GENERAL EQUILIBRIUM

Many scholars trace the birth of economics to the publication of Adam Smith’s The Wealth
of Nations (1776). Behind the superficial chaos of countless interdependent market actions
by selfish agents, Smith saw a harmonising force serving society. This Invisible Hand
guides the market system to an equilibrium that Smith believed possessed certain socially
desirable characteristics.

One can ask many questions about competitive market systems. A fundamental one
arises immediately: is Smith’s vision of a smoothly functioning system composed of many
self-interested individuals buying and selling on impersonal markets — with no regard for
anything but their personal gain - a logically coherent vision at all? If so, is there one
particular state towards which such a system will tend, or are there many such states? Are
these fragile things that can be easily disrupted or are they robust?

These are questions of existence, uniqueness, and stability of general competitive
equilibrium. All are deep and important, but we will only address the first.

In many ways, existence is the most fundamental question and so merits our closest
attention. What is at issue is the logical coherence of the very notion of a competi-
tive market system. The question is usually framed, however, as one of the existence
of prices at which demand and supply are brought into balance in the market for every
good and service simultaneously. The market prices of everything we buy and sell are
principal determinants of what we can consume, and so, of the well-being we can
achieve. Thus, market prices determine to a large extent ‘who gets what’ in a market
economy.

In this chapter, we do not merely ask under what conditions a set of market-clearing
prices exists. We also ask how well a market system solves the basic economic prob-
lem of distribution. We will begin by exploring the distribution problem in very general
terms, then proceed to consider the existence of general competitive equilibrium itself.
Along the way, we will focus particular scrutiny on Smith’s claim that a competitive
market system promotes society’s welfare through no conscious collective intention of
its members.
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5.1 EQUILIBRIUM IN EXCHANGE

Here we explore the basic economic problem of distribution in a very simple society with-
out organised markets. Our objective is to describe what outcomes might arise through a
process of voluntary exchange. By examining the outcomes of this process, we can estab-
lish a benchmark against which the equilibria achieved under competitive market systems
can be compared.

The society we consider is very stark. First, there is no production. Commodities
exist, but for now we do not ask how they came to be. Instead, we merely assume each
consumer is ‘endowed’ by nature with a certain amount of a finite number of consumable
goods. Each consumer has preferences over the available commodity bundles, and each
cares only about his or her individual well-being. Agents may consume their endowment
of commodities or may engage in barter exchange with others. We admit the institution of
private ownership into this society and assume that the principle of voluntary, non-coercive
trade is respected. In the absence of coercion, and because consumers are self-interested,
voluntary exchange is the only means by which commodities may be redistributed from the
initial distribution. In such a setting, what outcomes might we expect to arise? Or, rephras-
ing the question, where might this system come to rest through the process of voluntary
exchange? We shall refer to such rest points as barter equilibria.

To simplify matters, suppose there are only two consumers in this society, con-
sumer 1 and consumer 2, and only two goods, x; and x;. Let e' = (¢}, €}) denote the
non-negative endowment of the two goods owned by consumer 1, and € = (¢, %) the
endowment of consumer 2. The total amount of each good available in this society then
can be summarised by the vector e! + € = (e} + €, €] + €5). (From now on, superscripts
will be used to denote consumers and subscripts to denote goods.)

The essential aspects of this economy can be analysed with the ingenious
Edgeworth box, familiar from intermediate theory courses. In Fig. 5.1, units of x
are measured along each horizontal side and units of x, along each vertical side. The
south-west corner is consumer 1’s origin and the north-east corner consumer 2’s origin.

Figure 5.1. The Edgeworth box. dred 2 e 02
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Increasing amounts of x; for consumer 1 are measured rightwards from 0! along the bot-
tom side, and increasing amounts of x| for consumer 2 are measured leftwards from 07
along the top side. Similarly, x; for consumer 1 is measured vertically up from 0! on the
left, and for consumer 2, vertically down on the right. The box is constructed so that its
width measures the total endowment of x; and its height the total endowment of x.

Notice carefully that each point in the box has four coordinates - two indicating
some amount of each good for consumer 1 and two indicating some amount of each good
for consumer 2. Because the dimensions of the box are fixed by the total endowments, each
set of four coordinates represents some division of the total amount of each good between
the two consumers. For example, the point labelled e denotes the pair of initial endowments
el and e?. Every other point in the box represents some other way the totals can be allocated
between the consumers, and every possible allocation of the totals between the consumers
is represented by some point in the box. The box therefore provides a complete picture of
every feasible distribution of existing commodities between consumers.

To complete the description of the two-person exchange economy, suppose each
consumer has preferences represented by a usual, convex indifference map. In Fig. 5.2,
consumer 1’s indifference map increases north-easterly, and consumer 2’s increases south-
westerly. One indifference curve for each consumer passes through every point in the box.
The line labelled CC is the subset of allocations where the consumers’ indifference curves
through the point are tangent to each other, and it is called the contract curve. At any
point off the contract curve, the consumers’ indifference curves through that point must
cut each other.

Given initial endowments at e, which allocations will be barter equilibria in this
exchange economy? Obviously, the first requirement is that the allocations be somewhere,

X2 02
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Figure 5.2. Equilibrium in two-person exchange.
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‘in the box’, because only those are feasible. But not every feasible allocation can be a
barter equilibrium. For example, suppose a redistribution from e to point A were proposed.
Consumer 2 would be better off, but consumer 1 would clearly be worse off. Because
this economy relies on voluntary exchange, and because consumers are self-interested, the
redistribution to A would be refused, or ‘blocked’, by consumer 1, and so could not arise
as an equilibrium given the initial endowment. By the same argument, all allocations to the
left of consumer 1’s indifference curve through e would be blocked by consumer 1, and all
allocations to the right of consumer 2’s indifference curve through e would be blocked by
consumer 2.

