CHAPTER 6

SociAL CHOICE AND
WELFARE

With only few exceptions, we have so far tended to concentrate on questions of ‘positive
economics’. We have primarily been content to make assumptions about agents’ motiva-
tions and circumstances, and deduce from these the consequences of their individual and
collective actions. In essence, we have characterised and predicted behaviour, rather than
judged it or prescribed it in any way. In most of this chapter, we change our perspective
from positive to normative, and take a look at some important issues in welfare economics.
At the end of the chapter we return to positive economics and consider how individuals
motivated by self-interest make the problem of social choice doubly difficult.

6.1 THE NATURE OF THE PROBLEM

When we judge some situation, such as a market equilibrium, as ‘good’ or ‘bad’, or ‘better’
or ‘worse’ than another, we necessarily make at least implicit appeal to some underlying
ethical standard. People often differ in their systems of ethics and so differ in their judge-
ments on the merits of a given situation. This obvious fact need not discourage us nor make
us despair that normative economics is all ‘just a matter of opinion’. On the contrary, there
is such a thing as consistency in reasoning from premises to conclusions and so to pre-
scriptions. Welfare economics helps to inform the debate on social issues by forcing us to
confront the ethical premises underlying our arguments as well as helping us to see their
logical implications.

Viewed broadly, our goal in much of this chapter is to study means of obtaining
a consistent ranking of different social situations, or ‘social states’, starting from well-
defined and explicit ethical premises. On the level of generality at which we shall work, a
‘social state’ can be just about anything: the election of a particular candidate to a political
office, a particular way of dividing a pie among a group of people, adoption of a market-
oriented form of organising society, or a particular way of distributing society’s resources
among its members. A social choice problem arises whenever any group of individuals
must make a collective choice from among a set of alternatives before them.
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To make things a bit more concrete for just a moment, let us consider the distribution
problem in a simple, two-good, two-person Edgeworth box economy;, like the one depicted
in Fig. 6.1. There, each point in the box represents some way of dividing society’s fixed
endowment of goods between its two members, so we can view each point in the box as
one of the (mutually exclusive) alternate social states we could achieve. Each agent has his
or her own preferences over these alternatives, and clearly these preferences are often at
odds with one another. The social choice problem involved is easy to state. Which of the
possible alternative distributions is best for society?

Although easy to state, the question is hard to answer. Perhaps without too much
disagreement, points off the contract curve can be ruled out. Were one of these to be
recommended as the best, it would be easy to find some other point on the contract curve
that everyone prefers. Because it would be hard to argue with such unanimity of opinion,
it is probably safe to say that our search for the best alternative ought to be restricted to the
Pareto-efficient ones.

But which of these is best? Many will find it easy to say that wildly unequal alterna-
tives such as X must also be ruled out, even though they are Pareto efficient. Yet in doing
so, appeal is being made to some additional ethical standard beyond the simple Pareto
principle because that principle is silent on the essential question involved: namely, how
may we trade off person 2’s well-being for that of person 1 in the interests of society as a
whole? In trying to make such trade-offs, does intensity of preference matter? If we think it
does, other questions enter the picture. Can intensity of preference be known? Can people
tell us how strongly they feel about different alternatives? Can different people’s intense
desires be compared so that a balancing of gains and losses can be achieved?

The questions are many and the problems are deep. To get very far at all, we will
need to have a systematic framework for thinking about them. Arrow (1951) has offered
such a framework, and we begin with a look at his path-breaking analysis of some of these
problems.
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6.2 SociAL CHOICE AND ARROW’S THEOREM

DEFINITION 6.1

The formal structure we adopt is very simple and very general. There is some non-empty
set X of mutually exclusive social states under consideration. While just about everything
we do in this chapter can be accomplished whether the set X is finite or infinite, to keep
things simple we will sometimes assume that X is finite and other times assume that it
is infinite. We will be sure to let you know which of these we are assuming at all times.
Society is composed of N individuals, where N>2. Each individual 7 has his own pref-
erence relation, K, defined over the set of social states, X, with associated relations of
strict preference, P/, and indifference, I. Being a preference relation, each R’ is complete
and transitive. Intuitively, we require nothing but that people be able to make binary com-
parisons between any two elements in X, and that those comparisons be consistent in the
sense of being transitive. The set X has been defined very broadly, so keep in mind that
its elements may range from the purely mundane to the purely spiritual. The relations R/,
therefore, also must be broadly construed. They need not merely reflect selfish attitudes
towards material objects. They can also reflect the person’s altruism, sense of kindness, or
even their religious values.

Now recall that when preferences are complete and transitive, and X is finite the
individual can completely order the elements of X from best to worst. The R/, therefore,
convey all the information we need to know to determine the individual’s choice from
among alternatives in X. To determine the social choice, however, we will need some
ranking of the social states in X that reflects ‘society’s’ preferences. Ideally, we would
like to be able to compare any two alternatives in X from a social point of view, and we
would like those binary comparisons to be consistent in the usual way. We have, then, the
following definition.

A Social Preference Relation

A social preference relation, R, is a complete and transitive binary relation on the set X
of social states. For x and y in X, we read xRy as the statement ‘x is socially at least as
good as y’. We let P and I be the associated relations of strict social preference and social
indifference, respectively.

We take it for granted that the ranking of alternatives from a social point of view
should depend on how individuals rank them. The problem considered by Arrow can be
simply put. How can we go from the often divergent, but individually consistent, personal
views of society’s members to a single and consistent social view?

This is not an easy problem at all. When we insist on transitivity as a criterion for
consistency in social choice, certain well-known difficulties can easily arise. For example,
Condorcet’s paradox illustrates that the familiar method of majority voting can fail to
satisfy the transitivity requirement on K. To see this, suppose N =3, X = {x, y, z}, and



270

CHAPTER 6

individual (strict) preferences over X are as follows

Person 1 Person 2 Person 3

X y z
y z X
z b y

In a choice between x and y, x would get two votes and y would get one, so the social
preference under majority rule would be xPy. In a choice between y and z majority voting
gives yPz Because xPy and yPz, transitivity of social preferences would require that xPz.
However, with these individual preferences, z gets two votes to one for x, so majority
voting here would give the social preference as zPx, thus violating transitivity. Note that in
this example, the mechanism of majority rule is ‘complete’ in that it is capable of giving
a best alternative in every possible pairwise comparison of alternatives in X. The failure
of transitivity, however, means that within this set of three alternatives, no single best
alternative can be determined by majority rule. Requiring completeness and transitivity of
the social preference relation implies that it must be capable of placing every element in X
within a hierarchy from best to worst. The kind of consistency required by transitivity has,
therefore, considerable structural implications.

Yet consistency, alone, is not particularly interesting or compelling in matters of
social choice. One can be perfectly consistent and still violate every moral precept the
community might share. The more interesting question to ask might be put like this: how
can we go from consistent individual views to a social view that is consistent and that also
respects certain basic values on matters of social choice that are shared by members of the
community? Because disagreement among individuals on matters of ‘basic values’ is in
fact the very reason a problem of social choice arises in the first place, we will have to be
very careful indeed in specifying these if we want to keep from trivialising the problem at
the outset.

With such cautions in mind, however, we can imagine our problem as one of finding
a ‘rule’, or function, capable of aggregating and reconciling the different individual views
represented by the individual preference relations & into a single social preference relation
R satisfying certain ethical principles. Formally, then, we seek a social welfare function,
f, where

R=f(R, ... RY).

Thus, f takes an N-tuple of individual preference relations on X and turns (maps) them
into a social preference relation on X.

For the remainder of this subsection we shall suppose that the set of social states, X,
is finite.

Arrow has proposed a set of four conditions that might be considered minimal
properties the social welfare function, £, should possess. They are as follows.
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' ASSUMPTION 6.1 Arrow’s Requirements on the Social Welfare Function

U. Unrestricted Domain. The domain of f must include all possible combinations
of individual preference relations on X.

WP. Weak Pareto Principle. For any pair of alternatives x and y in X, if xP'y for all
I, then xPy.

IIA. Independence of Irrelevant Alternatives. Let R= f(R',...,RY), R=
f(R', ..., RY), and let x and y be any two alternatives in X. If each individ-
ual i ranks x versus y under R' the same way that he does under K', then the
social ranking of x versus y is the same under R and R.

D. Non-dictatorship. There is no individual i such that for all x and y in X, xPly
implies xPy regardless of the preferences R of all other individuals j # i.

Condition U says that £ is able to generate a social preference ordering regardless of
what the individuals’ preference relations happen to be. It formalises the principle that the
ability of a mechanism to make social choices should not depend on society’s members
holding any particular sorts of views. As we have seen before, this condition, together with
the transitivity requirement on £, rules out majority voting as an appropriate mechanism
because it sometimes fails to produce a transitive social ordering when there are more than
three alternatives to consider.

Condition WP is very straightforward, and one that economists, at least, are quite
comfortable with. It says society should prefer x to y if every single member of society
prefers xto y. Notice that this is a weak Pareto requirement because it does not specifically
require the social preference to be for x if, say, all but one strictly prefer x to y, yet one
person is indifferent between x and y.

Condition I7A is perhaps the trickiest to interpret, so read it over carefully. In brief,
the condition says that the social ranking of x and y should depend only on the individual
rankings of x and y. Note that the individual preferences R and &' are allowed to differ in
their rankings over pairs other than x, y. As you consider for yourself the reasonableness of
IIA, think of what could happen if we failed to require it. For example, suppose that in the
morning, all individuals rank zbelow both xand y, but some prefer xto yand others prefer y
to x. Now suppose that given these individual preferences, the social welfare function leads
to a social preference of x strictly preferred to y. So in the morning, if a choice were to be
made between xand y, ‘society’ would choose x. As it happens, however, a choice between
x and y is postponed until the afternoon. But by then, suppose that the individual prefer-
ences have changed so that now zis ranked above both xand yby all individuals. However,
each individual’s ranking of x versus y remains unchanged. Would it be reasonable for the
social preference to now switch to y being ranked above x? IIA says it would not.

