could cooperate more extensively. First, households spend differently, depending on whether the wealth or income is contributed to the family or otherwise controlled by the wife or the husband. Apparently, providing resources to the household increases bargaining power over how they will be used, contrary to what would be expected in a unitary household. When men control income from cash crops after development leads to new marketing opportunities, the perverse result can be to increase men's already high bargaining power.

The differing use of funds affects not only adults but also the children. Again, the evidence is clear that in most contexts, a larger fraction of income provided and controlled by the wife tends to be used for children's health and education than that by husbands. Moreover, evidence is growing that agricultural households could earn more by reallocating inputs such as manure from husbands' to wives' plots, for example. Thus, gender inequality also leads to significant losses in efficiency. Further gains could be had by shifting from subsistence crops to cash crops on wives' plots, though given different preferences for how cash income would be used, this could turn out to be at the expense of food for the wife and children. For example, in a detailed study of Burkina Faso, Christopher Udry found that "plots controlled by women have significantly lower yields than similar plots within the household planted with the same crop in the same year, but controlled by men." His detailed data enabled him to clearly identify the difference as due to "significantly higher labor and fertilizer inputs per acre on plots controlled by men." Udry's estimates showed that "about six percent of output is lost due to the misallocation of variable factors across plots within the household." In addition to the obvious social justice concerns, this efficiency argument forms part of the economic case for supporting programs that empower rural women.³⁵

Yet many government-sponsored programs effectively continue to exclude women, often because women lack collateral for loans or are barred from owning property or conducting financial transactions without their husbands' permission. Agricultural inputs and training are rarely provided to female applicants. Even efforts to reduce poverty through land reforms have been found to reduce female income and economic status because they distribute land titles only to male heads of household. Cultural and social barriers to women's integration into agricultural programs remain strong because, in many countries, women's income is perceived as a threat to men's authority. While men are taught new agricultural techniques to increase their productivity, women, if involved at all, are trained to perform low-productivity tasks that are considered compatible with their traditional roles, such as sewing, cooking, and basic hygiene. Women's components of development projects are frequently little more than welfare programs that fail to improve economic well-being. Furthermore, these projects tend to depend on the unpaid work of women, while men are remunerated for their efforts.

Although efforts to increase the income of women by providing direct access to credit and inputs have experienced considerable success, programs that work indirectly with women have frequently fallen short of their stated goals. Studies have found that projects are most likely to elicit the engagement of women when resources are placed directly under their control. Clearly, projects that depend on the unremunerated labor of women are likely to obtain only minimal support. Adoption of new crops and technologies will be more effective where patterns of production are consistent with the interests of female household members. Because the active participation of women is critical to agricultural prosperity, policy design should ensure that women benefit equally from development efforts (this is examined further in the case study at the end of this chapter).

9.5 The Microeconomics of Farmer Behavior and Agricultural Development

The Transition from Traditional Subsistence to Specialized Commercial Farming

For expository convenience, we can identify three broad stages in the evolution of agricultural production.³⁶ The first stage is the pure, low-productivity, mostly subsistence-level traditional (peasant) farm, still prevalent in Africa. The second stage is what might be called *diversified* or *mixed family agriculture*, where a small part, of the produce is grown for consumption and a significant part for sale to the commercial sector, as in much of Asia. The third stage represents the modern farm, exclusively engaged in high-productivity, specialized agriculture geared to the commercial market, as in developed countries, and often found in the highly urbanized developing countries.

Agricultural modernization in mixed-market developing economies may be described in terms of the gradual but sustained transition from subsistence to diversified and specialized production. But such a transition involves much more than reorganizing the structure of the farm economy or applying new agricultural technologies. Transforming traditional agriculture often requires, in addition to adapting the farm structure to meet the demand for increased production, profound changes affecting the entire social, political, and institutional structure of rural societies. Without such changes, agricultural development will either continue to lag greatly behind or, more likely, simply widen the already sizable gap between the few wealthy large landholders and the masses of impoverished tenant farmers, smallholders, and landless laborers.

We first consider the evolution of the agricultural system of a developing nation over time from a predominantly traditional, subsistence-level and small-scale peasant orientation to more diversified operations and eventually to the rise of fully commercial enterprises, though still often family based.