This leaves only allocations inside and on the boundary of the lens-shaped area delin-
eated by the two consumers’ indifference curves through e as potential barter equilibria.
At every point along the boundary, one consumer will be better off and the other no worse
off than they are at e. At every allocation inside the lens, however, both consumers will be
strictly better off than they are at e. To achieve these gains, the consumers must arrange
a trade. Consumer 1 must give up some x; in exchange for some of consumer 2’s xy, and
consumer 2 must give up some x; in exchange for some of consumer 1’s x;.

But are all allocations inside the lens barter equilibria? Suppose a redistribution to B
within that region were to occur. Because B is off the contract curve, the two indifference
curves passing through it must cut each other, forming another lens-shaped region con-
tained entirely within the original one. Consequently, both consumers once again can be
made strictly better off by arranging an appropriate trade away from B and inside the lens
it determines. Thus, B and every such point inside the lens through e but off the contract
curve can be ruled out as barter equilibria.

Now consider a point like D on segment cc of the contract curve. A move from e to
any such point will definitely make both parties better off. Moreover, once the consumers
trade to D, there are no feasible trades that result in further mutual gain. Thus, once D is
achieved, no further trades will take place: D is a barter equilibrium. Indeed, any point
along cc is a barter equilibrium. Should the consumers agree to trade and so find them-
selves at any allocation on cc, and should a redistribution to any other allocation in the
box then be proposed, that redistribution would be blocked by one or both of them. (This
includes, of course, any movement from one point on cc to another on cc.) Pick any point
on cc, consider several possible reallocations, and convince yourself of this. Once on cc,
we can be sure there will be no subsequent movement away.

Clearly, there are many barter equilibria toward which the system might evolve. We
are content with having identified all of the possibilities. Note that these equilibria all share
the property that once there, it is not possible to move elsewhere in the box without making
at least one of the consumers worse off. Thus, each point of equilibrium in exchange is
Pareto efficient in the sense described in Chapter 4.

Consider now the case of many consumers and many goods. Let

I={1,....0

index the set of consumers, and suppose there are n goods. Each consumer i € 7 has a
preference relation, -/, and is endowed with a non-negative vector of the n goods, e’ =

Y ~U 0

(e, ..., eb). Altogether, the collection £ = (= /, e/) ;.7 defines an exchange economy.
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What conditions characterise barter equilibria in this exchange economy? As before,
the first requirement is that the assignment of goods to individuals not exceed the amounts
available. Let

where x' = (X, .. ., sz) denotes consumer 7’s bundle according to the allocation. The set
of feasible allocations in this economy is given by

Sx= 3ol (5.1)

el el

F(e) = {X

and it contains all allocations of goods across individuals that, in total, exhaust the available
amount of every good. The first requirement on x as a barter equilibrium is therefore that
x € Fl(e).

Now in the two-consumer case, we noted that if both consumers could be made better
off by trading with one another, then we could not yet be at a barter equilibrium. Thus, at
a barter equilibrium, no Pareto improvements were possible. This also carries over to the
more general case. To formalise this, let us begin with the following.

Pareto-Efficient Allocations

A feasible allocation, x € F(e), is Pareto efficient if there is no other feasible allocation,
y € F(e), such thaty' - 'x' for all consumers, i, with at least one preference strict.

So, an allocation is Pareto efficient if it is not possible to make someone strictly
better off without making someone else strictly worse off.

Now if x € F(e) is not Pareto efficient, then there is another feasible allocation y
making someone strictly better off and no one worse off. Consequently, the consumer who
can be made strictly better off can arrange a trade with the others by announcing: ‘I'll give
each consumer i the bundle y’ in exchange for the bundle x”’. Because both allocations x
and y are feasible, this trade is feasible. No consumer will object to it because it makes
everyone at least as well off as they were before. Moreover it makes (at least) the one
consumer strictly better off. Consequently, x would not be an equilibrium. Thus, to be a
barter equilibrium, x must be feasible and Pareto efficient.

Suppose now that x is Pareto efficient. Can we move away from x? No, we cannot.
Because x is Pareto efficient, every other feasible allocation that makes someone better
off must make at least one other consumer worse off. Hence, the latter consumer will not
agree to the trade that is involved in the move.

So, we now know that only Pareto-efficient allocations are candidates for barter
equilibrium, and whenever a Pareto-efficient allocation is reached, it will indeed be an
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equilibrium of our process of voluntary exchange. Thus, it remains to describe the set of
Pareto-efficient allocations that can be reached through voluntary exchange.

Recall from the two-consumer case that not all Pareto-efficient allocations were
equilibria there. That is, only those allocations on the contract curve and within the lens
created by the indifference curves through the endowment point were equilibria. The rea-
son for this was that the other Pareto-efficient allocations - those on the contract curve
but outside the lens — made at least one of the consumers worse off than they would be
by simply consuming their endowment. Thus, each such Pareto-efficient allocation was
‘blocked’ by one of the consumers.

Similarly, when there are more than two consumers, no equilibrium allocation can
make any consumer worse off than he would be consuming his endowment. That consumer
would simply refuse to make the necessary trade. But in fact there are now additional
reasons you might refuse to trade to some Pareto-efficient allocation. Indeed, although
you might prefer the bundle assigned to you in the proposed allocation over your own
endowment, you might be able to find another consumer to strike a trade with such that
you do even better as a result of that trade and he does no worse than he would have done
had you both gone along with the proposed allocation. Consequently, although you alone
are unable to block the proposal, you are able to block it together with someone else. Of
course, the potential for blocking is not limited to coalitions of size 2. Three or more of
you might be able to get together to block an allocation. With all of this in mind, consider
the following.

Blocking Coalitions

Let S C T denote a coalition of consumers. We say that S blocks x € F(e) if there is an
allocationy such that:!