Condition D is a very mild restriction indeed. It simply says there should be no
single individual who ‘gets his way’ on every single social choice, regardless of the views
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of everyone else in society. Thus, only the most extreme and absolute form of dictatorship
is specifically excluded. Not even a ‘virtual’ dictator, one who always gets his way on all
but one pair of social alternatives, would be ruled out by this condition alone.

Now take a moment to re-examine and reconsider each of these conditions in turn.
Play with them, and try to imagine the kind of situations that could arise in a problem of
social choice if one or more of them failed to hold. If, in the end, you agree that these are
mild and minimal requirements for a reasonable social welfare function, you will find the
following theorem astounding, and perhaps disturbing.

Arrow’s Impossibility Theorem

If there are at least three social states in X, then there is no social welfare function f that
simultaneously satisfies conditions U, WP, 1IA, and D.

Proof: The strategy of the proof is to show that conditions U, WP, and IIA imply the exis-
tence of a dictator. Consequently, if U, WP, and IIA hold, then D must fail to hold, and so
no social welfare function can satisfy all four conditions.

The proof, following Geanakoplos (1996), proceeds in four steps. Note that axiom U,
unrestricted domain, is used in each step whenever we choose or alter the preference profile
under consideration. Unrestricted domain ensures that every such profile of preferences is
admissible.

Step 1: Consider any social state, c. Suppose each individual places state c at the
bottom of his ranking. By WP, the social ranking must place c at the bottom as well. See
Fig. 6.2.

Step 2: Imagine now moving c to the top of individual 1’s ranking, leaving the rank-
ing of all other states unchanged. Next, do the same with individual 2: move cto the top of
2’s ranking. Continue doing this one individual at a time, keeping in mind that each of these
changes in individual preferences might have an effect on the social ranking. Eventually,
¢ will be at the top of every individual’s ranking, and so it must then also be at the top of
the social ranking by WP. Consequently, there must be a first time during this process that
the social ranking of c increases. Let individual n be the first such that raising c to the top
of his ranking causes the social ranking of c to increase.

R R ... BV R
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Figure 6.2. A consequence of I#Pand U in the proof of Arrow’s theorem.
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Figure 6.3. Axioms WP, U, and IIA yield a pivotal individual.

We claim that, as shown in Fig. 6.3, when ¢ moves to the top of individual n’s rank-
ing, the social ranking of ¢ not only increases but ¢ also moves to the fop of the social
ranking.

To see this, assume by way of contradiction that the social ranking of c increases,
but not to the top; i.e., « Bc and ckp for some states «,  # c.

Now, because c is either at the bottom or at the top of every individual’s ranking,
we can change each individual i’s preferences so that 8 P, while leaving the position of
c unchanged for that individual. But this produces our desired contradiction because, on
the one hand, 8 P« for every individual implies by WP that 8 must be strictly preferred to
o according to the social ranking; i.e., 8 Px. But, on the other hand, because the rankings
of crelative to « and of crelative to g have not changed in any individual’s ranking, /74
implies that the social rankings of crelative to « and of crelative to 8 must be unchanged;
i.e., as initially assumed, we must have « Fc and cRB. But transitivity then implies o RS,
contradicting B Px. This establishes our claim that ¢ must have moved to the top of the
social ranking as in Fig. 6.3.

Step 3: Consider now any two distinct social states a and b, each distinct from c. In
Fig. 6.3, change the profile of preferences as follows: change individual n’s ranking so that
aP"cP"b, and for every other individual rank aand b in any way so long as the position of ¢
is unchanged for that individual. Note that in the new profile of preferences the ranking of
ato cis the same for every individual as it was just before raising c to the top of individual
n's ranking in Step 2. Therefore, by IIA, the social ranking of a and ¢ must be the same as
it was at that moment. But this means that aPc because at that moment ¢ was still at the
bottom of the social ranking.

Similarly, in the new profile of preferences, the ranking of ¢ to b is the same for
every individual as it was just after raising c to the top of individual n’s ranking in Step 2.
Therefore by I74, the social ranking of ¢ and b must be the same as it was at that moment.
But this means that cPb because at that moment ¢ had just risen to the top of the social
ranking.

So, because aPcand cPb, we may conclude by transitivity that aPb. Note then that no
matter how the others rank a and b, the social ranking agrees with individual n’s ranking.
By IIA, and because a and b were arbitrary, we may therefore conclude that for all social
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states a and b distinct from ¢
aP"b implies aPb.

That is, individual nis a dictator on all pairs of social states not involving c. The final step
shows that individual nis in fact a dictator.

Step 4: Let a be distinct from ¢. We may repeat the above steps with a playing
the role of ¢ to conclude that some individual is a dictator on all pairs not involving a.
However, recall that individual n’s ranking of ¢ (bottom or top) in Fig. 6.3 affects the
social ranking of ¢ (bottom or top). Hence, it must be individual » who is the dictator on
all pairs not involving a. Because a was an arbitrary state distinct from c, and together with
our previous conclusion about individual n, this implies that nis a dictator. ]

Although here we have cast Arrow’s theorem as an ‘impossibility’ result, the proof
just sketched suggests it can also be stated as a ‘possibility’ result. That is, we have shown
that any social welfare function satisfying the three conditions U, WP, and IIA must yield
a social preference relation that exactly coincides with one person’s preferences whenever
that person’s preferences are strict. As you are asked to explore in Exercise 6.3 this leaves
several ‘possibilities’ for the social welfare function, although all of them are dictatorial
according to condition D.

6.2.1 A DIAGRAMMATIC PROOF

The importance of Arrow’s theorem warrants presenting another proof. Our second proof
will be diagrammatic, dealing with the case of just two individuals. Together, we hope that
the two proofs provide useful insight into the nature of this remarkable result.!

We shall depart from the setup of the previous section in several ways. First, we shall
assume that X contains not just three or more social states, but infinitely many. Indeed, we
assume that X is a non-singleton convex subset of RX for some K > 1.2

Second, we assume that the individual preferences R’ on X can be represented
by continuous utility functions, #': X — R. Thus, our domain of preferences is not
completely unrestricted.?

Third, we assume that the social welfare function, f, maps profiles of contin-
uous individual utility functions u(-) = (¢'(-), ..., u"(-)) into a continuous utility func-
tion for society. Therefore, £(u'(-), ..., u"(-)) is a social utility function and [£(z' (), ...,
uV(-))1(x) is the utility assigned to the social state x. Note that the utility assigned to
x, namely [F(d (), ..., dY()](x), can in principle depend upon each individual’s entire
utility function u'(-) and not just the utility (x) that each individual assigns to x.

IThe diagrammatic idea of this proof is due to Blackorby, Donaldson, and Weymark (1984).

2This assumption can be weakened substantially. For example, the argument we shall provide is valid so long as
X < RX contains a point and a sequence of distinct points converging to it.

31f X were finite, every R’ would have a utility representation and every utility representation would be continu-
ous. Hence, in the finite case, assuming continuity does not restrict the domain of preferences at all. This is why
we assume an infinite X here, so that continuity has ‘bite’.
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For each continuous u(-) = (2 (-), ..., uV(-)) we henceforth let £ denote the social
utility function £(u'(-), ..., uV(-)) and we let £ (x) = [f(u'(-), ..., u¥(-))](x) denote the
utility assigned to x € X.

To maintain the idea that the social preference relation is determined only by the indi-
vidual preference relations, B’ — an idea that is built into the previous section’s treatment
of Arrow’s Theorem - it must be the case that the ordering of the social states according
to fy = £(u'(-), ..., u"V(-)) would be unchanged if any u/(-) were replaced with a utility
function representing the same preferences. Thus, because two utility functions represent
the same preferences if and only if one is a strictly increasing transformation of the other,
the social welfare function f must have the following property: if for each individual J,
u': X — R is continuous and /’: R — R is strictly increasing and continuous, then

fu(x) > fy(py) if and only if fyou(X) > fyou(p), 6.1)

where ¥ ou(:) = (Y1), ..., v N@V())). That is, f must be order-invariant to
strictly increasing continuous transformations of individual utility functions, where only
continuous transformations ¥/ are considered to ensure that the transformed individual
utility functions remain continuous.

Condition U in this setup means that the domain of f is the entire set of profiles
of continuous individual utility functions. Condition /JA means precisely what it meant
before, but note in particular it implies that whether £, (x) is greater, less, or equal to £ ()
can depend only on the vectors u(x) = (1! (»). ..., dV(x) and u(y) = (W' (y). .... " (p)
and not on any other values taken on by the vector function u(-) = @), ..., uv)s
The meanings of conditions WP and D remain as before.

Consider now imposing the following additional condition on f.

PL.  Pareto Indifference Principle.  Ifv'(x) = u/(y) foralli=1, ..., N, then fy(x) =
fa(p).

The Pareto Indifference Principle requires society to be indifferent between two
states if each individual is indifferent between them.

It can be shown (see Exercise 6.4 and also Sen (1970a)) that if f satisfies U, IIA,
WP, and PI, then there is a strictly increasing continuous function, W: RY — R, such
that for all social states x, y, and every profile of continuous individual utility functions

u() = @) w0,
f(x) > fu(p ifand onlyif W', ..., d"w) = W'y, ....d" ). 6.2
Condition (6.2) says that the social welfare function f can be summarised by a

strictly increasing and continuous function W - that we will also call a social welfare
function - that simply orders the vectors of individual utility numbers corresponding to

4As already noted, the social utility, % (x), assigned to the alternative x might depend on each individual’s
entire utility function. //A goes a long way towards requiring that £, (x) depend only on the vector of utilities

ww,..., N ().
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the alternatives. Consequently, we may restrict our attention to this simpler yet equivalent
form of a social welfare function. It is simpler because it states directly that the social
utility of an alternative depends only on the vector of individual utilities of that alternative.

