+y,=A+bt  [general solution, case of a = 0] (15.7°)

which is identical with the result in (15.7), because ¢ and 4 arc but alternative notations for
an arbitrary constant. Note, however, that in the present casc, y, is a constant whereas y,, 1s
a function of time—the exact opposite of the situation in (13.3}.

By definitizing the arbitrary constant, we find the definite solution to be

y(ty = y(0)+ bt [definite solution, case of a = 0]  (15.77)

Solve the equation dy/dt =2, with the initial condition y(0) = 5. The solution is, by
(15.7",

W) =5+ 21

Verification of the Solution

It is true of all solutions of differential equations that their validity can always be checked
by differentiation.



Chapter 15 Cominous Time: First-Order Differential Equations 479

If we try that on the solution {15.5%), we can obtain the derivative

v ¢
% = —q l:y((]} — —)} g &

4

When this expression for dv/dt and the expression for v{z} as shown in (15.5') are substi-
tuted into the left side of the differential equation (15.4), that side should reduce exactly
to the value of the constant term 4 on the right side of (15.4) it the solution is correct.
Performing this substitution, we indeed find that

b b /
—d ]:y{U) — —:] e 4y ”_L-‘(U) - —} e 4 —]} =4
7 i 7

Thus our selution 1s correct, provided it also satisfies the initial condition. To check the
latter, fet us set £ = 0 in the solution (15.5'). Since the result

2
y) = [y(U) - —} o= »(0)
al «a

is an identity, the mitial condition 1s indeed satisficd.

It 18 recommended that, as a final step in the process of selving a differential equation,
vou make it a habit to check the validity of your answer by making sure (1) that the deriv-
ative of the time path y(#) is consistent with the given dilierential equation and (2) that the
definite solution satisfics the initial condition.

EXERCISE 15.1

15.2

1. Find v, yp, the general solution, and the definite solution, given:
(a)%l:+4y:12;y(0):2 © %+10y=15;y(0):0
dy . _ dy _ ¢ _ 1]

(B) =~ 2y =0; y(0) = 9 (D2 +4y=60=1;

2. Check the validity of your answers to Prob. 1.
3. Find the solution of each of the following by using an appropriate formula developed

in the text:

@ Y +y=4y0) =0 DX 43y~ 2 10)=4
dt y=4Y - df+ y=4y =
dy .. B dy — 7 -

(b) & =23, 1(0) =1 @ - 7y=7y0=7
d d

© F-sy=0p0)=s ()32 +6y=5,/(0)=0

4. Check the validity of your answers to Prob. 3,

Dynamics of Market Price

[n the {macro) Domar growth model, we found an application of the Aomogeneous case of
Hnear differential equations of'the first order, To illustrate the ronhomosencous case, let us
present a (micro) dynamic model of the market,
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The Framework
Suppose that, for a particular commodity, the demand and supply functions are as follows:

Qe=a—pP (o, 6> 0)

\ 15.8
o=~y +5P (550 (158
Then, according to (3.4), the equilibrium price should be’
N : ..
P = = some positive constant 15.9
i P ) (15.9)

I¥it happens that the initial price P(0) is precisely at the level of P*, the market will clearly
be in equilibrium already, and no dynamic analysis will be nceded. In the more interesting
case of P(0) £ P*, however, P* is attainable (if ever) only after a due process of adjust-
ment, during which not only will price change over time but @y and ;. being functions of
P, must change over time as well. In this light, then, the price and quantity variables can a/f
be taken to be fincrions of time.

Our dynamic question is this: Given sullicient time for the adjustment process 1o work
itself out, docs it tend to bring price to the equilibrium level 27 That is, does the time path
P(1) tend to converge to P, ast — o7

The Time Path

To answer this question, we must first find the time path P{¢). But that, in turn, requircs a
specific pattern of price change to be preseribed first. In general, price changes arc gov-
erncd by the relative strength of the demand and supply forces in the market. Let us assume,
for the sake of simplicity, that the rate of price change (with respect to time) at any moment
is always directly proportional to the excess demand (Qq — Q) prevailing at that moment.
Such a pattern of change can be expressed symbolically as

dar
C—ji-0) (>0 (15.10)

di

where j represents a (constant) adjusiment coefficient. With this pattern of change, we can
have dP /df = 0 if and only if (J, = (J;. In this connection, it may be mstructive to nole
two senses of the term equilibrium price: the intertemporal sense (£ being constant over
time} and the market-clearing sense (the equilibrium price being one that equates Oy and
0,). In the present model, the two senses happen to coincide with each other, but this may
not be true of all models.