1 ZieSyj = ZieSej'
2. y'=x! for all i € S, with at least one preference strict.

Together, the first and second items in the definition say that the consumers in .S must
be able to take what they themselves have and divide it up differently among themselves
so that none is worse off and at least one is better off than with their assignment under x.
Thus, an allocation x is blocked whenever some group, no matter how large or small,
can do better than they do under x by simply ‘going it alone’. By contrast, we say that an
allocation is ‘unblocked’ if no coalition can block it. Our final requirement for equilibrium,
then, is that the allocation be unblocked.

Note that this takes care of the two-consumer case because all allocations outside
the lens are blocked by a coalition consisting of a single consumer (sometimes con-
sumer 1, sometimes consumer 2). In addition, note that in general, if x € F(e) is unblocked,
then it must be Pareto efficient, because otherwise it would be blocked by the grand

INote that there is no need to insist that y € F(e), because one can always make it so by replacing the bundles in
it going to consumers j ¢ Sby e/.
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coalition S = 7. This lets us summarise the requirements for equilibrium in exchange very
compactly.

Specifically, an allocationx € F(e) is an equilibrium in the exchange economy with
endowments e if x is not blocked by any coalition of consumers. Take a moment to convince
yourself that this definition reduces to the one we developed earlier when there were only
two goods and two consumers.

The set of allocations we have identified as equilibria of the process of voluntary
exchange is known as the ‘core’, and we define this term for future reference.

The Core of an Exchange Economy

The core of an exchange economy with endowment e, denoted C(e), is the set of all
unblocked feasible allocations.

Can we be assured that every exchange economy possesses at least one allocation in
the core? That is, must there exist at least one feasible and unblocked allocation? As we
shall later show, the answer is yes under a number of familiar conditions.

We have argued that under ideal circumstances, including the costless nature of both
the formation of coalitions and the acquisition of the information needed to arrange mutu-
ally beneficial trades, consumers are led, through the process of voluntary exchange, to
pursue the attainment of allocations in the core. From this point of view, points in the core
seem very far indeed from becoming a reality in a real-world economy. After all, most of us
have little or no direct contact with the vast majority of other consumers. Consequently, one
would be quite surprised were there not substantial gains from trade left unrealised, regard-
less of how the economy were organised - centrally planned, market-based, or otherwise.
In the next section, we investigate economies organised by competitive markets. Prepare
for a surprise.

5.2 EQuILBRIUM IN COMPETITIVE MARKET SYSTEMS

In the preceding section, we examined a very primitive economic system based wholly
on voluntary barter exchange. Here we take a first look at questions of equilibrium and
distribution in a more sophisticated economic system. In a perfectly competitive mar-
ket system, all transactions between individuals are mediated by impersonal markets.
Consumers’ market behaviour is guided solely by their personal self-interest, and each
consumer, whether acting as buyer or seller, is individually insignificant on every mar-
ket, with no power to affect prevailing prices. Equilibrium on each market separately is
achieved when the totality of buyers’ decisions are compatible with the totality of sellers’
decisions at the prevailing market price. Equilibrium in the market system is achieved when
the demands of buyers match the supplies of sellers at prevailing prices in every market
simultaneously.

A noteworthy feature of the competitive model we shall develop here is its
decentralised nature. Each consumer, fully aware of the prices of goods prevailing in all
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markets, demands a bundle that is best for him, without the need to consider what other
consumers might demand, being fully confident that sufficient production has taken place.
Similarly, producers, also fully aware of the prevailing prices of all goods (both inputs and
outputs), choose amounts of production that maximise their profits, without the need to
consider how much other producers are producing, being fully confident that their output
will be purchased.

The naivete expressed in the decentralised aspect of the competitive model (i.e.,
that every agent acts in his own self-interest while ignoring the actions of others) should
be viewed as a strength. Because in equilibrium consumers’ demands will be satisfied,
and because producers’ outputs will be purchased, the actions of the other agents can be
ignored and the only information required by consumers and producers is the prevailing
prices. Consequently, the informational requirements of this model are minimal. This is in
stark contrast to the barter model of trade developed in the previous section in which each
consumer requires very detailed information about all other consumers’ preferences and
bundles.

Clearly, the optimality of ignoring others’ actions requires that at prevailing prices
consumer demands are met and producer supplies are sold. So, it is essential that prices are
able to clear all markets simultaneously. But is it not rather bold to presume that a suitable
vector of prices will ensure that the diverse tastes of consumers and the resulting totality
of their demands will be exactly matched by the supplies coming from the production side
of the market, with its many distinct firms, each being more or less adept at producing
one good or another? The existence of such a vector of prices is not obvious at all, but the
coherence of our competitive model requires such a price vector to exist.

To give you a feeling for the potential for trouble on this front, suppose that there are
just three goods and that at current prices the demand for good 1 is equal to its supply, so
this market is in equilibrium. However, suppose that there is excess demand for good 2 and
excess supply of good 3, so that neither of these markets clears at current prices. It would
be natural to suppose that one can achieve equilibrium in these markets by increasing the
price of good 2 and decreasing the price of good 3. Now, while this might help to reduce
the difference between demand and supply in these markets, these price changes may very
well affect the demand for good 1! After all if goods 1 and 2 are substitutes, then increases
in the price of good 2 can lead to increases in the demand for good 1. So, changing the
prices of goods 2 and 3 in an attempt to equilibrate those markets can upset the equilibrium
in the market for good 1.