Subsistence Farming: Risk Aversion, Uncertainty, and Survival

On the classic traditional (peasant) subsistence farm, most output is produced for family consumption (although some may be sold or traded in local markets), and a few **staple foods** (usually including cassava, wheat, barley, sorghum, rice, potatoes, or corn) are the chief sources of nutrition. Output and productivity are low, and only the simplest traditional methods and tools are used. Capital investment is minimal; land and labor are the principal factors of production. The law of diminishing returns is in operation as more labor is applied to shrinking (or shifting) parcels of land. The failure of the rains, the appropriation of the land, and the appearance of the moneylender to collect

Staple food A main food consumed by a large portion of a country's population.

outstanding debts are the banes of the peasant's existence. Labor is underemployed for most of the year, although workers may be fully occupied at seasonal peak periods such as planting and harvest. The traditional farmer (peasant) usually cultivates only as much land as his family can manage without the need for hired labor, although many traditional farmers intermittently employ one or two landless laborers. Much of the cash income that is generated comes from nonfarm wage labor.³⁷

In much of sub-Saharan Africa, agriculture is still largely in this subsistence stage, as it is in pockets in Asia and even Latin America. The Green Revolution has bypassed much of Africa. But in spite of the relative backwardness of production technologies and the misguided convictions of some foreigners who attribute the peasants' resistance to change as a sign of incompetence or irrationality, the fact remains that given the nature of the peasants' environment, the uncertainties that surround them, the need to meet minimum survival levels of output, and the rigid social institutions into which many peasants, but particularly women, are locked, most farmers do behave in an economically rational manner when confronted with alternative opportunities.

Some insight into the economics of subsistence agriculture is provided by the traditional two-factor neoclassical theory of production in which land (and perhaps capital) is fixed, labor is the only variable input, and profit is maximized. Specifically, the theory provides an economic rationale for the observed low productivity of traditional agriculture in the form of the law of diminishing marginal productivity.

Unfortunately, this theory does not satisfactorily explain why small-scale farmers are often resistant to technological innovation in farming techniques or to the introduction of new seeds or different cash crops. According to the standard theory, a rational income or profit-maximizing farm or firm will always choose a method of production that will increase output for a given cost (in this case, the available labor time) or lower costs for a given output level. But the theory is based on the crucial assumption that farmers possess "perfect knowledge" of all technological input-output relationships as well as current information about prevailing factor and product prices. This is the point at which the simple theory loses a good deal of its validity when applied to the environment of subsistence agriculture. Furthermore, when access to information is highly imperfect, the transaction costs of obtaining this information are usually very high. Given price uncertainty, traditional (peasant) farmers often face a wide range of possible prices rather than a single input price. Along with limited access to credit and insurance, such an environment is not conducive to the type of behavior posited by neoclassical theory and goes a long way toward explaining the actual risk-averse behavior of peasant farmers, including their caution in the use of purchased inputs such as fertilizer.³⁸

Subsistence agriculture is thus a highly risky and uncertain venture. It is made even more so by the fact that human lives are at stake. In regions where farms are extremely small and cultivation is dependent on the uncertainties of variable rainfall, average output will be low, and in poor years, the peasant family will be exposed to the very real danger of starvation. In such circumstances, the main motivating force in the peasant's life may be the maximization, not of income, but of the family's chances of survival. Accordingly, when risk and uncertainty are high, small farmers may be very reluctant to shift from a traditional technology and crop pattern that over the years they have come to

know and understand to a new one that promises higher yields but may entail greater risks of crop failure. When sheer survival is at stake, it is more important to avoid a bad year (total crop failure) than to maximize the output in better years. Risk-avoiding traditional farmers are likely to prefer a technology of food production that combines a low *mean* per-hectare yield with low *variance* (fluctuations around the average) to alternative technologies and crops that may promise a higher mean yield but also present the risk of a greater variance.

Figure 9.6 provides a simple illustration of how attitudes toward risk among small farmers may militate against apparently economically justified innovations.³⁹ In the figure, levels of output and consumption are measured on the vertical axis and different points in time, on the horizontal axis, and two straight lines are drawn. The lower horizontal line measures the minimum consumption requirements (MCR) necessary for the farm family's physical survival. This may be taken as the starvation minimum fixed by nature. Any output below this level would be catastrophic for the peasant or subsistence farming family. The upper, positively sloped straight line represents the minimum level of food consumption that would be desirable, given the prevailing cultural or potential productivity factors affecting village consumption standards. It is assumed that this line rises over time.