By virtue of the demand and supply functions in (15.8}, we can express (15.10) specifi-
cally in the form

dP
o =ia—BP+y =8P = jlaty) = j(f+HP

or

(P
{t—j?+j(fj+6)1”:j(a+}’] (15.10")

 We have switched from the symbols (¢, b, ¢, d) of {3.4) to («, 8, v, 3) here to avoid any possible
confusion with the use of @ and b as parameters in the differential equation (15.4) which we shall
presently apply to the market model.
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Since this is precisely in the form of the differentisl equation {15.4), and since the coefli-
cient of P 1s nonzero, we can apply the solution formula (15.5%) and write the solution—the
time path of price—as

P = [P({}) o+t J’] e “+y
g44 g+é

=[PO) = P*le™™+ P [by(159) k=j(8+8] (15.11)

The Dynamic Stability of Equilibrium

In the end, the question originally posed, namely, whether P(1} — P* ast — o0, amounts
to the question of whether the first term on the right of {15.11) will tend to zero as ¢ — oo.
Since P({}) and P* are both constant, the key factor will be the exponential expression
e~ In view of the fact thal 4 > 0, that expression does tend to zero as ¢ — 00. Conse-
quently, on the assumptions of our model, the time path will indeed lead the price toward
the equilibrium position. In a situation of this sort, where the time path of the relevant vari-
able P() convergestothe level P*  interpreted here in its role as the intertemporal (rather
than market-clearing) equilibrium—ihe equilibrium is said to be dynamically stable.

The concept of dynamic stability 15 an important one. Let us examine it further by a
more detailed analysis of (15.11). Depending on the relative magnitudes of P{() and P*,
the solution (15.11) really encompasses three possible cascs. The first is P(0) = P*, which
implies P(r) = P*. In that event, the time path of price can be drawn as the horizontal
straight line in Fig. 15.1. As mentioned earlier, the attainment of equilibrium is in this casc
a fait accompli. Sccond, we may have P(0) > £~ In this case, the first term on the right of
(15.11} is positive, but it will decrease as the increase in ¢ lowers the value of ¢ ¥ Thus the
time path will approach the cquilibrium level 2* from above, as illustrated by the top curve
in Fig. 15.1. Third, in the opposite case of £{0) < P*, the equilibrium level P* will be
approached from below, as illustrated by the bottom curve in the same figure. In general,
to have dynamic stability, the devigtion of the time path from equilibrium must cither be
identically zero (as in case 1) or steadily decrease with time (as in cases 2 and 3).

A comparison ol (15.11) with (15.5") tells us that the £* term, the counterpart of 5/a,
is nothing but the particular integral y,, whereas the exponential term is the (definitized)
complementary function y.. Thus, we now have an economic interpretation for y, and
¥p: yp tepresents the intertemporal equilibrium level of the relevant variable, and y, is the
deviation from equilibrium. Dynamic stability requires the asymptotic vanishing of the
complementary function as ¢ becomcs infinitc,

4ty

F(0)

P{1y : case of PHY) = P

P+ & =

) - case of POy < p=
()
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FIGURE 15.2

In this model, the particular integral is a constant, so we have a stationary equilibritm
in the intertemporal sensc, represented by P*. If the particular intcgral is nonconstant, as in
(15.7'), on the other hand, we may interpret it as a moving equilibrium.

An Alternative Use of the Model

What we have done in the preceding is to analyze the dypamic stability of equilibrium {the
convergence of the time path), given certain sign specifications for the parameters. An al-
ternative type of inquiry is: In order to ¢nsure dynamic stability, what specific restrictions
must be imposcd upon the parameters?

The answer to that is contained in the solution (15.11). If we allow P(0} # /¥, we see
that the first ( ) term in {(15.11) will tend to zero as ¢ — oo if and only if & > 0—that is,
if and only 1f

J(B+8) =0

Thus, we can take this last inequality as the required restriction on the parameters / (the ad-
justment cocfficient of price), S (the negative of the slope of the demand curve, plotted with
(O on the vertica! axis), and & (the slope of the supply curve, plotted similarly).