The interdependence of markets renders the existence of an equilibrium price vector
a subtle issue indeed. But again, the existence of a vector of prices that simultaneously
clears all markets is essential for employing the model of the consumer and producer
developed in Chapters 1 and 3, where we assumed that demands were always met and
supplies always sold. Fortunately, even though it is not at all obvious, we can show (with a
good deal of effort) that under some economically meaningful conditions, there does exist
at least one vector of prices that simultaneously clears all markets. We now turn to this
critical question.
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' ASSUMPTION 5.1

THEOREM 5.1

5.2.1 EXISTENCE OF EQUILIBRIUM

For simplicity, let us first consider an economy without the complications of production
in the model. AgainletZ = {1, ..., I} index the set of consumers and assume that each is
endowed with a non-negative vector e’ of n goods. Further, suppose each consumer’s pref-
erences on the consumption set R” can be represented by a utility function &' satisfying
the following.?

Consumer Utility

Utility u' is continuous, strongly increasing, and strictly quasiconcave on R'..

On competitive markets, every consumer takes prices as given, whether acting as

a buyer or a seller. If p= (p1, ..., ps) > 0 is the vector of market prices, then each
consumer solves
max u'(x’) s.t. p-x'<p-é. (5.2)
x/eRY

The constraint in (5.2) simply expresses the consumer’s usual budget constraint but explic-
itly identifies the source of a consumer’s income. Intuitively, one can imagine a consumer
selling his entire endowment at prevailing market prices, receiving income, p - €/, and then
facing the ordinary constraint that expenditures, p - x/, not exceed income. The solution
x/(p, p - &) to (5.2) is the consumer’s demanded bundle, which depends on market prices
and the consumer’s endowment income. We record here a familiar result that we will need
later.

Basic Properties of Demand

If o satisfies Assumption 5.1 then for each p > 0, the consumer's problem (5.2) has a
unique solution, x'(p, p - €'). In addition, x'(p, p - €) is continuous inp on R’ .

Recall that existence of a solution follows because p >> 0 implies that the budget set
is bounded, and uniqueness follows from the strict quasiconcavity of . Continuity at p
follows from Theorem A2.21 (the theorem of the maximum), and this requires p > 0. We
emphasise here that x/(p, p - €/) is not continuous in'p on all of R”. because demand may
well be infinite if one of the prices is zero. We will have to do a little work later to deal
with this unpleasant, yet unavoidable, difficulty.

We can interpret the consumer’s endowment e’ as giving the quantity of each of the
n goods that he inelastically supplies on the various markets.

ZRecall that a function is strongly increasing if strictly raising one component in the domain vector and lower-
ing none strictly increases the value of the function. Note also that Cobb-Douglas utilities are neither strongly
increasing nor strictly quasiconcave on all of R’ and so are ruled out by Assumption 5.1.
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We now can begin to build a description of the system of markets we intend to
analyse. The market demand for some good will simply be the sum of every individual
consumer’s demand for it. Market supply will be the sum of every consumer’s supply.
With n goods, the market system will consist of 7 markets, each with its market demand
and market supply. Because consumers’ demand for any one good depends on the prices
of every good, the system of markets so constructed will be a completely interdependent
system, with conditions in any one market affecting and being affected by conditions in
every other market.

The earliest analysis of market systems, undertaken by Léon Walras (1874), pro-
ceeded along these lines, with each market described by separate demand and supply
functions. Today, largely as a matter of convenience and notational simplicity, it is more
common to describe each separate market by a single excess demand function. Then, the
market system may be described compactly by a single n-dimensional excess demand
vector, each of whose elements is the excess demand function for one of the n markets.

Excess Demand

The aggregate excess demand function for good k is the real-valued function,

z(p) =) xp.p-€)—> ¢

ieT ieT
The aggregate excess demand function is the vector-valued function,

Z(P) = (Zl (P)? ey Zn(P))

When z;(p) > 0, the aggregate demand for good k exceeds the aggregate endowment
of good k and so there is excess demand for good & When z;(p) < 0, there is excess supply
of good k.

Aggregate excess demand functions possess certain properties. We detail these here.

Properties of Aggregate Excess Demand Functions

If for each consumer i, i satisfies Assumption 5.1, then for all p > 0,

1. Continuity: z(-) Is continuous at p.
2. Homogeneity: z(ip) = z(p) for all » > 0.
3. Walras’ law:  p-z(p) =0.

Proof: Continuity follows from Theorem 5.1.

Homogeneity: A glance at the constraint in (5.2) should convince you that individ-
ual demands, and excess demands, are homogeneous of degree zero in prices. It follows
immediately that aggregate excess demand is also homogeneous of degree zero in prices.

Walras” law: The third property, Walras’ law, is important. It says that the value of
aggregate excess demand will always be zero at any set of positive prices. Walras’ law
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follows because when ' is strongly increasing, each consumer’s budget constraint holds
with equality.
When the budget constraint in (5.2) holds with equality,

n
> pu(x(p.p-€)—€}) =0.
k=1

Summing over individuals gives

YD p(xim.p-e)—e) =0

ieZ k=1

Because the order of summation is immaterial, we can reverse it and write this as

YD pu(xip.p-e) —¢f) =0.

k=1 ieT

This, in turn, is equivalent to the expression

> (ZX}}(P, p-eh—) ei) =0.
1(=1

el el

From Definition 5.4, the term in parentheses is the aggregate excess demand for good £,
so we have

n
> pz(p) =0,
k=1

and the claim is proved. ]

Walras’ law has some interesting implications. For example, consider a two-good
economy and suppose that prices are strictly positive. By Walras’ law, we know that

pnz(p) = —pz(p).