Looking at Figure 9.6, we see that at time *X*, farmer A's output levels have been very close to the MCR. She is barely getting by and cannot take a chance of any crop failure. She will have a greater incentive to minimize risk than farmer B, whose output performance has been well above the minimum subsistence level and is close to the minimum desired consumption level (MDCL). Farmer B will therefore be more likely than farmer A to innovate and change. The result may be that farmer A remains in a self-perpetuating poverty trap.⁴⁰ Moreover, inequality is growing.

There is an alternative way to look at risk-aversion decisions of peasant farmers. In Figure 9.7, two curves portray hypothetical probabilities for crop yields. The higher curves (technique A) shows a production technology with a

lower mean crop yield (10) than that of technique B (12), shown by the lower curve. But it also has a lower variance around that mean yield than technique B. Clearly, the chances of starving are much greater with technique B, so risk-averse peasant farmers would naturally choose technique A, the one with the lower mean yield.⁴¹ Evidence is clear that farmers pay for "self-insurance" of this type with much lower average returns.⁴²

Many programs to raise agricultural productivity among small farmers in Africa and elsewhere have suffered because of failure to provide adequate insurance (both financial credit and physical "buffer" stocks) against the risks of crop shortfalls, whether these risks are real or imagined. An understanding of the major role that risk and uncertainty play in the economics of subsistence agriculture would have prevented early and unfortunate characterizations of subsistence or traditional farmers as technologically backward, irrational producers with limited aspirations or just plain "lazy natives," as in the colonial stereotype. Moreover, in parts of Asia and Latin America where agriculture has performed poorly, a closer examination of why traditional (peasant) farmers have apparently not responded to an "obvious" economic opportunity will often reveal that (1) the landlord secured much if not all of the gain, (2) the moneylender captured the profits, (3) the government's "guaranteed" price was never paid, or (4) complementary inputs (fertilizers, pesticides, assured supplies of water, adequate nonusurious credit, etc.) were never made available or their use was otherwise more problematic than outsiders understood. In particular, when peasants have reason to be concerned about the risk of eviction or expropriation-whether by landlords or by the state-incentives for those who work the land to invest in it will be proportionately reduced.

Farmers will consider the expected value of the marginal product of any inputs they apply, such as fertilizer, which will be lowered in relation to the probability they place on expropriation. For example, if fertilizer lasts for two growing seasons but the peasant is sure her land will be expropriated as soon as someone with the power to do so sees that the land has already been fertilized, then too little fertilizer will be used from the social point of view, because the peasant will consider the benefits of the fertilizer as if it disappeared after just one season (while its price is not lowered). This type of effect has been confirmed by careful econometric evidence from China.⁴³

The Economics of Sharecropping and Interlocking Factor Markets

The phenomenon of risk aversion among peasant farmers in the presence of high land inequality also helps explain the prevalence of sharecropping throughout much of Asia and parts of Latin America.⁴⁴ Although different types of relationships may arise between the owners of land and the people who work on them (e.g., the farmers could rent or act as wage laborers), sharecropping is widespread. Sharecropping occurs when a peasant farmer uses the landowner's farmland in exchange for a share of food output, such as half of the rice or wheat grown. The landlord's share may vary from less than a third to more than two-thirds of output, depending on local labor availability and the other inputs (such as credit, seeds, and tools) that the landlord provides.

The poor incentive structure of sharecropping lends itself to inefficiency. Alfred Marshall observed that the farmer was, in effect, paid only part, rather than all, of his marginal product and would rationally reduce work effort accordingly.⁴⁵ This effect can be seen graphically in Figure 9.8. Labor input is found along the *x*-axis, which may be interpreted as number of hours of work or of total effort; value of output per unit of labor is found along the *y*-axis. A farmer who owned his own farm would work until his value marginal product of labor (VMP_L) was equal to his alternative wage, or opportunity cost of labor, *w*^A, and so would put in an

efficient amount of labor effort, L^{F} . However, a sharecropper receives only a fraction, γ , of his effort; for example, under 50–50 sharecropping, the sharecropper's share would be $\gamma = 0.5$. Thus, the sharecropper would receive only γ of his value marginal product, or $\gamma \text{VMP}_{\text{L}}$. As a result, the sharecropper would have an incentive to put in an inefficiently low level of effort, L^{S} , as seen in Figure 9.8.