Our objective now is to deduce the existence of a dictator from the fact that W/
satisfies (6.2).

The property expressed in (6.1) that £ is order-invariant to continuous strictly increas-
ing transformations of individual utility functions has important implications for the
welfare function W. For suppose (', ..., ") and (@', ..., #") are utility vectors asso-
ciated with two social states x and y. Combining (6.1) with (6.2) implies that I#’s ordering
of RY must be invariant to any continuous strictly increasing transformation of individual
utility numbers. Therefore if I¥ ranks x as socially better than y, i.e., if

wad, ..., ") > wa@, ..., ",

then we must also have,
wtay, ... VW) > wtah, ... pNaYy)

for any N continuous strictly increasing functions, vi:R—>R, i=1,2,...,N.
Appreciating this is key to the argument that follows.

For the diagrammatic proof we assume that N = 2 so we can work in the plane.

To begin, consider an arbitrary point u in Fig. 6.4, and try to imagine the social
indifference curve on which it lies. For reference, the utility space has been divided into
four regions relative to u, where the regions do not include the dashed lines. First, note
that, by WP, all points in region I must be socially preferred to u. Similarly, u must be
socially preferred to all points in region III. Our problem, then, is to rank points in II, IV,
and the excluded boundaries, relative to u.

111 v

Figure 6.4. A diagrammatic proof of Arrow’s theorem.
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Now consider an arbitrary point @ in II. One of the following must hold

W) > W), (6.3)
W) = W), (6.4)
W) < W). (6.5)

Suppose for the moment that W(u) < W(a). Then because W’s ordering of RY is invari-
ant to continuous strictly increasing transformations of utilities, that same ranking must be
preserved when we apply any continuous strictly increasing transformations to the indi-
viduals’ utilities. Suppose we choose two strictly increasing functions, /! and v2, where
ylah =2,
vEE) = i
Now apply these functions to the coordinates of the point ui. Because 1 is in region II, we

know that i' < &' and i > 7. Then because the 1; are strictly increasing, when applied
to u, we must have

P =yl@h) <yl@) =a, (6.6)
7 =yi(@) > vi@) = . (6.7)

Equations (6.6) and (6.7), together, inform us that the point v = (¥, ) must be some-
where in region II, as well. Because we have complete flexibility in our choice of the
continuous strictly increasing v/, we can, by an appropriate choice, map u into any point
in region /1.5 But then because the social ranking of the underlying social states must
be invariant to such transforms of individuals’ utility, every point in region II must be
ranked the same way relative to u! If, as we supposed, W(u) < W(u), then every point
in region II must be preferred to u. Yet nowhere in the argument did we use the fact
that IW(a) < W(a). We could have begun by supposing any of (6.3), (6.4), or (6.5), and
reached the same general conclusion by the same argument. Thus, under the invariance
requirements on individual utility, every point in region II must be ranked in one of three
ways relative to u: either u is preferred, indifferent to, or worse than every point in region
II. We will write this as the requirement that exactly one of the following must hold:

W) > W), (6.8)
W) = WD, (6.9)
W) < wdn. (6.10)

Note that (6.9) certainly cannot hold, for this would mean that all points in region
II, being indifferent (under I¥) to w, are indifferent to one another. But this contradicts

5For example, to obtain y/(ir') = i’ and /(i) = u’ we can choose the continuous function
) - d -,
(h=|—= | ¢t - N
vo=[E=] [ 250
which is the form v/(f) = ot + . Note that for any choice of (u', 1) in region I, o', & > 0.
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W being strictly increasing because the point v >> @ in region II (see Fig. 6.4) is strictly
preferred to u.

So, either W(u) > W(II) or W(a) < W(II). By a parallel argument to the one just
given, we could consider points in region IV and show that either W(u) > W({IV) or
Wwm) < WAV).

Now, suppose that W(a) < W(II). Then, in particular, W(u) < W@ — 1,7 +1).
Consider the pair of strictly increasing functions ¥!(u') = u! + 1, y2(i) = o — 1.
Applying these tow and (' — 1, 77 + 1) maps them into the points (z' + 1, 77 — 1) and 1,
respectively. But because ¥ must be order-invariant to such transforms, these images must
be ordered in the same way as their inverse images are ordered. Consequently, we must
have W(i! 4 1, 7# — 1) < W(a). But this means that i is strictly socially preferred to the
point (2! 4 1, % — 1) in region IV. Consequently, @ must be strictly socially preferred to
every point in region IV.

So, we have shown that if W(w) < W(I), then W(a) > W(IV). A similar argument
establishes that if W(u) > W(II), then W(a) < W(IV). Altogether, we have so far shown
that

either W(1V) < W) < wdl), (6.11)
or wal < W) < Wav). (6.12)

Now, note that if adjacent regions are ranked the same way relative to u, then the
dashed line separating the two regions must be ranked that same way relative to u. For
example, suppose regions I and II are ranked above u. Since by WP any point on the
dashed line above u is ranked above points in region II that lie strictly below it, transitivity
implies this point on the dashed line must be ranked above u.

Consequently, if (6.11) holds, then because region I is ranked above u and region III
is ranked below, the social ranking must be as given in Fig. 6.5(a), where ‘+’ (‘—’) denotes

u2 ll2
\
+ + + + — — — + +
+ + + — — — + +
u _
—-0—0—1—0—0—0—0—0——0—0—0— — — — u + +
— — — — — — — + +
— — — - — — — + +
> ul ~t 3= ul
— v — — — — — — i + +
(a) (b)

Figure 6.5. Social welfare possibilities under Arrow’s conditions.
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utility vectors u = (ut, ?) with W(u) greater than (less than) I#/(w). But the continuity of
W then implies that the indifference curve through u is a horizontal straight line. On the
other hand, if instead (6.12) holds so that Fig. 6.5(b) is relevant, then the indifference curve
through @ would be a vertical straight line.

So, because u was arbitrary, we may conclude that the indifference curve through
every utility vector is either a horizontal or a vertical straight line. However, because indif-
ference curves cannot cross one another, this means that either a/l indifference curves are
horizontal straight lines, in which case individual 2 would be a dictator, or a/l indifference
curves are vertical straight lines, in which case individual 1 is a dictator. In either case, we
have established the existence of a dictator and the proof is complete.

6.3 MEASURABILITY, COMPARABILITY, AND SOME POSSIBILITIES

Arrow’s theorem is truly disturbing. A very careful look at each of his requirements should
impress you with their individual reasonableness and their collective economy. Only the
very bold can be sanguine about dropping or relaxing any one of them. Yet the import of
the theorem is that this is precisely what we must be prepared to do.

There have been various attempts to rescue social welfare analysis from the grip of
Arrow’s theorem. One has been to relax the requirements that must be satisfied by the
social relation R. For example, replacing transitivity of F with a weaker restriction called
‘acyclicity’, and replacing the requirement that £ order all alternatives from best to worse
with the simpler restriction that we be merely capable of finding a best alternative among
any subset, opens the way to several possible choice mechanisms, each respecting the rest
of Arrow’s conditions. Similarly, if transitivity is retained, but condition U is replaced with
the assumption that individual preferences are ‘single-peaked’, Black (1948) has shown
that majority voting satisfies the rest of Arrow’s conditions, provided that the number of
individuals is odd!

Another approach has proceeded along different lines and has yielded interesting
results. Rather than argue with Arrow’s conditions, attention is focused instead on the
information assumed to be conveyed by individuals’ preferences. In Arrow’s framework,
only the individuals’ preference relations, !, are used as data in deriving the social prefer-
ence relation R = f(R!, ..., RV). Thus, if a society wants to implement , it would obtain
from each individual his ranking of the states from best to worst. From this data alone
f would provide a ranking of the social states. Obviously, this process yields no infor-
mation whatsoever about the strength of any particular individual’s preferences for x in
comparison to another individual’s preference for y, nor does it yield any information
about how much more one individual favours x over y in comparison to how much more
another individual favours y over x. By design, Arrow’s approach does not consider such
information.

The alternative is to think about what would occur if such information were con-
sidered. Before merely pushing forward, a warning is in order. The idea that ‘intensity of
preference’ can be compared in a coherent way across individuals is controversial at best.
Nonetheless, the alternative approach to social choice that we are about to explore takes as
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a starting point — as an assumption - that such comparisons can be made in a meaningful
way. We shall not attempt to justify this assumption. Let us just see what it can do for us.

The basic references for this line of work include Hammond (1976), d’ Aspremont
and Gevers (1977), Roberts (1980), and Sen (1984). Here, we will only consider a few of
their findings to try and get the flavour.

To get us started, consider a situation with just two individuals. Suppose that individ-
ual 1 prefers state xto yand that individual 2 prefers yto x. In such a symmetric situation,
more information might be useful in order to make a social choice. Indeed, suppose for
example that society wishes to make its least well off individual as well off as as possible.
It would then be useful to know whether individual 1’s welfare from the state that he least
prefers, namely y, is greater than 2’s welfare from the state he least prefers, namely x.
Suppose — and here is the important assumption - that the individual utility numbers pro-
vide this information. That is, suppose that s utility function is u/(-), that u! (y) is greater
than «2(x), and that this is interpreted to mean that 1 is better off at y than 2 is at x.
Armed with the additional information that the least well off individual is better off at y
than at x, this society’s social welfare function ranks y strictly above x.

Next, suppose that the two individual utility functions are vl(-) and v?(-) and that it
is still the case that 1 prefers x to y and 2 prefers yto x, but now v!(y) is less than v?(x).
That is, it is now the case that 1 is worse off at y than 2 is at x. Because the least well
off individual is better off at x, this society now strictly prefers x to y even though the
individual rankings over x and y did not change.