If there is excess demand in market 1, say, so that z; (p) > 0, we know immediately that we
must have z (p) < 0, or excess supply in market 2. Similarly, if market 1 is in equilibrium
at p, so that z(p) = 0, Walras’ law ensures that market 2 is also in equilibrium with
z2(p) = 0. Both of these ideas generalise to the case of n markets. Any excess demand in
the system of markets must be exactly matched by excess supply of equal value at the given
prices somewhere else in the system. Moreover, if at some set of prices n — 1 markets are
in equilibrium, Walras’ law ensures the nth market is also in equilibrium. This is often
quite useful to remember.
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Now consider a market system described by some excess demand function, z(p).
We know that excess demand in any particular market, z(p), may depend on the prices
prevailing in every market, so that the system of markets is completely interdependent.
There is a partial equilibrium in the single market & when the quantity of commodity &
demanded is equal to the quantity of & supplied at prevailing prices, or when z(p) = 0. If,
at some prices p, we had z(p) = 0, or demand equal to supply in every market, then we
would say that the system of markets is in general equilibrium. Prices that equate demand
and supply in every market are called Walrasian.®

Walrasian Equilibrium

A vectorp* € R, is called a Walrasian equilibrium if z(p*) = 0.

We now turn to the question of existence of Walrasian equilibrium. This is indeed an
important question because it speaks directly to the logical coherence of Smith’s vision of a
market economy. One certainly cannot explore sensibly the social and economic properties
of equilibria in market economies without full confidence that they exist, and without full
knowledge of the circumstances under which they can be expected to exist. This central
question in economic theory has attracted the attention of a great many theorists over time.
We have mentioned that Walras was the first to attempt an answer to the question of exis-
tence by reducing it to a question of whether a system of market demand and market supply
equations possessed a solution. However, Walras cannot be credited with providing a satis-
factory answer to the question because his conclusion rested on the fallacious assumption
that any system of equations with as many unknowns as equations always possesses a
solution. Abraham Wald (1936) was the first to point to Walras’ error by offering a simple
counterexample: the two equations in two unknowns, > + 3> = 0 and ¥* — y* = 1, have
no solution, as you can easily verify. Wald is credited with providing the first mathemati-
cally correct proof of existence, but his includes what many would regard as unnecessarily
restrictive assumptions on consumers’ preferences. In effect, he required that preferences
be strongly separable and that every good exhibit ‘diminishing marginal utility’. McKenzie
(1954) and Arrow and Debreu (1954) were the first to offer significantly more general
proofs of existence. Each framed their search for market-clearing prices as the search for
a fixed point to a carefully chosen mapping and employed powerful fixed-point theorems
to reach their conclusion. In what follows, we too shall employ the fixed-point method
to demonstrate existence. However, we encourage the reader to consult both McKenzie
(1954) and Arrow and Debreu (1954) for a more general treatment.

We begin by presenting a set of conditions on aggregate excess demand that
guarantee a Walrasian equilibrium price vector exists.

3Note that we restrict attention to positive prices. Strictly speaking, there is no reason to do so. However, under
our assumption that consumers’ utility functions are strongly increasing, aggregate excess demand can be zero
only if all prices are positive. See Exercise 5.3.
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Aggregate Excess Demand and Walrasian Equilibrium
Supposez: RY | — R" satisfies the following three conditions:

1. z(-) is continuous on Rl __;
2.p-z(p)=0 forall p>0;

3. If{p™} is a sequence of price vectors in R, | converging top # 0, and py =0
for some good k, then for some good k' with py = 0, the associated sequence of
excess demands in the market for good k', {zy (p™)}, is unbounded above.

Then there is a price vector p* > 0 such thatz(p*) = 0.

Before giving the proof, let us consider the three conditions in the theorem. The
first two are familiar and are guaranteed to hold under the hypotheses of Theorem 5.2.
Only the third, rather ominous-looking condition, is new. What it says is actually very
easy to understand, however. It says roughly that if the prices of some but not all goods
are arbitrarily close to zero, then the (excess) demand for at least one of those goods is
arbitrarily high. Put this way, the condition sounds rather plausible. Later, we will show
that under Assumption 5.1, condition 3 is satisfied.

Before getting into the proof of the theorem, we remark that it is here where the lack
of continuity of consumer demand, and hence aggregate excess demand, on the boundary
of the non-negative orthant of prices requires us to do some hard work. In particular, you
will note that in a number of places, we take extra care to stay away from that boundary.

Proof: For each good, k let Z(p) = min(z(p),1) for all p > 0, and let z(p) =
(z1(p), - - -, Znp(p))- Thus, we are assured that z;(p) is bounded above by 1.
Now, fix ¢ € (0, 1), and let

n
&
= Vki.
kEZIPk landpkzl+zn k}

Sg:{p

In searching for p* satisfying z(p*) = 0, we shall begin by restricting our search to
the set S;. It is depicted in Fig. 5.3 for the two-good case. Note how prices on and near the
boundary of the non-negative orthant are excluded from ;. Note also that as ¢ is allowed
to approach zero, S, includes more and more prices. Thus, we can expand the scope of our
search by letting ¢ tend to zero. We shall do so a little later. For now, however, ¢ remains
fixed.

Note the following properties of the set S;: it is compact, convex, and non-empty.
Compactness follows because it is both closed and bounded (check this), and convexity
can be easily checked. To see that it is non-empty, note that the price vector with each
component equal to (2 + 1/n)/(1 + 2n) is always a member because ¢ < 1.

For each good & and every p € S, define f;(p) as follows:

¢ + px + max(0, z(p))
ne + 1+ 371 max(0, Zu(p))

fi(p) =
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Figure 5.3. The set S, in R%. 2

S. =l(p1, P2 Py +p2 =1,py,py = €/5)

P

and let f(p) = (4A(p), - . ., fa(p)). Consequently, ZLI fi(p) =1land fx(p) > ¢/(ne + 1 +
n- 1), because z,(p) < 1 for each m. Hence, f;(p) > ¢/(1 + 2n) because ¢ < 1. Therefore
f:S. = 5.

Note now that each £ is continuous on S, because, by condition 1 of the statement
of the theorem, z(.), and therefore z(-), is continuous on .5;, so that both the numerator
and denominator defining f; are continuous on S,. Moreover, the denominator is bounded
away from zero because it always takes on a value of at least 1.