This view was challenged in the 1960s by Steven Cheung, who argued that profit-maximizing landlords would establish contracts requiring adequate work effort from the tenant as well as stipulating each party's share of the output. If, as Cheung argued, effort was not too difficult to monitor, then if one tenant failed to live up to his part of the bargain, he would be replaced by another tenant who was willing to work harder; as a result, sharecropping would be as efficient as any other contractual form. Cheung's theory is known as the *monitoring approach*, in contrast to the *Marshallian approach* to the analysis of sharecropping illustrated in Figure 9.8; Cheung argued that labor effort, L^F , would also obtain under sharecropping.⁴⁶

The monitoring approach was popular for two decades, and it was difficult to test because of endogeneity. For example, only low-productivity people may choose to enter into sharecropping contracts. In fact, some scholars believe that landlords may offer tenants an option of either sharecropping or pure rental contracts precisely because higher-ability people more often choose pure rental arrangements: High-ability farmers are able to get the full value of their high marginal product, while this is not as attractive to lower-ability farmers. If landlords are not sure which farmers have high ability, they may find out by observing which ones choose the pure rental contract. The motivation may be to enable landlords to squeeze more profits out of the renters, charging higher effective rents for pure rental contracts than for sharecropping contracts—but not *too* high or even high-ability farmers would choose sharecropping. This approach is known as the *screening hypothesis* of sharecropping.⁴⁷

However, Radwan Ali Shaban identified farmers who farmed plots that they owned and who also leased out additional farmland under a sharecropping contract. By comparing the *same* farmers' behavior under different contractual arrangements, Ali Shaban controlled for factors specific to individual farmers that cannot be easily observed. He found that farmers used fewer inputs and produced less output on the sharecropped land than on their own land, all else being equal. These results provide evidence that sharecropping is less efficient than farming one's own land, just as Marshall predicted.⁴⁸

A final approach suggests that sharecropping is relatively efficient after all, in that it makes the best out of an inherently uncertain and risky situation for both parties.⁴⁹ If the landlord paid the tenant a straight wage, which would be efficient if the tenant always gave his full effort and it didn't cost the landlord anything to make sure of this, the tenant would have every incentive to accept the money and not work hard. If the tenant paid a straight rent for the land, he would face the appalling risk that there would be a particularly lean year, such as a drought, and there would not be enough food left after the rent was paid to prevent starvation. Thus, sharecropping represents a compromise between the risk to the landlord that the tenant will not do much work and the risk to the tenant that a fixed rent will in some years leave him no income. So even though sharecropping, with its poor work incentives, would be inefficient in a world of perfect certainty, in the real world, with inequality in land ownership as well as uncertainty, it is "as efficient as we can get." However, this arrangement is necessary only because of extreme inequality of land ownership. Farmers who own their own farms do not generally choose sharecropping contracts for themselves. As a result, the enormous efficiency loss, as seen in Figure 9.8, is not negated by this important explanation of why sharecropping arises.⁵⁰

Where tenancy reform is well designed and enforced, giving sharecroppers a larger share of the produce and security of tenure on the land, the result can be not only higher income for the tenants but also greater overall efficiency. A clear example is the tenancy reform policy implemented in the Indian state of West Bengal in the late 1970s.⁵¹ The explanation is clear from what we have just established: that a higher product share gives greater work effort incentives, and greater security of tenure gives greater investment incentives. Land reform that distributes ownership of "land to the tiller" can provide similar and superior improvements in incentives, if needed complementary inputs are provided.

More broadly, the economic and social framework in which sharecropping takes place is one of extraordinary social inequality and far-reaching market failure. When the peasant faces his landlord, he often faces not only the individual whom he must persuade to rent him productive land but at the same time his prospective employer, his loan officer, and even his ultimate customer for any crops he wishes to sell. Such conditions, an example of **interlocking** factor markets, provide the rural landlord with abundant sources of monopoly and monopsony power. Under some conditions—in particular, the availability of a perfectly elastic supply of tenants and the ability of the landlord to subdivide his land into as many plots as he chooses-the peasant is forced to his reservation utility level, or next-best income opportunity. (In practice, on one hand, peasants are sometimes prevented from learning about some of the alternatives available to them; on the other hand, subdivision may be restricted.) Interlocked-factor-market sharecropping does have the resource allocation advantage that it is in the landlord's interest to see to it that his sharecropper receives credit from the lowest-cost source. At the same time, the personal nature of interlinkage gives the dominant party far-ranging leverage and acts as a barrier to entry that restricts competition that might ultimately benefit the peasant. In this regard, as an observation applying to interlinkage and to other rural institutions, Pranab Bardhan and Christopher Udry make the important point that "the thin line between *understanding* an institution and *justifying* it is often blurred, particularly by careless interpreters of the theory."52