The point of this example is to demonstrate that if utilities carry more meaning
than simply the ranking of states, then the social welfare function need not be invariant
to strictly increasing utility transformations. The reason is that while strictly increasing
transformations preserve utility comparisons between states for each individual separately,
they need not preserve utility rankings between states across individuals. To guarantee that
YW (x)) > ¥/ (/(y)) whenever t/(x) > /(y), the utility transformations v’ and v~/ must
be strictly increasing and identical, i.e., ¥/ = v+/. Thus, the social welfare function £ would
need to be invariant only to strictly increasing utility transformations that are identical
across individuals. This more limited set of restrictions allows more possibilities for f and
a chance to avoid the impossibility result. When a social welfare function £ is permitted to
depend only on the ordering of utilities both for and across individuals, it must be invariant
to arbitrary, but common, strictly increasing individual utility transformations. We will
then say that f is utility-level invariant.

A second type of information that might be useful in making social choices is a
measure of how much individual 7 gains when the social state is changed from x to y
in comparison to how much individual j loses. In this case it is assumed that individual
7's gain in the move from x to y is the difference in his utilities #/(y) — v/(x) and that
u'(y) — '(x) > /(x) — t/(y) means that 7's gain is at least as large as j's loss. Again, if a
social welfare function is permitted to take such information into account then it need not
be invariant to utility transformations that fail to preserve this information. It is not difficult
to see that in order to preserve comparisons of utility differences across individuals, each
individual 7's utility transformation must be of the form v/(u) = a' 4 bu', where b > 0 is
common to all individuals.
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DEFINITION 6.2

When a social welfare function f is permitted to depend only on the ordering of
utility differences both for and across individuals, it must be invariant to arbitrary strictly
increasing individual utility transformations of the form v(v) = a' + bu/, where b > 0.
We’ll then say that f is utility-difference invariant.

Other forms of measurability and interpersonal comparability can be imagined and
combined in various ways, but we just stick with the two considered above. For later ref-
erence, we summarise the previous discussion as follows, where a social welfare function
f maps profiles of utility functions into a social utility function.

Measurability, Comparability, and Invariance

1. A social welfare function f is utility-level invariant if it is invariant to arbitrary,
but common, strictly increasing transformations  applied to every individual’s
utility function. Hence, f is permitted to depend only on the ordering of utilities
both for and across individuals.

2. A social welfare function f is utility-difference invariant if it is invariant to strictly
increasing transformations of the form '(u) = a' + bu', where b > 0 is com-
mon to each individual’s utility transformation. Hence, f is permitted to depend
only on the ordering of utility differences both for and across individuals.

Throughout the remainder of this section we will assume that the set of social states
X is a non-singleton convex subset of Euclidean space and that all social choice func-
tions, £, under consideration satisfy strict welfarism (i.e., U, WP, IIA, and PI), where U
means that £ maps continuous individual utility functions into a continuous social utility
function.® Consequently (see (6.2) and Exercise 6.4) we may summarise f with a strictly
increasing continuous function I¥: RV— R with the property that for every continuous
u(-) = ('), ..., uV(-)) and every pair of states xand y,

f(x) > fi(y) ifand only if W(u'(x),..., M) = Wat(y),.... d"(y),

where we remind the reader that £ (x) is the social utility assigned to x when the profile of
individual utility functions is u(-) = (u!(-), ..., #V()).

The extent to which utility is assumed to be measurable and interpersonally compa-
rable can best be viewed as a question of how much information society uses when making
social decisions. This is quite distinct from the kind of ethical restrictions a society might
wish those decisions to respect. There is, of course, some ethical content to the conditions
U, WP, IIA and PI embodied in strict welfarism. However, a society may be willing to go
further and build even more ethical values into its social welfare function. Each amounts
to imposing an extra requirement on the strictly increasing and continuous social welfare
function, IW. Here, we consider only two.

6Sen (1970a) defines £ to satisfy welfarism if f satisfies U, IIA, and PL
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Two More Ethical Assumptions on the Social Welfare Function

A. Anonymity. Let u be a utility N-vector, and let u be another vector obtained
fromu after some permutation of its elements. Then W(an) = W(u).

HE. Hammond Equity. Let w and w be two distinct utility N-vectors and suppose
that uk = i* for all k exceptiand j. If ¥ < i < W/ < W, then W(i) > W(u).

Condition A simply says people should be treated symmetrically. Under A, the rank-
ing of social states should not depend on the identity of the individuals involved, only the
levels of welfare involved. Condition HE is slightly more controversial. It expresses the
idea that society has a preference towards decreasing the dispersion of utilities across indi-
viduals. (Note that there is less dispersion of utilities under u than under a. Nevertheless,
can you think of why one might object to ranking u above u?) In what follows, we use these
conditions to illustrate how some well-known social welfare functions can be characterised
axiomatically.

6.3.1 THE RAWLSIAN FORM

In the ethical system proposed by Rawls (1971), the welfare of society’s worst-off member
guides social decision making. In the following theorem, we give an axiomatic character-
isation of this criterion of social welfare. The proof we provide is diagrammatic and so
again we restrict ourselves to the case of N = 2.7

Rawlsian Social Welfare Functions

A strictly increasing and continuous social welfare function W satisfies HE if and only if
it can take the Rawlsian form, W = min[d', . . ., u"V]. Moreover, W then satisfies A and is
utility-level invariant.

Proof: Suppose that ¥ is continuous, strictly increasing and satisfies HE. We must show
that it can take the form W= min[d', ..., "], ie., that W(a) > W(a) if and only if
min[z!, ..., "] > min[@', ..., @"].

We prove this diagrammatically only for N = 2 by once again characterising the
map of social indifference curves. Consult Fig. 6.6 throughout the proof. To begin, choose
an arbitrary point a on the 45° line and consider the infinite ray extending from a to the
right. We shall first argue that every point on this ray is socially indifferent to a according
to W.

Consider an arbitrary point u = (@', %) on the ray. We wish to show that W(a) =
W(a). Let region I denote the region to the left of w below the 45° and above the ray, and
let region /I denote the region to the left of u below the 45° line and below the ray. Thus
the ray is in neither region. Consider now an arbitrary point i = (&', #?) in region 1. One
can easily see that to be in 7, @ must satisfy the inequalities i < i# < ' < @'. (Think

"For N > 2, see Exercise 6.8 and also Hammond (1976).
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Figure 6.6. Proof of Theorem 6.2. 2

II

45°

about this.) But then HE implies that W(i) > W(u). Since @ was an arbitrary point in /,
the social utility of every point in [ is at least W(a), which we write as W(I) > W(u).® As
for region /I, we must have W(II) < W(u) because every point in region I/ is south-west
of wand W is strictly increasing. Thus, we have shown that,

Wi = W) > WI). (P1)

Notice now that for every point on the line joining a and u there are arbitrarily
nearby points in region / each of which we have shown to receive social utility at least
W() and there are arbitrarily nearby points in region /I each of which we have shown to
receive social utility less than W(ir). Hence, by the continuity of ¥, every point on the line
joining a and @ must receive social utility equal to W(w). In particular, W(a) = W(u), as
we wished to show. Because u was an arbitrary point on the infinite ray starting at a and
extending rightwards, we conclude that every point on this ray is socially indifferent to a.

An analogous argument to that just given shows also that every point on the infi-
nite ray starting at a and extending upwards is also socially indifferent to a. Because W
is strictly increasing, no other points can be indifferent to a and therefore the union of
these two rays is the social indifference curve through a. Because a was an arbitrary point
on the 45° line, the social indifference map for W is therefore as shown in Fig. 6.7, with
indifference curves further from the origin receiving higher social utility because W is
strictly increasing. Thus I¥ has the same indifference map as the function min[u!, 1], as
desired.

Finally, we note that if W =min[«', ..., u"] then A and HE are easily shown to
be satisfied. Moreover, if ¢ : R — R is strictly increasing, then Wy (db), ..., v @) =
v (W, ..., d")) and therefore W(y (db), ..., v (@) = Wy @), ..., v (@) if and
only if W(u!, ..., u") > W(@, ..., #"). Hence, Wis utility-level invariant. ]

81n fact, W(I) > W(ii) because N = 2 and W is strictly increasing, but we will not need the strict inequality.
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=1

45° > ul

Figure 6.7. Social indifference curves for the
(Rawlsian) social welfare function.

6.3.2 THE UTILITARIAN FORM

The utilitarian form is by far the most common and widely applied social welfare func-
tion in economics. Under a utilitarian rule, social states are ranked according to the linear
sum of utilities. When ranking two social states, therefore, it is the linear sum of the indi-
vidual utility differences between the states that is the determining factor. Consequently,
statements of the form ‘in the move from x to y, individual 1 gains more than individual 2’
must be meaningful. Thus, utility differences must be comparable both for and across indi-
viduals and so we expect the utilitarian social choice function to be related to the property
of utility-difference invariance. The theorem to follow shows that this is indeed the case.
Once again, our proof covers the N = 2 case, the extension to V > 2 being straightforward.

Utilitarian Social Welfare Functions

A strictly increasing and continuous social welfare function W satisfies A and utility-
difference invariance if and only if it can take the utilitarian form, W =% | u'.

Proof: It is clear that if W= "%, then the conditions of the theorem are satisfied. It
remains to show the converse. We will give a diagrammatic proof for the two-person case,
but this can be extended to any number of individuals.

In Fig. 6.8, choose any point @ = (u!, %) lying along the 45° line. Define the
constant, y = u! 4 77 and consider the set of points Q@ = {(u!, 1?) | u! 4+ 1? = y}. These
are all the points lying on a straight line through u with a slope of —1. Choose any point
in ©, distinct from i, such as ii. Point @i’ is obtained by permuting the element of @, and
so u! = (#, ') must also be in €. By condition A, @ and @7 must be ranked the same
way relative to u.