Therefore, £ is a continuous function mapping the non-empty, compact, convex set
Se into itself. We may then appeal to Brouwer’s fixed-point theorem (Theorem A1.11) to
conclude that there exists p® € S, such that f(p®) = p®, or, equivalently, that f;(p°®) = p}

for every k=1, 2, ..., n. But this means, using the definition of f;(p®) and rearranging,
that for every &
n
p;[ne + > max(0, Zm(pg))] = & + max(0, z(p®)). (P.1)
m=1

So, up to this point, we have shown that for every ¢ € (0, 1) there is a price vector in S;
satistying (P.1).

Now allow ¢ to approach zero and consider the associated sequence of price vectors
{p°} satisfying (P.1). Note that the price sequence is bounded, because p® € S, implies
that the price in every market always lies between zero and one. Consequently, by Theorem
A1.8, some subsequence of {p*} must converge. To keep the notation simple, let us suppose
that we were clever enough to choose this convergent subsequence right from the start so
that {p®} itself converges to p*, say. Of course, p* > 0and p* # 0 because its components
sum to 1. We argue that in fact, p* >> 0. This is where condition 3 enters the picture.

Let us argue by way of contradiction. So, suppose it is not the case that p* > 0.
Then for some k, we must have p; = 0. But condition 3 of the statement of the theorem
then implies that there must be some good &' with pj, = 0 such that z (p°) is unbounded
above as ¢ tends to zero.
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But note that because p* — p*, pj, = 0 implies that p;, — 0. Consequently, the
left-hand side of (P.1) for k = k¥ must tend to zero, because the term in square brackets
is bounded above by the definition of z. However, the right-hand side apparently does not
tend to zero, because the unboundedness above of zy (p®) implies that Zy (p®) assumes its
maximum value of 1 infinitely often. Of course, this is a contradiction because the two
sides are equal for all values of . We conclude, therefore, that p* > 0.

Thus, p® — p* > 0as ¢ — 0. Because Z(-) inherits continuity on R’ | from z(.),
we may take the limit as ¢ — 0 in (P.1) to obtain

pi Y max(0, z,(p*)) = max(0. z(p*)) (P.2)

m=1

forall k=1, 2, ..., n. Multiplying both sides by z(p*) and summing over & yields
n n
P Z(p*)( > max(0, Em(p*))) = z(p*) max(0, z(p")).
m=1 k=1

Now, condition 2 in the statement of the theorem (Walras’ law) says that p*z(p*) =
0, so we may conclude that the left-hand side and therefore also the right-hand side of the
preceding equation is zero. But because the sign of Z(p*) is the same as that of z(p*),
the sum on the right-hand side can be zero only if z(p*) < 0 for all k. This, together with
P* > 0and Walras’ law implies that each z(p*) = 0, as desired. ]

Thus, as long as on R’} | aggregate excess demand is continuous, satisfies Walras’
law, and is unbounded above as some, but not all, prices approach zero, a Walrasian
equilibrium (with the price of every good strictly positive) is guaranteed to exist.

One might be tempted to try to obtain the same result without condition 3 on the
unboundedness of excess demand. However, you are asked to show in Exercise 5.7 that
the result simply does not hold without it.

We already know that when each consumer’s utility function satisfies Assumption
5.1, conditions 1 and 2 of Theorem 5.3 will hold. (This is the content of Theorem 5.2.) It
remains to show when condition 3 holds. We do so now.

Utility and Aggregate Excess Demand

If each consumer'’s utility function satisfies Assumptmn 5.1, and if the aggregate endow-
ment of each good is strictly positive (i.e., Y1 1€ > 0), then aggregate excess demand
satisfies conditions 1 through 3 of Theorem 5.3.

Proof: Conditions 1 and 2 follow from Theorem 5.2. Thus, it remains only to verify con-
dition 3. Consider a sequence of strictly posmve prlce vectors, { convergln% to p # 0,
such that py = 0 for some good k. Because YL e >0, we must havep-) ;. ¢ > 0.
Consequently, p - s L€ = =y . 1P - ¢ > 0,so that there must be at least one consumer
ifor whom p - e’ > 0.
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Consider this consumer i’s demand, x/(p™, p™ - ¢/), along the sequence of prices.
Now, let us suppose, by way of contradiction, that this sequence of demand vectors is
bounded. Then, by Theorem A1.8, there must be a convergent subsequence. So we may
assume without any loss (by reindexing the subsequence, for example) that the original
sequence of demands converges to x*, say. That is, x/(p™, p" - €/) — x*.

To simplify the notation, let x” = x/(p™, p™ - ¢/) for every m. Now, because x” max-
imises u’ subject to 7's budget constraint given the prices p”, and because u' is strongly
(and, therefore, strictly) increasing, the budget constraint must be satisfied with equality.
That is,

for every m.
Taking the limit as m — oo yields

p-x"=p-e>0, (P.1)

where the strict inequality follows from our choice of consumer 1.
Now let f;: x*+(0,...,0,1,0,...,0), where the 1 occurs in the kth position.
Then because u' is strongly increasing on R”,

v®) > d(x). (P-2)
In addition, because py = 0, (P.1) implies that
p-x=p-¢>0. (P.3)
So, because «' is continuous, (P.2) and (P.3) imply that there is a ¢ € (0, 1) such that
U > v'(x"),
p- (%) <p-e.

But because p” — p, x — x* and ' is continuous, this implies that for m large
enough,

d(&) > d'(x™)
pm . (&) < Pm ‘el"

contradicting the fact that x™ solves the consumer’s problem at prices p™. We conclude
therefore that consumer 7’s sequence of demand vectors must be unbounded.