For many analysts, a study of interlinkage involving a dominant landlord often concludes that nothing short of land reform will reliably affect the tenant's welfare. We discuss land reform more fully later in the chapter.⁵³

The Transition to Mixed or Diversified Farming

It is neither realistic nor necessarily desirable to think of instantly transforming a traditional agrarian system that has prevailed for many generations into a highly specialized commercial farming system. Attempts to introduce cash crops indiscriminately in subsistence farms have often resulted in the peasants' loss of land to moneylenders or landlords. Subsistence living is merely substituted for subsistence production. For small farmers, exclusive reliance on cash crops can be even more precarious than pure subsistence

Interlocking factor markets

Factor markets whose supply functions are interdependent, frequently because different inputs are provided by the same suppliers who exercise monopolistic or oligopolistic control over resources. agriculture because the risks of price fluctuations are added to the uncertainty of nature.

Diversified or **mixed farming** therefore represents a logical intermediate step in the transition from subsistence to specialized production. In this stage, the staple crop no longer dominates farm output, and new cash crops such as fruits, vegetables, coffee, tea, and pyrethrum are established, together with simple animal husbandry. These new activities can take up slack in farm workloads during times of the year when disguised unemployment is prevalent.

For example, if the staple crop occupies the land only during parts of the year, new crops can be introduced in the slack season to take advantage of both idle land and family labor. And where labor is in short supply during peak planting seasons, simple laborsaving devices (such as small tractors, mechanical seeders, or animal-operated steel plows) can be introduced to free labor for other farm activities. Finally, the use of better seeds, fertilizers, and simple irrigation to increase yields of staple crops such as wheat, maize, and rice can free part of the land for cash crop cultivation while ensuring an adequate supply of the staple food. The farm operator can thus have a marketable surplus, which she can sell to raise her family's consumption standards or invest in farm improvements. Diversified farming can also minimize the impact of staple crop failure and provide a security of income previously unavailable.

The success or failure of such efforts to transform traditional agriculture will depend not only on the farmer's ability and skill in raising his productivity but also, even more important, on the social, commercial, and institutional conditions under which he must function. Specifically, if he can have reasonable and reliable access to credit, fertilizer, water, crop information, and marketing facilities; if he receives a fair market price for his output; and if he can feel secure that he and his family will be the primary beneficiaries of any improvements, there is no reason to assume that the traditional farmer will not respond to economic incentives and new opportunities to improve his standard of living. Evidence from such diverse countries as Colombia, Mexico, Nigeria, Ghana, Kenya, India, Pakistan, Thailand, and the Philippines shows that under the proper conditions, small farmers are responsive to price incentives and economic opportunities and will make radical changes in what they produce and how they produce it.⁵⁴ Lack of innovation in agriculture, as noted earlier, is usually due not to poor motivation or fear of change but to inadequate or unprofitable opportunities. In Africa, lack of information is often a constraint, but farmers learn from each other when valuable new crops and techniques are introduced locally. This facilitates dissemination of new technologies, as a study in Ghana revealed (see Box 9.2).

From Divergence to Specialization: Modern Commercial Farming

The specialized farm represents the final and most advanced stage of individual holding in a mixed market economy. It is the most prevalent type of farming in advanced industrial nations. It has evolved in response to and parallel with development in other areas of the national economy. General rises in living standards, biological and technical progress, and the expansion of national and international markets have provided the main impetus for its emergence and growth.

Diversified (mixed) farming

The production of both staple crops and cash crops and simple animal husbandry typical of the first stage in the transition from subsistence to specialized farming.

BOX 9.2 FINDINGS Learning about Farming: The Diffusion of Pineapple Growing in Ghana

A gricultural experts cannot train millions of farmers—who sometimes also know constraints and opportunities that trainers do not. So farmers must partly learn new products and techniques from each other, and social learning is very difficult to identify. But Timothy Conley and Christopher Udry collected detailed information from farmers in the Akwapim South district of Ghana, asking them whom they know and talk to about farming, to better understand and test for "social learning in the diffusion of a new agricultural technology."