Now suppose that W(u) > W(w). Under utility-difference dependence, this ranking
must be invariant to transformations of the form o+ bif. Let vi(d) = (¥ — ¥) + o,
for i=1, 2. Note carefully that both of these are in the allowable form. Taking note
that 2%/ = ii' 4 i# because i is on the 45° line and both @ and @ are in 2, we apply
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Figure 6.8. The utilitarian social welfare function. W2
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these transforms to @ and obtain (v!1(@!), ¥2(i?)) = u, and apply them to a to obtain
(@), v?(?)) = al. So, these transforms map i into @ and map @ into @’. Thus, if
W) > W(u), as we have assumed, then by the invariance requirement, we must likewise
have W(@") > W(u). But together these imply W(@’) > W(ii), violating A, so W(a) >
W() cannot hold. If, instead, we suppose W(u) > W(u), then by using a similar argu-
ment, we get a similar contradiction. We therefore conclude that W(a) = W(u). Condition
Athen tells us W(ii") = W(a) = W(a). Now recall that @ was chosen arbitrarily in €2, so
the same argument can be made for any point in that set, and so we have W(2) = W(u).

Because IV is strictly increasing, every point north-east of Q must be strictly pre-
ferred to every point in Q, and every point south-west must be strictly worse. Thus, €2
is indeed a social indifference curve, and the social indifference map is a set of parallel
straight lines, each with a slope of —1, with social preference increasing north-easterly.
This, of course, implies the social welfare function can be chosen to be of the form
W = u' + #, completing the proof. |

If we drop the requirement of anonymity, the full range of generalised utilitar-
ian orderings is allowed. These are represented by linear social welfare functions of
the form W= Y";a't', where a’ > 0 for all i and & > 0 for some j. Under generalised
utilitarian criteria, the welfare sum is again the important issue, but the welfare of different
individuals can be given different ‘weight’ in the social assessment.

6.3.3 FLEXIBLE FORMS

To some extent, the greater the measurability and comparability of utility, the greater the
range of social welfare functions allowed. For example, suppose that the social welfare
function can depend upon the ordering of percentage changes in utility both for and across
individuals, i.e., that information such as ‘in going from xto y, the percentage increase in
I's utility is greater than the percentage loss in ;s utility’, namely,

w(x) — u(y) _ (X — Uy
U (x) w(x)
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matters. Then the social welfare function need not be invariant to strictly increasing trans-
formations unless they are identical and linear, (i.e., 1 (u) = bu', where b > 0 is common
to all individuals) because only these are guaranteed to maintain the ordering of percent-
age changes in utility both for and across individuals. If the social welfare function f is
permitted to depend only on the ordering of percentage changes in utility for and across
individuals, then it must be invariant to arbitrary, but common, strictly increasing indi-
vidual transformations of utility of the form v (uf) = bu, where b > 0 is common to all
individuals and we will then say that f is utility-percentage invariant.

Consequently, both the Rawlsian and utilitarian social welfare functions are permit-
ted here. Indeed, a whole class of social welfare functions are now admitted as possibilities.
When a continuous social welfare function satisfies strict welfarism, and is invariant to
identical positive linear transformations of utilities, social indifference curves must be
negatively sloped and radially parallel.

To see this, consider Fig. 6.9. First, choose an arbitrary point u. Clearly, as in
the example sketched, the social indifference curve through u must be negatively sloped
because, by strict welfarism, ¥ is strictly increasing. Now choose any other point on the
ray OA through u. This point must be of the form i for some constant b > 0. Now choose
any other point u such that W(u) = W(u). By the invariance requirement, we must also
have W(ba) = W(bu), where u and bu are on the ray OB, as indicated.

We want to show that the slope of the tangent to the social indifference curve at
u is equal to the slope of the tangent at bu. First, note that the slope of the chord CC
approximates the slope of the tangent at @, and the slope of the chord DD approximates
the slope of the tangent at bu. Because the triangles OCC and ODD are similar, the slope
of CC is equal to the slope of DD. Now imagine choosing our point @ closer and closer
to u along the social indifference curve through u. As u approaches u, correspondingly bt
approaches bii along the social indifference curve through b, and the chords CC and DD
remain equal in slope. In the limit, the slope of CC converges to the slope of the tangent at
i1, and the slope of DD converges to the slope of the tangent at bii. Thus, the slope of the

Figure 6.9. Radially parallel >
social indifference curves.
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social indifference curve at u must be equal to the slope of the curve at bii. Because u and
b > 0 were arbitrarily chosen, the slope of every social indifference curve must be the same
at every point along a given ray, though, of course, slopes can differ across different rays.

A function’s level curves will be radially parallel in this way if and only if the func-
tion is homothetic. Thus, strict welfarism and utility-percentage invariance allow any con-
tinuous, strictly increasing, homothetic social welfare function. If condition A is added, the
function must be symmetric, and so its social indifference curves must be ‘mirror images’
around the 45° line. Sometimes a convexity assumption is also added. When the social wel-
fare function is quasiconcave the ‘socially at least as good as’ sets are convex, and the ethi-
cal implication is that inequality in the distribution of welfare, per se, is not socially valued.
Under strict quasiconcavity, there is a strict bias in favour of equality. (Do you see why?)

Because every homothetic function becomes a linear homogeneous function under
some positive monotonic transform, for simplicity let us think in terms of linear homoge-
neous forms alone. Finally, suppose in addition to IWP, A, and convexity, we add the strong
separability requirement that the marginal rate of (social) substitution between any two
individuals is independent of the welfare of all other individuals. Then the social welfare
function must be a member of the CES family:

N 1/p
W= (Z(uf)ﬂ) : (6.13)
=1

where 0 # p < 1, and 0 =1/(1 — p) is the (constant and equal) elasticity of social
substitution between any two individuals.

This is a very flexible social welfare function. Different values for p give different
degrees of ‘curvature’ to the social indifference curves, and therefore build in different
degrees to which equality is valued in the distribution of welfare. Indeed, the utilitarian
form - which implies complete social indifference to how welfare is distributed - can
be seen as a limiting case of (6.13) as p — 1 (60 — 0). As p - —o0 (0 — 0), (6.13)
approaches the Rawlsian form, where the social bias in favour of equality is absolute. The
range of possibilities is illustrated in Fig. 6.10.

p—1 —o<p<l

(a) (b) (c)
Figure 6.10. CES social welfare functions.
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Beyond the technical question of what must be assumed in the way of measurability and
comparability of utility to sensibly apply a given social welfare function, there is the basic
reality that the choice among such functions is effectively a choice between alternative sets
of ethical values. On this score, then, matters of opinion really are involved. They rightfully
belong in the very first stage of any analysis aimed at assessing the social significance of
economic policies or institutions, when the choice of social welfare function is made.

The literature in economics and the literature in philosophy - one and the same in
the days before Adam Smith - have combined again more recently to jointly consider the
moral character of the choice that must be made. Guidance has been sought by appeal
to axiomatic theories of justice that accept the social welfare approach to social decision
making. Two broad historical traditions on these questions can be distinguished. One is
the utilitarian tradition, associated with Hume, Smith, Bentham, and Mill. The other is the
‘contractarian’ tradition, associated with Locke, Rousseau, and Kant. More recently, these
two traditions have been refined and articulated through the work of Harsanyi (1953, 1955,
1975) and Rawls (1971), respectively.

Both Harsanyi and Rawls accept the notion that a ‘just’ criterion of social welfare
must be one that a rational person would choose if he were ‘fair-minded’. To help ensure
that the choice be fair-minded, each imagines an ‘original position’, behind what Rawls
calls a “veil of ignorance’, in which the individual contemplates this choice without know-
ing what his personal situation and circumstances in society actually will be. Thus, each
imagines the kind of choice to be made as a choice under uncertainty over who you will
end up having to be in the society you prescribe. The two differ, however, in what they see
as the appropriate decision rule to guide the choice in the original position.

Harsanyi’s approach is remarkably straightforward. First, he accepts the von
Neumann-Morgenstern axiomatic description of rationality under conditions of uncer-
tainty. Thus, a person’s preferences can be represented by a VNM utility function over
social states, u/(x), which is unique up to positive affine transforms. By the principle of
insufficient reason, he then suggests that a rational person in the original position must
assign an equal probability to the prospect of being in any other person’s shoes within the
society. If there are NV people in society, there is therefore a probability 1/A that 7 will
end up in the circumstances of any other person j. Person 7 therefore must imagine those
circumstances and imagine what his preferences, /(x), would be. Because a person might
end up with any of N possible ‘identities’, a ‘rational’ evaluation of social state x then
would be made according to its expected utility.

N
> (/M (x). (6.14)
i=1
In a social choice between x and y, the one with the higher expected utility in (6.14) must
be preferred. But this is equivalent to saying that x is socially preferred to y if and only if

N . N .
Y o dx =Y dp.
=1 =1

a purely utilitarian criterion.
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Rawls rejects Harsanyi’s utilitarian rule for several reasons. Among them, he objects
to the assignment of any probability to the prospect of being any particular individual
because in the original position, there can be no empirical basis for assigning such prob-
abilities, whether equal or not. Thus, the very notion of choice guided by expected utility
is rejected by Rawls. Instead, he views the choice problem in the original position as one
under complete ignorance. Assuming people are risk averse, he argues that in total igno-
rance, a rational person would order social states according to how he or she would view
them were they to end up as society’s worst-off member. Thus, x will be preferred to y as

min[u' (%), ..., BV (@] > min[d!(p), ..., ()], (6.15)

a purely maximin criterion.

Ultimately, then, Rawls’ own argument for the maximin over the utilitarian rests on
the view that people are risk averse. But this cannot be a wholly persuasive argument,
as Arrow (1973) has pointed out. For one thing, the VNM utility functions in Harsanyi'’s
construction can be thought to embody any degree of risk aversion whatsoever. Thus, in
Harsanyi’s framework, nothing precludes individuals from being risk averse in the original
position. Moreover, one need not reject the expected utility rule as a basis for choice to
arrive at Rawls’ criterion.