Now because 7's sequence of demand vectors, {x"}, is unbounded yet non-negative,
there must be some good &' such that {x}'} is unbounded above. But because /s income
converges to p - €/, the sequence of /'s income {p” - €'} is bounded. (See Exercise 5.8.)
Consequently, we must have pj/ — 0, because this is the only way that the demand for
good k' can be unbounded above and affordable. Consequently, py = lim, p}/ = 0.
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Finally, note that because the aggregate supply of good ¥’ is fixed and equal to the
total endowment of it, and all consumers demand a non-negative amount of good ¥, the
fact that 7’s demand for good &' is unbounded above implies that the aggregate excess
demand for good k' is unbounded above. Consequently, beginning with the assumption
that p” — p # 0 and p; = 0 for some k&, we have shown that there exists some good #,
with p} = 0, such that the aggregate excess demand for good &' is unbounded above along
the sequence of prices {p™}, as desired. ]

We now can state an existence result in terms of the more primitive elements of the
model. The next theorem follows directly from Theorems 5.4 and 5.3.

Existence of Walrasian Equilibrium

If each consumer’s utility function satisfies Assumption 5.1, and "7, e/ > 0, then there
exists at least one price vector, p* > 0, such thatz(p*) = 0.

The assumption that utilities be strongly increasing is somewhat restrictive, although
it has allowed us to keep the analysis relatively simple. As mentioned earlier, the otherwise
very well-behaved Cobb-Douglas functional form of utility is not strongly increasing on
R” . You are asked to show in Exercise 5.14 that existence of a Walrasian equilibrium with
Cobb-Douglas preferences is nonetheless guaranteed.

When utilities satisfy Assumption 5.1, we know from Theorem 5.2 that the excess
demand vector will be homogeneous of degree zero. The behavioural significance of
homogeneity is that only relative prices matter in consumers’ choices. Thus, if p* is a
Walrasian equilibrium in such an economy, we will have z(p*) = z(Ap*) = Oforall » > 0.
So, should there exist some set of prices at which all markets clear, those markets will
also clear at any other prices obtained by multiplying all prices by any positive constant.
This fact often can be exploited to help simplify calculations when solving for Walrasian
equilibria.

EXAMPLE 5.1 Let us take a simple two-person economy and solve for a Walrasian
equilibrium. Let consumers 1 and 2 have identical CES utility functions,

. x)=x +x%. =12

where 0 < p < 1. Let there be 1 unit of each good and suppose each consumer owns all
of one good, so initial endowments are el = (1,0) and e? = (0, 1). Because the aggregate
endowment of each good is strictly positive and the CES form of utility is strongly increas-
ing and strictly quasiconcave on R/} when 0 < p < 1, the requirements of Theorem 5.5
are satisfied, so we know a Walrasian equilibrium exists in this economy.

From (E.10) and (E.11) in Example 1.1, consumer /s demand for good j at prices
p will be xj(p,}/) = p;_ly"/(p{ + pb), where r=p/(p — 1), and y is the consumer’s
income. Here, income is equal to the market value of the endowment, so y! = p - el = p
and ? =p-é® = p.
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Because only relative prices matter, and because we know from Theorem 5.5 that
there is an equilibrium in which all prices are strictly positive, we can choose a convenient
normalisation to simplify calculations. Let p = (1/p2)p. Here, p1 = p1/p2 and ps = 1, so
D1 is just the relative price of the good x;. Because each consumer’s demand at p is the
same as the demand at p, we can frame our problem as one of finding an equilibrium set
of relative prices, p.

Now consider the market for good 1. Assuming an interior solution, equilibrium
requires p* where total quantity demanded equals total quantity supplied, or where

AP -e) + 2P ped) = el + ¢
Substituting from before, this requires
—kr—1 - —xr—1

b P P

=1
CERRNTES

Solving, we obtain pj = 1. We conclude that any vector p* where pj = p;, equates
demand and supply in market 1. By Walras’ law, those same prices must equate demand
and supply in market 2, so we are done. O

5.2.2 EFFICIENCY

We can adapt the Edgeworth box description of a two-person economy to gain useful per-
spective on the nature of Walrasian equilibrium. Fig. 5.4 represents an economy where
preferences satisfy the requirements of Theorem 5.5. Initial endowments are (e%, e%) and
(e, e%), and the box is constructed so these two points coincide at e, as before. At relative
prices pj/p;, consumer 1’s budget constraint is the straight line through e when viewed
from 1’s origin. Facing the same prices, consumer 2’s budget constraint will coincide with
that same straight line when viewed (upside down) from 2’s origin. Consumer 1’s most
preferred bundle within her budget set is (x}, x}), giving the quantities of each good con-
sumer 1 demands facing prices pj/p; and having income equal to the market value of her
endowment, py e% + P e;. Similarly, consumer 2’s demanded bundle at these same prices
with income equal to the value of his endowment is (x5, x3). Equilibrium in the market
for good 1 requires X} + 1‘21 = e% + €2, or that total quantity demanded equal total quantity
supplied. This, of course, is equivalent to the requirement X% — e% = e% — X%, or that con-
sumer 2’s net demand be equal to consumer 1’s net supply of good 1. A similar description
of equilibrium in the market for good 2 also can be given.

A little experimentation with different relative prices, and so different budget sets
for the two consumers, should convince you that these conditions for market equilibrium
will obtain only when the demanded bundles - viewed from the consumers’ respective
origins - coincide with the same point in the box, as in Fig. 5.4. Because by construc-
tion one indifference curve for each consumer passes through every point in the box, and
because equilibrium requires the demanded bundles coincide, it is clear that equilibrium
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Figure 5.4. Walrasian equilibrium in the Edgeworth box.

will involve fangency between the two consumers’ indifference curves through their
demanded bundles, as illustrated in the figure.