In case the price adjustment is of the *normal” type, with j > 0, so that excess demand
drives price up rather than down, then this restriction becomes merely (f + 8) = 0 or,
¢quivalently,

8> -5

To have dynamic stability in that event, the slope of the supply must exceed the slope of the
demand. When both demand and supply are normally sloped (—f < 0, 8 = 0), as in
(15.8), this requircment is obviously met. But even if onc of the curves is sloped
“perversely,” the condition may still be fulfilled, such as when & = 1 and —f = 1/2 {posi-
tively sloped demand). The latter situation is illustrated in Fig. 15.2, where the equilibrium
price P* is, as usual, determined by the point of intersection of the two curves. If the initial
price happens to be at Py, then @, (distance P &) will exceed QO (distance P, F), and the
excess demand (FG) will drive price up. On the other hand, if price is initially at P, then

Q
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there will be a negative excess demand MN, which will drive the price down. As the two ar-
rows in the figure show, therefore, the price adjustment in this case will be roward the equi-
librium, no matter which side of P* we start from. We should emphasize, however, (hat
while these atrows can display the direction, they arc incapable of indicating the magnitude
of change. Thus Fig. 15.2 is basically static, not dynamic. in nature, and can serve only to
illustrate, not to replace, the dynamic analysis presenied.

EXERCISE 15.2

1. if both the demand and supply in Fig. 15.2 are negatively sloped instead, which curve
should be steeper in order to have dynamic stability? Does your answer conform to the
criterion § > =7

2. Show that {15.10°) can be rewritten as dP/dt+ k(P — P} =0. ffwelet P - P* = A
(signifying deviation), so that dA /dt = dP /dt, the differential equation can be further
rewritten as
dA

ar +kA=0
Find the time path A(t), and discuss the condition for dynamic stability.

3. The dynamic market model discussed in this section is closely patterned after the static
one in Sec. 3.2, What specific new feature is responsible for transforming the static
model into a dynamic one?

4. Let the demand and supply be

Qi=u-pP +ac;—f Q=-y+4P (o f,y8>0

(o) Assuming that the rate of change of price over time is directly proportional to the
excess demand, find the time path P(f} {general solution).

{by What is the intertemporal eguilibrium price? What is the market-clearing equilib-
rium price?

(¢) What restriction on the parameter o would ensure dynamic stability?

5. Let the demand and suppiy be

Qu=a-pP-nT Q=P (@ hi>0)

{(0) Assuming that the market is cleared at every point of time, find the time path P(f)
(general solution).

(B} Does this market have a dynamically stable intertemporal equilibrium price?

{¢) The assumption of the present model that Qg = Q; for ail t is identical with that of
the static market model in Sec. 3.2. Nevertheless, we still have a dynamic modet
here. How come?

15.3 Variable Coefficient and Variable Term

In the more general case of a first-order lincar differential equation

Wity = wir (15.12)
E+”( Jp=wit) :
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u(!) and w(f) represent a variablc coellicient and a variable term, respectively. How do we
find the time path y{#) in this casc?

The Homogeneous Case

For the homogeneous case, where w(t) = 0, the solution 15 still easy to obtain. Since the
differential equation is in the form

dy 1 dy
o tuly =0 — = —ult 15.13
dt o)y . y di 1) ( )
we have, by integrating both sides in turn with respect to f,
1 dy d
Left side = f— LAYV B Iny+c¢  (assuming y > 0}
y dt y

Right side = f—u(:) dt = afu(t) di

In the fatter, the integration process cannot be carried further because w#(r) has not been
given a specific form; thus we have to settle for just a general integral expression. When the
two sides are equated, the result is

Iny=—e¢— [u(r} dr
Then the desired y path can be obtained by taking the antilog of In v
y=e" =e g fund _ g it Gpere g = o {15.14)

This is the general solution of the diffcrential equation (15.13).

To highlight the variable nature of the cocfficient «(¢), we have so far explicitly written
out the argument ¢. For notational simplicity, however, we shall from here on omit the
argument and shorten u{¢) to u.

As compared with the general solution (15.3) {or the constlant-coeflicient case, the only
modification in {15.14) is the replacement of the e™* expression by the more complicated

expression e Ju# The cationale behind this change can be better understood if we inter-
pret the at term in e~ as an integral: [a dt = af (plus a constant which can be absorbed
into the 4 term, since e raised to a constant power is again a constant). In this light, the dif-
ference between the two general solutions in fact turns into a similarity. For in both cascs
we are taking the coefficient of the v term in the differential equation—a constant term a in
one case. and a variable term « in the other—and integrating that with respect to ¢, and then
taking the negative of the resulting integral as the exponent of e.