To see this, take any utility function u/(x) over social states with certainty. These
same preferences, of course, can be represented equally well by the positive monotonic
transform, v/(x) = —u'(x)~%, where a > 0. Now suppose V(x) is /'s VNM utility function
over uncertain prospects. It is easy to convince yourself that the degree of risk aversion dis-
played by v(x) is increasing in the parameter a. Now suppose, as Harsanyi does, (1) equal
probabilities of having any identity, (2) an ordering of social states according to their
expected utility, and so (3) a social welfare function

N N
W= Z Vix) = — Z d(x) =2 (6.16)
=1 =1

Because the ordering of states given by (6.16) has only ordinal significance, it will be
exactly the same under the positive monotonic transform of I¥ given by

N —1/a
W= (—w)~1/a = (Z u"(x)—a> (6.17)
=1

For p = —a < 0, this is in the form of (6.11). We have already noted that as p — —oo
(a — 00), this approaches the maximin criterion (6.13) as a limiting case. Thus, Rawls’
maximin criterion — far from being incompatible with Harsanyi’s utilitarianism - instead
can be seen as a very special case of it, namely, the one that arises when individuals are
infinitely risk averse.

On reflection, this makes a good deal of sense. Maximin decision rules are appealing
in strategic situations where the interests of some rational and fully informed opponent
are diametrically opposed to your own. In the kind of thought experiment required in
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the original position, there is little obvious justification for adopting such a decision rule,
unless, of course, you are extremely (irrationally?) pessimistic.

Once again, your choice of social welfare function is a choice of distributional values
and, therefore, a choice of ethical system. The choice is yours.

6.5 SociAL CHOICE AND THE GIBBARD-SATTERTHWAITE THEOREM

DEFINITION 6.4

Up to this point in our analysis of the problem of social welfare, we have focused solely
on the task of aggregating the preferences of many individuals into a single preference
relation for society. This task, as we have seen, is a formidable one. Indeed, it cannot be
carried out if we insist on all of Arrow’s conditions.

Implicit in our analysis has been the assumption that the true preferences of each
individual can be obtained and that society’s preferences are then determined according to
its social welfare function. But how, exactly, does society find out the preferences of its
individual members? One possibility, of course, is to simply ask each individual to report
his ranking of the social states. But this introduces a serious difficulty. Individuals would
be better off lying about their preferences than reporting them truthfully if a false report
leads to a better social state for them.’ Thus, in addition to the problem of coherently
aggregating individual rankings into a social ranking, there is the problem of finding out
individual preferences in the first place. The purpose of this section is to address this latter
issue head on.

Throughout this section the set of social states, X, is finite and each of the N indi-
viduals in society is permitted to have any preference relation at all on X. Thus, we are
assuming unrestricted domain, U. Because the purpose of a social ranking of the states in X
is presumably to allow society to make a choice from X, let us focus on that choice directly.
Specifically, for each profile of individual rankings R = (R!, ..., RV), let c(R) € X denote
society’s choice from X. We will assume that the range of c(-) is all of X. That is, for every
social state x € X there is some profile of preferences R such that c(R) = x. Otherwise, we
could just as well eliminate the social state x from the set X. Any function c(-) mapping
all profiles of individual preferences on X into a choice from X, and whose range is all of
Xis called a social choice function.'”

Once again, we would like to avoid dictatorship and in the context of social choice
functions a dictatorship is defined in the following natural way.

Dictatorial Social Choice Function

A social choice function c(-) Is dictatorial if there is an individual i such that whenever
(R, ..., RN) = xitis the case that xR'y for every y € X.

9 Another possibility is to attempt to infer an individual’s preferences from his observed choice behaviour. But
this too is problematic since an individual can alter his choice behaviour to profitably portray to society false
preferences.

10Not all treatments of this topic include the full range condition in the definition of a social choice function,
choosing instead to add the range condition separately. The present treatment is more convenient for our purposes.
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Fix for the moment the preference profile, R/, of all individuals but i and consider
two possible preferences, R’ and R/, for individual 7. Let c(R, R™%) = xand c(F, R™) =
7. Altogether then, we have a situation in which, when the others report the profile R,
individual i by choosing to report either B or B’ can choose to make the social state
either x or y. When would individual 7 have an incentive to lie about his preferences? Well,
suppose his true preferences happen to be R and that given these preferences he strictly
prefers y to x. If he reports honestly, the social state will be x. But if he lies and instead
reports R/, the social state will be y, a choice he strictly prefers. Hence, in this case, he has
an incentive to misreport his preferences.

What property would a social choice function have to have so that under no circum-
stance would any individual have an incentive to misreport his preferences? It must have
the following property called strategy-proofness.

Strategy-Proof Social Choice Function

A social choice function c(-) is strategy-proof when, for every individual, i, for every pair R
and R' of his preferences, and for every profileR™" of others’ preferences, if c((R', R™") = x
and c(R', R™") =y, then xR'y.

Definition 6.5 rules out exactly the situation described above and, with a little
thought, you will convince yourself that if a social choice function is strategy-proof, no
individual, no matter what his preferences might be, can ever strictly gain by misreporting
his preferences no matter what the others report - even if the others lie about their pref-
erences. Conversely, if a social choice function is not strategy-proof, then there is at least
one circumstance (and perhaps many) under which some individual can strictly gain by
misreporting his preferences.

Thus, requiring a social choice function to be strategy-proof ensures that it is optimal
for individuals to report their preferences honestly and so society’s choice will be based
upon the true preferences of its individual members. Unfortunately, strategy-proofness
has deep consequences. Indeed, reminiscent of Arrow’s theorem we have another remark-
able, though again negative, result due independently to Gibbard (1973) and Satterthwaite
(1975).

The Gibbard-Satterthwaite Theorem

If there are at least three social states, then every strategy-proof social choice function is
dictatorial.

Our proof of Theorem 6.4 follows Reny (2001) and is broken into two parts.!! Part
I shows that a strategy-proof social choice function must exhibit two properties - Pareto-
efficiency and monotonicity. Part II shows that any monotonic and Pareto-efficient social
choice function is dictatorial. To prepare for the proof, we must first define Pareto-efficient
social choice functions and monotonic social choice functions.

n fact, because the full range condition in Reny (2001) is applied to the smaller domain of strict rankings, our
Theorem 6.4 is a slightly stronger result. (At least on the face of it; see Exercise 6.22.)
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Pareto-Efficient Social Choice Function

A social choice function c(-) is Pareto efficient if c(R, ..., RV) = x whenever xP 'y for
every individual i and every y € X distinct from x.

Thus, a social choice function is Pareto efficient if whenever x is at the top of every
individual’s ranking, the social choice is x.

Monotonic Social Choice Function

A social choice function c(-) is monotonic if c(R', .. ., RY) = ximplies (R!, ..., RV) = x
whenever for each individual i and every y € X d15t1nct from x, xRy = xP! y

Monotonicity says that the social choice does not change when individual prefer-
ences change so that every individual strictly prefers the social choice to any distinct social
state that it was originally at least as good as. Loosely speaking, monotonicity says that
the social choice does not change when the social choice rises in each individual’s rank-
ing. Notice that the individual rankings between pairs of social states other than the social
choice are permitted to change arbitrarily.

We are now prepared to prove Theorem 6.4, but one more word before we do. We
are not assuming either Pareto efficiency or monotonicity. Part 1 of our proof will prove
that strategy-proofness implies Pareto efficiency and monotonicity. The only assumption
Theorem 6.4 makes about the social choice function is that it is strategy-proof.

Proof: Suppose that X contains at least three social states and that c(-) is a strategy-proof
social choice function. We must show that ¢(-) is dictatorial. To do so, we break the proof
into two parts.

Part 1. Strategy-proofness implies monotonicity and Pareto efficiency.'*

(@) Monotonicity. Let (R, ..., RV) be an arbitrary preference profile and suppose

that c(R', ..., RY) = x. Fix an individual, 7 say, and let ®' be a preference for
i such that for every y € X distinct from x, xR'y =—> xP'y. We shall show that
cR,R ) =x

Suppose, by way of contradiction, that c(R, R™) = y # x. Then, given
that the others report R~/, individual , when his preferences are R’ can report
truthfully and obtain the soc1al state x or he can lie by reporting # and obtain
the social state y. Strategy-proofness requires that lying cannot be strictly better
than telling the truth. Hence we must have xR'y. According to the definition of
R!, we then have xPy. Consequently, when individual 7's preferences are &' he
strictly prefers xto yand so, given that the others report R~/, individual 7 strictly
prefers lying (reporting R/ and obtaining x) to telling the truth (reporting ' and
obtaining y), contradicting strategy-proofness. We conclude that (R, R™7) = x.

12Muller and Satterthwaite (1977) show that strategy-proofness is equivalent to what they call strong-positive
association, which is equivalent to monotonicity when individual preferences do not display indifference.
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Let (R',...,RY) and (R',..., RY) be preference profiles such that
R, ....,RV) =x and such that for every individual 7 and every ye X
distinct from x, xR'y = xP'y. To prove that c(-) is monotonic, we must

show that c(R', ..., RV) = x. But this follows immediately from the result
just proven - simply change the preference profile from (R'.....,RY) to
(R, .. RM) by switching, one at a time, the preferences of each individual i

from R to R. We conclude that ¢(-) is monotonic.

(b) Pareto Efficiency. Let x be an arbitrary social state and let R be a prefer-
ence profile with x at the top of each individual’s ranking. We must show that
c(R) =X

Because the range of c(-) is all of X, there is some preference profile R such
that c(R) = x. Obtain the preference profile R from R by moving x to the top
of every 1nd1v1dual s ranking. By monotonicity (proven above in (a)), cR) = x.
Because R places xat the top of every individual ranking and c(R) = x, we can
again apply monotonicity (do you see why?) and conclude that c(R) = x, as
desired.

Part 2. #X > 3 + monotonicity + Pareto efficiency —> dictatorship.