In Akwapim South, farmers traditionally grew maize and cassava, which they sold to urban consumers. But a transformation was under way toward farmers cultivating pineapples for export to Europe. Doing so required intensive fertilizer use-adoption of a new technology. Pineapple technologies were spreading geographically through the region. But a farmer might adopt a new technology soon after his neighbor, not from learning, but just because neighbors tend to be similar in other ways. Conley and Udry collected information on geography, soil and agronomics, credit, and family relationships to control for similarities that previous studies had been unable to observe. Then the researchers tested "whether farmers adjust their inputs to align with those of their information neighbors who were surprisingly successful in previous periods," and they found robust evidence to support this idea: "We find strong effects of news about input productivity in the information neighborhood of a farmer on his innovations in input use."

Data on inputs used and output harvested by each farmer let Conley and Udry infer the information conveyed by each "experiment" with pineapples and fertilizer by any of their respondents. They utilize data on "information flow between farmers to trace the impact of the information revealed by each experiment on the future input decisions of other farmers who are in the information neighborhood of the cultivator who conducted the experiment." Important findings include the following:

- A farmer is "more likely to change his fertilizer use after his information neighbors who use similar amounts of fertilizer achieve lower than expected profits."
- A farmer "increases (decreases) his use of fertilizer after his information neighbors achieve unexpectedly high profits when using more (less) fertilizer than he did."
- A farmer's "responsiveness to news about the productivity of fertilizer in his information neighborhood is much greater if he has only recently begun cultivating pineapple."
- A farmer "responds more to news about the productivity of fertilizer on plots cultivated by veteran farmers and farmers with wealth similar to his."

Since novice farmers "are most responsive to news in their information neighborhoods," the results probably reflect learning. This conclusion is reinforced because there is no evidence of learning when the authors' research methods are "applied to a known maize-cassava technology." Sometimes a neighbor's surprising lower profit leads a farmer to make the wrong decision by lowering his own fertilizer use. But this is also part of the ongoing learning process.

The evidence implies that information "has value in these villages, as do the network connections through which that information flows." But forming and maintaining a connection has real costs; and such costs—as well as benefits—generally depend on factors such as religion, gender, wealth, or family ties. This implies that "measurement of the extent of social learning is not sufficient for adequate evaluation of policy regarding the diffusion of technology." Moreover, the paper highlights that network connections are endogenous; this is a very important consideration for policy analysis.

Source: Based on Timothy G. Conley and Christopher R. Udry, "Learning about a new technology: Pineapple in Ghana," *American Economic Review* 100 (2010): 35–69. Copyright © 2010 by the American Economic Association. Used with permission.

In **specialized farming**, the provision of food for the family with some marketable surplus is no longer the basic goal. Instead, pure commercial profit becomes the criterion of success, and maximum per-hectare yields derived from synthetic (irrigation, fertilizer, pesticides, hybrid seeds, etc.) and natural resources become the object of farm activity. Production, in short, is entirely for the market. Economic concepts such as fixed and variable costs, saving, investment and rates of return, optimal factor combinations, maximum production possibilities, market prices, and price supports take on quantitative and qualitative significance. The emphasis in resource utilization is on capital formation, technological progress, and scientific research and development in stimulating higher levels of output and productivity.

Specialized farms vary in both size and function. They range from intensively cultivated fruit and vegetable farms to the vast wheat and corn fields of North America. In most cases, sophisticated laborsaving mechanical equipment, ranging from huge tractors and combine harvesters to airborne spraying techniques, permits a single family to cultivate many thousands of hectares of land.

The common features of all specialized farms, therefore, are their emphasis on the cultivation of one particular crop, their use of capital-intensive and in many cases laborsaving techniques of production, and their reliance on economies of scale to reduce unit costs and maximize profits. In some ways, specialized farming is no different in concept or operation from large industrial enterprises. In fact, some of the largest specialized farming operations in both the developed and the less developed nations are owned and managed by large, multinational, corporate agribusiness enterprises. Large, modern farms are now found in many middle-income countries such as Brazil. But for smallholder farmers where subsistence farming predominates, strategies for dealing with risk, and in some cases overcoming coordination failures in specialization as described in Chapter 4, remain prerequisites for successful specialization.