Once the general solution is obtained, it is a relatively simple matter to get the definite
solution with the help of an appropriate initial condition.

dy

Find the general solution of the equation pm + 3ty =0. Here we have u=3t?, and

[udt = f3t2dt = + ¢, Therefore, by (15.14), we may write the solution as
Wty = Ae@9 = Aee = Be”  where B = Ae°

Observe that if we had omitted the constant of integration ¢, we would have lost no
information, because then we would have obtained Wf) = Ae ™, which is really the identi-
cal solution since A and 8 both represent arbitrary constants. In other words, the expression
e~¢, where the constant ¢ makes its only appearance, can always be subsumed under the
other constant A4,
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The Nonhomogeneous Case

For the nonhomogeneous case, where w{¢} # 0, the solution is not as easy to obtain. We
shall try to find that solution via the concept of exact differential cquations, to be discussed
in Sec. 15.4. It does no harm, however, to state the result here first; Given the differential
equation (13,12), the general solution is

y(ey = e fo (A + f el dz) (15.15)

where 4 1s an arbitrary constant that can be definitized if we have an appropriate initial
condition.
1t 15 of interest that this general solution, like the solution in the constant-coefficient
constant-term case, again consists of two additive components, Furthermore, one of these
two, Ae_f Wit i nothing but the general solution of the reduced (homogeneous} equation,
derived earlier in (15.14), and is therefore in the nature of a complementary function.
dy

Find the general solution of the equaticn prias 2ty = t. Here we have

u=2t w=t and fudt =t24+k  (karbitrary)

Thus, by (15.15), we have
y(ty = e +h ( A+ f fet' dt)

— ol (A + e‘ffrefzdr)

: {1
= At 4 gt (»249‘“2 + c) [e*ef =1]

1
=(Ae ¥+ et + 5

1
= Be ' ¢ 7 where B = Ae™* 4 ¢ Is arbitrary

The validity of this solution can again be checked by differentiation.

It is interesting to note that, in this example, we could again have omitted the constant
of integration &, as well as the constant of integration ¢, without affacting the fina! outcome.
This is because both k and ¢ may be subsumed under the arbitrary constant 8 in the final
solution. You are urged to try out the simpler process of applying (15.15) without using the
constants k and ¢, and verify that the same solution wili emerge.

d
Solve the equation F}t/ + 4ty = 4t. This time we shall omit the constants of integration.
Since

u=4t w=4t and fu dt = 22 [constant omitted)
the general solution is, by (15.15),
y(t) = E'ztz(A + f4te.’2t2 dr) = e (A + ezfz) [constant omitted]

— Ae ¥ 4
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As may be expected, the omissicn of the constants of integration serves to simplify the pro-
cedure substantially.

The differential equation d—:’ +uy =w in (15.12) is more general than the equation
dy

gt +ay = b in (15.4), since  and w are not necessarily constant, as are a and b. Accord-

ingly, selution formula (15.15) is also more general than sclution formula (15.5). In fact,
when we set v = g and w = b, (15.15) should reduce to (15.5). This is indeed the case. For
when we have

U=2a w=p and f udt=at [constant omitted]

then (15.15) becomes
) =e" (A + [!:Je“r dt) —e ¥ (A + ge"‘) [constant omitted]

= Ae ™ 4 b
a

whichi is identical with (15.5).

EXERCISE 15.3

Solve the following first-order linear differential equations; if an initial condition is given,
definitize the arbitrary constant:

dy
1. EE“I—S}M—L';

dy
2. E+2ty_0

dy 3
L 42ty =6 W0) = =
3dt+y £ %0} 5

4%+:2y:srz;y<0)=s

dy 6
. —_— ZtZO' = —
5 dr+12y+ e ; Y(0) 7

dy

6. — ==
dt” {

15.4 Exact Differential Equations

We shall now introduce the concept of cxact differential equations and use the solution
method pertaining thereto to obtain the solution formula (15.15) previously cited for the dif-
ferential equation {15.12). Even though our immediate purpose is to use it to solve a lineqr
differential equation, an exact differential cquation can be either linear or nonlincar by itself.

Exact Differential Equations
Given a function of two variables F( v, 1), its total differential 1s

aF o AF
dFOL 0 = o dy+ = dr
dy it