The second part of the proof, like our first proof of Arrow’s theorem, will use a series
of well-chosen preference profiles to uncover a dictator. Given the results from Part 1, we
can and will freely use the fact that c(-) is both monotonic and Pareto efficient. Also, in
each of the particular figures employed in this proof, all individual rankings are strict.
That is, no individual is indifferent between any two social states. We emphasise that this
is not an additional assumption — we are not ruling out indifference. It just so happens that
we are able to provide a proof of the desired result by considering a particular subset of
preferences that do not exhibit indifference.

Step 1. Consider any two distinct social states x, y € X and a profile of strict rankings
in which x is ranked highest and y lowest for every individual /=1, ..., N. Pareto effi-
ciency implies that the social choice at this profile is x. Consider now changing individual
I’s ranking by strictly raising y in it one position at a time. By monotonicity, the social
choice remains equal to x so long as yis below x in 1’s ranking. But when y finally does
rise above x, monotonicity implies that the social choice either changes to y or remains
equal to x (see Exercise 6.18(a)). If the latter occurs, then begin the same process with
individual 2, then 3, etc. until for some individual n, the social choice does change from
xto y when yrises above x in n’s ranking. (There must be such an individual n because
y will eventually be at the top of every individual’s ranking and by Pareto efficiency the
social choice will then be y.) Figs. 6.11 and 6.12 depict the situations just before and just
after individual n’s ranking of yis raised above x.

Step 2. This is perhaps the trickiest step in the proof, so follow closely. Consider
Figs. 6.13 and 6.14 below. Fig. 6.13 is derived from Fig. 6.11 (and Fig. 6.14 from Fig. 6.12)
by moving x to the bottom of individual /’s ranking for / < n and moving it to the second
last position in 7’s ranking for 7 > n. We wish to argue that these changes do not affect the
social choices, i.e., that the social choices are as indicated in the figures.
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Figure 6.13.
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Figure 6.14.

First, note that the social choice in Fig. 6.14 must, by monotonicity, be y because
the social choice in Fig. 6.12 is y and no individual’s ranking of y versus any other social
state changes in the move from Fig. 6.12 to Fig. 6.14 (see Exercise 6.18(b)). Next, note
that the profiles in Figs. 6.13 and 6.14 differ only in individual #’s ranking of x and y.
So, because the social choice in Fig. 6.14 is y, the social choice in Fig. 6.13 must, by
monotonicity, be either x or y (we used this same logic in Step 1 - see Exercise 6.18(a)). But
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Figure 6.16.

if the social choice in Fig. 6.13 is y, then by monotonicity (see Exercise 6.18(b)), the social
choice in Fig. 6.11 must be y, a contradiction. Hence, the social choice in Fig. 6.13 is x.

Step 3. Because there are at least three social states, we may consider a social state
z € X distinct from x and y. Since the (otherwise arbitrary) profile of strict rankings in
Fig. 6.15 can be obtained from the Fig. 6.13 profile without changing the ranking of x
versus any other social state in any individual’s ranking, the social choice in Fig. 6.15
must, by monotonicity, be x (see Exercise 6.18(b)).

Step 4. Consider the profile of rankings in Fig. 6.16 derived from the Fig. 6.15 profile
by interchanging the ranking of x and y for individuals i > n. Because this is the only
difference between the profiles in Figs. 6.15 and 6.16, and because the social choice in
Fig. 6.15 is x, the social choice in Fig. 6.16 must, by monotonicity, be either x or y (see
Exercise 6.18(a)). But the social choice in Fig. 6.16 cannot be ybecause zis ranked above
y in every individual’s Fig. 6.16 ranking, and monotonicity would then imply that the
social choice would remain y even if zwere raised to the top of every individual’s ranking,
contradicting Pareto efficiency. Hence the social choice in Fig. 6.16 is x.

Step 5. Note that an arbitrary profile of strict rankings with x at the top of individual
n’s ranking can be obtained from the profile in Fig. 6.16 without reducing the ranking
of x versus any other social state in any individual’s ranking. Hence, monotonicity (see
Exercise 6.18(b)) implies that the social choice must be x whenever individual rankings are
strict and x is at the top of individual #’s ranking. You are asked to show in Exercise 6.19
that this implies that even when individual rankings are not strict and indifferences are
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present, the social choice must be at least as good as x for individual » whenever x is at
least as good as every other social state for individual 7. So, we may say that individual
n1is a dictator for the social state x. Because x was arbitrary, we have shown that for each
social state x € X there is a dictator for x. But there cannot be distinct dictators for distinct
social states (see Exercise 6.20). Hence there is a single dictator for all social states and
therefore the social choice function is dictatorial. ]

The message you should take away from the Gibbard-Satterthwaite theorem is that,
in a rich enough setting, it is impossible to design a non-dictatorial system in which social
choices are made based upon self-reported preferences without introducing the possibil-
ity that individuals can gain by lying. Fortunately, this does not mean that all is lost. In
Chapter 9 we will impose an important and useful domain restriction, known as quasi-
linearity, on individual preferences. This will allow us to escape the conclusion of the
Gibbard-Satterthwaite theorem and to provide an introduction to aspects of the theory of
mechanism design. Thus, the Gibbard-Satterthwaite theorem provides a critically impor-
tant lesson about the limits of designing systems of social choice based on self-reported
information and points us in the direction of what we will find to be rather fertile ground.
But before we can develop this further, we must become familiar with the essential and
powerful tools of game theory, the topic of our next chapter.

6.6 EXERCISES

6.1 Arrow (1951) shows that when the number of alternatives in X is restricted to just two, the method of
majority voting does yield a social welfare relation that satisfies the conditions of Assumption 6.1.
Verify, by example or more general argument, that this is indeed the case.

6.2 Show that the weak Pareto condition WP in Arrow’s theorem can be replaced with the even weaker
Pareto condition VWP (very weak Pareto) without affecting the conclusion of Arrow’s theorem,
where VIWPis as follows.

VWP. ‘If xPlyforall j then xPy'.

6.3 (a) Show that the social welfare function that coincides with individual 7’s preferences satisfies U,
WP, and IIA. Call such a social welfare function an individual i dictatorship.

(b) Suppose that society ranks any two social states x and y according to individual 1’s preferences
unless he is indifferent in which case x and y are ranked according to 2’s preferences unless he
is indifferent, etc. Call the resulting social welfare function a /lexicographic dictatorship. Show
that a lexicographic dictatorship satisfies U, WPand IIA and that it is distinct from an individual
i dictatorship.

(c) Describe a social welfare function distinct from an individual 7 dictatorship and a lexicographic
dictatorship that satisfies U, WP and IIA.

6.4 Suppose that X is a non-singleton convex subset of R and that £ is a social welfare function satisfy-
ing U in the sense that it maps every profile of continuous utility functions u(-) = @), ..., dve)
on X into a continuous social utility function £,: X — R. Suppose also that f satisfies 1[4, WP,
and PL
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6.5

6.6

6.7

6.8

Throughout this question you may assume that for any finite number of social states in X and
any utility numbers you wish to assign to them, there is a continuous utility function defined on all
of X assigning to those states the desired utility numbers. (You might wish to try and prove this. The
hints section provides a solution.)

(@) Using U, IIA, and PI, show that if u(x) = v(x') and u(y) = v(’), then 4 (x) > f4() if and only
if 4(0) > 4(7).

Define the binary relation - on RY as follows: (ai, ... ., an) Z(h, ..., by if (%) = f(p) for
some vector of continuous utility functions u(-) = W), ..., dY()) and some pair of social states
xand y satisfying u'(x) = a;and u/(y) = b; for all i,

(b) Show that 7 is complete.
(c) Use the fact that £ satisfies IWPto show that - is strictly monotonic.

(d) Use the result from part (a) to show that - is transitive. It is here where at least three social
states are needed. (Of course, being non-singleton and convex, X is infinite so that there are
many more states than necessary for this step.)

(e) Itis possible to prove, using in particular the fact that X is non-singleton and convex, that - is
continuous. But the proof is technically demanding. Instead, simply assume that - is continuous
and use Theorems 1.1 and 1.3 to prove that there is a continuous and strictly increasing function
W: RY — R that represents >~ . (You will need to provide a small argument to adjust for the
fact that the domain of I¥ is R" while the domain of the utility functions in Chapter 1 is Rﬂ J)

(f) Show that for every profile of continuous utility functions u(-) = (), ..., dY()) on Xand all
pairs of social states xand y,

fi(x > f(p ifand only if W' (x). ..., ") > W (). ..., d"y).

Recall the definition of a lexicographic dictatorship from Exercise 6.3.

(@) Suppose N = 2. As in Fig. 6.5, fix a utility vector (u, &p) in the plane and sketch the sets
of utility vectors that are socially preferred, socially worse and socially indifferent to (7, i)
under a lexicographic dictatorship where individual 1’s preferences come first and 2’s second.
Compare with Fig. 6.5. Pay special attention to the indifference sets.

(b) Conclude from Exercise 6.3 that our first proof of Arrow’s theorem does not rule out the possi-
bility of a lexicographic dictatorship and conclude from part (a) of this exercise that our second
diagrammatic proof does rule out lexicographic dictatorship. What accounts for the stronger
result in the diagrammatic proof?

In the diagrammatic proof of Arrow’s theorem, the claim was made that in Fig. 6.4, we could show
either W(w) < W(IV) or W(u) > W(IV). Provide the argument.

Provide the argument left out of the proof of Theorem 6.2 that the ray starting at a and extending
upward is part of a social indifference curve.

This exercise considers Theorem 6.2 for the general case of N> 2. So, let I¥: RY — R be
continuous, strictly increasing and satisfy HE.
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(a) Suppose that min[u', ..., uV] = «. Show that W(u' + ¢, ..., u"N +¢) > W(a.a, ..., a) for
every ¢ >0 because W is strictly increasing. Conclude by the continuity of W that
wa,...,d%) > W, a, ..., o).

(b) Suppose that ¢ =min[d, ..., "] =« and that & > «. Using HE, show that W(x +
e, W, u¥) > W, v — e,u™Y) for all ¢ > 0 sufficiently small, where u=% € R¥=2 is the
vector (4!, ..., u") without coordinates i and J.