Although we can find all three types of farms—subsistence, mixed, and specialized commercial—coexisting in almost all developing countries at any given time, for the majority of low-income countries, particularly in Africa, contemporary agricultural systems are still dominated by small-scale mixed and even subsistence-based family farms. The further transition to a preponderance of commercial enterprises may be difficult to achieve, depending as it does on the solution to many other short- and intermediate-term problems. But there is wide agreement that the improvement of small- and medium-scale mixed farming practices that will not only raise farm incomes and average yields but, if labor-intensive, also effectively absorb underutilized rural labor offers the major immediate avenue toward the achievement of real peopleoriented rural development.

9.6 Core Requirements of a Strategy of Agricultural and Rural Development

If the major objective of agricultural and rural development in developing nations is the progressive improvement in rural levels of living achieved primarily through increases in small-farm incomes, output, and productivity, **Specialized farming** The final and most advanced stage of the evolution of agricultural production in which farm output is produced wholly for the market.

along with genuine food security, it is important to identify the principal sources of agricultural progress and the basic conditions essential to its achievement.

Improving Small-Scale Agriculture

Technology and Innovation In most developing countries, new agricultural technologies and innovations in farm practices are preconditions for sustained improvements in levels of output and productivity. In many parts of Africa, however, increased output in earlier years was achieved without the need for new technology simply by extending cultivation into unused but potentially productive lands. Almost all of these opportunities have by now been exploited, and there is little scope for further significant or sustainable expansion.

Two major sources of technological innovation can increase farm yields. Unfortunately, both have somewhat problematic implications for agricultural development. The first is the introduction of mechanized agriculture to replace human labor. The introduction of laborsaving machinery can have a dramatic effect on the volume of output per worker, especially where land is extensively cultivated and labor is scarce. For example, one man operating a huge combine harvester can accomplish in a single hour what would require hundreds of workers using traditional methods.

But in the rural areas of many developing nations, where land parcels are small, capital is scarce, and labor is abundant, the introduction of heavily mechanized techniques is often ill suited to the physical environment and has the effect of creating more rural unemployment without necessarily lowering per-unit costs of food production.⁵⁵ Importation of such machinery can require large tracts of land (and thus the consolidation of small holdings) and tends to exacerbate the already serious problems of rural poverty and underemployment. And if mechanized techniques exclude women, the male-female productivity gap could widen further, with serious repercussions.⁵⁶

Biological (hybrid seeds and biotechnology), water control (irrigation), and chemical (fertilizer, pesticides, insecticides, etc.) innovations-the second major source—are not without their own problems. They are landaugmenting; that is, they improve the quality of existing land by raising yields per hectare. Only indirectly do they increase output per worker. Improved seeds; advanced techniques of irrigation and crop rotation; the increasing use of fertilizers, pesticides, and herbicides; and new developments in veterinary medicine and animal nutrition represent major scientific advances in modern agriculture. These measures are often technologically scale-neutral; theoretically, they can be applied equally effectively on large and small farms. They do not necessarily require large capital inputs or mechanized equipment. They are therefore particularly well suited for tropical and subtropical regions, and offer enormous potential for raising agricultural output in developing nations and have been highly effective in doing so, particularly in Asia. Again, the major challenge is to extend this success to sub-Saharan Africa, which will in some cases need new innovations. There are also important environmental challenges in many parts of the developing world, including risks posed by a falling water table, salination, and other resource degradation for which well-designed government policy and in some cases restored collective action mechanisms are usually necessary.

Scale-neutral Unaffected by size; applied to technological progress that can lead to the achievement of higher output levels irrespective of the size (scale) of a firm or farm.

Institutional and Pricing Policies: Providing the Necessary Economic Incentives

Unfortunately, although the green revolution varieties of wheat, corn, and rice, together with needed irrigation and chemicals, are scale-neutral and thus offer the potential for continued small-farm progress, the social institutions and government economic policies that accompany their introduction into the rural economy are often *not* scale-neutral.⁵⁷ On the contrary, they often merely serve the needs and vested interests of the wealthy landowners. Because the new hybrid seeds require access to complementary inputs such as irrigation, fertilizer, insecticides, credit, and agricultural extension services, if these are provided only to a small minority of large landowners, one impact of the green revolution can be (as in parts of South Asia and Mexico) the further impoverishment of many peasants. Large landowners, with their disproportionate access to these complementary inputs and support services, are able to gain a competitive advantage over smallholders and eventually drive them out of the market. Large-scale farmers obtain access to low-interest government credit, while smallholders are forced to turn to moneylenders. The result has all too often been the further widening of the gap between rich and poor and the increased consolidation of agricultural land in the hands of a very few so-called progressive farmers. A developmental innovation with great potential for alleviating rural poverty and raising agricultural output can thus turn out to be antidevelopmental if public policies and social institutions militate against the active participation of the small farmer in the evolving agrarian structure.⁵⁸