(c) Using the continuity of W, conclude from (b) that’if min[}, ..., uV] = «, then for every indi-
vidual i, W(a,u™) > W(d, ..., u"), where u=! € RV is the vector (!, ..., u") without
coordinate i.

(d) By successively applying the result from (c) one individual after another, show that if
min[e!, ..., V] = «, then W, o, ..., a) > W, ..., uvY).

(e) Using (a) and (d) and the fact that W is strictly increasing, show first that
wa', ..., u"y=wa, ..., ") if and only if min(a!, ..., v") = min(@, ..., #) and then
that W', ..., uV) > W@, ..., #")if and only if min(a!, ..., &) > min(it, ..., @").

There are three individuals in society, {1, 2, 3}, three social states, {x, y, z}, and the domain of pref-
erences is unrestricted. Suppose that the social preference relation, R, is given by pairwise majority
voting (where voters break any indifferences by voting for x first then y then 2) if this results in a
transitive social order. If this does not result in a transitive social order the social order is xPyPz. Let
£ denote the social welfare function that this defines.

(a) Consider the following profiles, where P'is individual /s strict preference relation:

Individual 1: ~ xPlyP'z

Individual 2:  yP*zP’x

Individual 3:  zP3xPy
What is the social order?

(b) What would be the social order if individual 1’s preferences in (a) were instead yPlzPlx? or
instead zP! yP! x?

(c) Prove that f satisfies the Pareto property, IWP.
(d) Prove that £ is non-dictatorial.
(e) Conclude that £ does not satisfy I/A.

(f) Show directly that f does not satisfy /IA by providing two preference profiles and their associated
social preferences that are in violation of I7A.

Aggregate income y > 0 is to be distributed among a set 7 of individuals to maximise the utilitarian
social welfare function, W = ", u". Suppose that &' = &/(y)?, where o’ > 0 forall j € 7.

(a) Show thatif 0 < 8 < 1, income must be distributed equally if and only if o’ = o/ for all jand .

(b) Now suppose that o’ # o/ for all i and j. What happens in the limit as § — 0? How about as
B — 17 Interpret.

Suppose utility functions are strictly concave, strictly increasing, and differentiable for every agent
in an n7-good exchange economy with aggregate endowment e >> 0.
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6.12

6.13

(a) Show that if x* >> 0 is a WEA, then for some suitably chosen weights !, ..., af > 0, x*
maximises the (generalised) utilitarian social welfare function

W=">"o'u'x)

i€z

subject to the resource constraints

ijsZeJ’ forj=1...,n

el el
(b) Use your findings in part (a) to give an alternative proof of the First Welfare Theorem 5.7.

The Borda rule is commonly used for making collective choices. Let there be N individuals and
suppose X contains a finite number of alternatives. Individual i assigns a Borda count, B(x), to
every alternative x, where B/(x) is the number of alternatives in X to which x is preferred by agent i.
Alternatives are then ranked according to their total Borda count as follows:

N N
xRy < > Bx) > B(y.

=1 =1
(a) Show that the Borda rule satisfies U, WP, and D in Assumption 6.1.
(b) Show that it does not satisfy IIA.

Individual 7 is said to be decisive in the social choice between xand y if xP'y implies xPy, regardless
of others’ preferences. Sen (1970b) interprets ‘liberal values’ to imply that there are certain social
choices over which each individual should be decisive. For example, in the social choice between
individual 7's reading or not reading a certain book, the preference of individual 7 should determine
the social preference. Thus, we can view liberalism as a condition on the social welfare relation
requiring that every individual be decisive over at least one pair of alternatives. Sen weakens this
requirement further, defining a condition he calls minimal liberalism as follows:

L*: there are at least two people k and jand two pairs of distinct alternatives (x, y) and (z, w)
such that k and j are decisive over (x, y) and (z, w), respectively.

Prove that there exists o social welfare relation that satisfies (merely) the conditions U, WP, and L*.

6.14 Atkinson (1970) proposes an index of equality in the distribution of income based on the notion

of ‘equally distributed equivalent income’, denoted ye. For any strictly increasing, symmetric, and
quasiconcave social welfare function over income vectors, W(y', ..., yV), income y is defined as
that amount of income which, if distributed to each individual, would produce the same level of
social welfare as the given distribution. Thus, letting e = (1,..., 1) andy = (!, ..., ), we have

W(ye.e) = W(y).

Letting 1 be the mean of the income distribution y, an index of equality in the distribution of income
then can be defined as follows:

(@) Show that 0 < I(y) < 1 whenever y; > 0 for all i
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(b) Show that the index I(y) is always ‘normatively significant’ in the sense that for any two income
distributions, y', y? with the same mean, I(y') is greater than, equal to, or less than /(y?) if and
only if W(y') is greater than, equal to, or less than I¥/(y?), respectively.

6.15 Blackorby and Donaldson (1978) built upon the work of Atkinson described in the preceding exer-

6.16

cise. Let I¥(y) be any strictly increasing, symmetric, and quasiconcave social welfare function
defined over income distributions. The authors define a ‘homogeneous implicit representation of
W as follows:

HmyhaTMA>OIWWM)2M,

where w e R is any ‘reference level’ of the underlying social welfare function. They then define
their index of equality in the distribution of income as follows:

F(w.,y)

mezﬂmmY

where, again, 1 is the mean of the distribution y and e is a vector of 1’s.

(@) Show that F(w, y) is homogeneous of degree 1 in the income vector. Show that F(w, y) is greater
than, equal to, or less than unity as W(y) is greater than, equal to, or less than w, respectively.

(b) Show that if W(y) is homothetic, E(w,y) is ‘reference-level-free’ so that E(w,y) = E*(y) for
ally.

(c) Show that if W(y) is homothetic, E(w, y) = I(y), where I(y) is the Atkinson index defined in the
preceding exercise. Conclude, therefore, that under these conditions, E(w, y) is also normatively
significant and lies between zero and 1.

(d) Suppose the social welfare function is the utilitarian form, W = Y% | /. Show that E(w, y) = 1,
denoting ‘perfect equality’, regardless of the distribution of income. What do you conclude from
this?

(e) Derive the index E(w, y) when the social welfare function is the CES form
N ) 1/p
W(y) = (Z(;/)P) . 0#£p<l.
=1

Let x = (x!,...,x") be an allocation of goods to agents, and let the economy’s feasible set of
allocations be 7. Suppose x* maximises the utilitarian social welfare function, W = Zfil u'(xh),
subjecttox € T.

(@) Let v/ for i=1, e N be an arbitrary set of increasing functions of one variable. Does x*
maximise Zﬁl Y!(d'(x")) over x € T? Why or why not?

(b) Ifin part (a), Y = v for all i, what would your answer be?
(c) If ¢! = &' + b/ (x’) for arbitrary a’ and b’ > 0, what would your answer be?
(d) If ! = a' + bu/(x’) for arbitrary a’ and b > 0, what would your answer be?

(e) How do you account for any similarities and differences in your answers to parts (a) through (d)?
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6.17 From the preceding exercise, let x* maximise the Rawlsian social welfare function, W=

min[e! (x1), ..., N xV)]overx € T.
(@) If ¢/ for i=1,..., N is an arbitrary set of increasing functions of one variable, must x*
maximise the function, min [¢!(a! (x1)), ..., VWV xY))], overx € T? Why or why not?

(b) If in part (a), ¥/ =  for all ;, what would your answer be?
(c) How do you account for your answers to parts (a) and (b)?

(d) How do you account for any differences or similarities in your answers to this exercise and the
preceding one?

6.18 Suppose that c(-) is a monotonic social choice function and that c(R) = x, where R, ..., RN are
each strict rankings of the social states in X.

(a) Suppose that for some individual /, ® ranks yjust below x, and let R be identical to Ig’ except that
yis ranked just above x - i.e., the ranking of x and yis reversed. Prove that either ¢(®', R™) = x
or c(R,R ) =y.

(b) Suppose that k!, ... RV are strict rankings such that for every individual i the ranking of x
versus any other social state is the same under #' as it is under ®'. Prove that c(R) = x.

6.19 Let c(-) be a monotonic social choice function and suppose that the social choice must be x whenever
all individual rankings are strict and x is at the top of individual n’s ranking. Show the social choice
must be at least as good as x for individual 7 when the individual rankings are not necessarily strict
and xis at least as good for individual n as any other social state.

6.20 Let x and y be distinct social states. Suppose that the social choice is at least as good as x for
individual 7 whenever x is at least as good as every other social state for 7. Suppose also that the
social choice is at least as good as y for individual j whenever y is at least as good as every other
social state for j. Prove that 7 = j.

6.21 Call a social choice function strongly monotonic if c(R) = x implies c(R) = x whenever for every
individual /and every y € X, xRy = xR'y.

Suppose there are two individuals, 1 and 2, and three social states, x, y, and z Define the
social choice function ¢(-) to choose individual 1’s top-ranked social state unless it is not unique, in
which case the social choice is individual 2’s top-ranked social state among those that are top-ranked
for individual 1, unless this too is not unique, in which case, among those that are top-ranked for
both individuals, choose xif it is among them, otherwise choose y.

(a) Prove that c(-) is strategy-proof.

(b) Show by example that c(-) is not strongly monotonic. (Hence, strategy-proofness does not imply
strong monotonicity, even though it implies monotonicity.)

6.22 Show that if ¢(-) is a monotonic social choice function and the finite set of social states is X, then for
every x € X there is a profile, R, of strict rankings such that c(R) = x. (Recall that, by definition,
every xin Xis chosen by c(-) at some preference profile.)

6.23 Show that when there are just two alternatives and an odd number of individuals, the majority rule
social choice function (i.e., that which chooses the outcome that is the top ranked choice for the
majority of individuals) is Pareto efficient, strategy-proof and non-dictatorial.