Another critical area of many past and some continued failures in government policies relates to the pricing of agricultural commodities, especially food grains and other staples produced for local markets. Many governments in developing nations, in their headlong pursuit of rapid industrial and urban development, maintained low agricultural prices in an attempt to provide cheap food for the urban modern sector. Farmers were paid prices below either world competitive or free-market internal prices. The relative internal price ratio between food and manufactured goods (the domestic terms of trade) thus turned against farmers and in favor of urban manufacturers. With farm prices so low—in some cases below the costs of production—there was no incentive for farmers to expand output or invest in new productivityraising technology. As a result, local food supplies continually fell short of demand, and many developing nations, especially in sub-Saharan Africa, that were once self-sufficient in food production had to import food.

Many development economists therefore argue that if governments are to promote further increases in agricultural production that make a larger impact on poverty reduction through Green Revolution technologies, they must make not only the appropriate institutional and credit market adjustments but also continued progress to provide incentives for small and medium-size farmers by implementing pricing policies that truly reflect internal market conditions.⁵⁹

Adapting to New Opportunities and New Constraints As a route out of poverty and toward genuine rural development, enhanced cereal productivity (the classic Green Revolution characteristic) represents only a small part of the agricultural opportunities. The best opportunities for sales to growing urban areas are generally found in higher value-added activities, particularly horticulture (fruits, vegetables, and cut flowers) and aquaculture. These products, along with organic and perhaps Fair Trade versions of some otherwise traditional developing country exports such as coffee and spices, also provide good opportunities for higher-value exports. But small farmers will need special organization and assistance to take advantage of new opportunities. As the 2008 *World Development Report* concludes, "Smallholders can bargain better as a group than as individuals. So a high priority is to facilitate collective action through producer organizations to reach scale in marketing and bargain for better prices."⁶⁰ Otherwise, the risk is large that these developments will benefit mainly the larger farmers.

An opportunity—which also poses a potential threat—is the growing activity of foreign investment in developing country farmland, also known as *land grabbing*. An IFPRI report estimated that from 2006 to 2009, 15 to 20 million hectares of developing country farmland had been transferred. An example is the 2008 deal of South Korea to acquire 690,000 hectares in Sudan. Foreign ownership and long-term leasing of farmland can lead to some better-paying job creation, training, access to better techniques, and new export markets. But there is a real threat that many farmers will lose access to their traditional rights to use land, that there may be net job losses, and that water shortages and environmental degradation of adjacent lands may accelerate, at least without adequate oversight. These and other potential risks are greater when there are governance shortcomings, including corruption, and when women and other poor and vulnerable claimants are not empowered. This is a topic that will be followed closely.⁶¹

One of the biggest constraints looking ahead is the looming environmental problems driven by global warming and climate change, which are expected to most negatively affect sub-Saharan Africa and South Asia. Smaller and poorer farmers are likely to be affected severely, because of their lower access to irrigation and other inputs and generally lesser capacity to adapt—although, ironically, with their smaller use of irrigation and different crop mix, their absolute income declines may be less than those of richer farmers. Although the majority of global warming problems are caused by developed countries, to the extent that cultivated areas in developing countries continue to increase by means of eliminating remaining forested areas, climate change problems will only worsen. This "agricultural extensification," not only in forests but also in drier and other sensitive lands, further brings the risk of local soil degradation and lost environmental services such as maintaining water and air quality. The losses of wetlands and of biodiversity also lead to substantial national (as well as international) costs. Moreover, intensification of agriculture has often brought with it the misuse of agrochemicals, which can entail large human and ecosystem costs.⁶² We return to these problems of environmental sustainability in the next chapter.

Conditions for Rural Development

We can draw three conclusions regarding the necessary conditions for the realization of a people-oriented agricultural and rural development strategy.⁶³

Land Reform

Conclusion 1: Farm structures and land tenure patterns must be adapted to the dual objectives of increasing food production and promoting a wider distribution of the benefits of agrarian progress, allowing further progress against poverty.