There are several interesting features of Walrasian equilibrium that become imme-
diately apparent with the perspective of the box. First, as we have noted, consumers’
supplies and demands depend only on relative prices. Doubling or tripling all prices
will not change the consumers’ budget sets, so will not change their utility-maximising
market behaviour. Second, Fig. 5.4 reinforces our understanding that market equilibrium
amounts to the simultaneous compatibility of the actions of independent, decentralised,
utility-maximising consumers.

Finally, Fig. 5.4 gives insight into the distributional implications of competitive mar-
ket equilibrium. We have noted that equilibrium there is characterised by a tangency of the
consumers’ indifference curves through their respective demanded bundles. These bundles,
in turn, give the final amount of each good owned and consumed by the consumer in the
market system equilibrium. Thus, having begun with some initial distribution of the goods
given by e, the maximising actions of self-interested consumers on impersonal markets
has led to a redistribution of goods that is both ‘inside the lens’ formed by the indiffer-
ence curves of each consumer through their respective endowments and ‘on the contract
curve’. In the preceding section, we identified allocations such as these as in the ‘core’ of
the economy with endowments e. Thus, despite the fact that in the competitive market we
have considered here, consumers do not require knowledge of other consumers’ prefer-
ences or endowments, the allocation resulting from Walrasian equilibrium prices is in the
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core, at least for the Edgeworth box economy. As we now proceed to show, this remarkable
property holds in general. We begin by defining some notation.

Walrasian Equilibrivm Allocations (WEAs)

Letp* be a Walrasian equilibrium for some economy with initial endowments e, and let
x(p*) = x'(p*, p*-eb), ..., x/(p*, p* - &)),

where component i gives the n-vector of goods demanded and received by consumer i at
prices p*. Then x(p*) is called a Walrasian equilibrium allocation, or WEA.

Now consider an economy with initial endowments e and feasible allocations F{(e)
defined in (5.1). We should note some basic properties of the WEA in such economies.
First, it should be obvious that any WEA will be feasible for this economy. Second, Fig. 5.4
makes clear that the bundle received by every consumer in a WEA is the most preferred
bundle in that consumer’s budget set at the Walrasian equilibrium prices. It therefore fol-
lows that any other allocation that is both feasible and preferred by some consumer to their
bundle in the WEA must be too expensive for that consumer. Indeed, this would follow
even if the price vector were not a Walrasian equilibrium. We record both of these facts as
lemmas and leave the proof of the first and part of the proof of the second as exercises.

Letp* be a Walrasian equilibrium for some economy with initial endowments e. Let x(p*)
be the associated WEA. Thenx(p*) € F{(e).

Suppose that u' is strictly increasing on RYL, that consumer i’s demand is well-defined at
p > 0 and equal toX', and thatx' € R}

i Iful(x’) > u'(X), thenp-x' > p - %'
i, Ifv'(x’) > /X', thenp -x' > p - %"

Proof: We leave the first for you to prove as an exercise. So let us suppose that (i) holds.
We therefore can employ it to prove (ii).

Suppose, by way of contradiction, that (ii) does not hold. Then #/(x’) > /(%) and
p - x' < p - &’ Consequently, beginning with x’, we may increase the amount of every good
consumed by a small enough amount so that the resulting bundle, X', remains strictly less
expensive than %’ But because u is strictly increasing, we then have u/(x/) > u/(x/) >
u'(x%), and p - X’ < p - . But this contradicts (i) with x’ replaced by x". |

It bears noting, in general, that we have no reason to expect that when WEAs exist,
they will be unique. Even in the two-person Edgeworth box economy, it is easy to con-
struct examples where preferences satisfy very ordinary properties yet multiple Walrasian
equilibrium allocations exist. Fig. 5.5 illustrates such a case. It seems prudent, therefore, to
keep such possibilities in mind and avoid slipping into the belief that Walrasian equilibria
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Figure 5.5. Multiple equilibria in a two-person market economy.

are ‘usually’ unique. As a matter of notation, then, let us give a name to the set of WEAs
in an economy.

The Set of WEAs

For any economy with endowments e, let W(e) denote the set of Walrasian equilibrium
allocations.

We now arrive at the crux of the matter. It is clear in both Figs. 5.4 and 5.5 that the
WEAs involve allocations of goods to consumers that lie on the segment cc of the contract
curve representing the core of those economies. It remains to show that WEAs have this
property in arbitrary economies. Recall that C(e) denotes the set of allocations in the core.

Core and Equilibria in Competitive Economies

Consider an exchange economy (U, e');.z. If each consumer’s utility function, u',
Is strictly increasing on R, then every Walrasian equilibrium allocation is in the core.
That is,

W(e) C C(e).

Proof: The theorem claims that if x(p*) is a WEA for equilibrium prices p*, then x(p*) €
C(e). To prove it, suppose x(p*) is a WEA, and assume x(p*) ¢ C(e).

Because x(p*) is a WEA, we know from Lemma 5.1 that x(p*) € F(e), so x(p*) is
feasible. However, because x(p*) ¢ C(e), we can find a coalition .S and another allocation
y such that

Zyi = Z e (P.1)

ieS ieS
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and
lzi(yj) > ui(xf(p*, P e’) forall i € S, (P.2)

with at least one inequality strict. (P.1) implies

Py y=p-) ¢ (P.3)

icS icS
Now from (P.2) and Lemma 5.2, we know that for each i € S, we must have
Py = pt-x(ptpt-e) =p* ¢, (P.4)

with at least one inequality strict. Summing over all consumers in .S, we obtain

P*'Zyj>P*'Zej»

ieS ieS
contradicting (P.3). Thus, x(p*) € C(e) and the theorem is proved. |

Note that as a corollary to Theorem 5.5, we immediately have a result on the
non-emptiness of the core. That is, under the conditions of Theorem 5.5, a Walrasian
equilibrium allocation exists, and by Theorem 5.6, this allocation is in the core. Hence,
the conditions of Theorem 5.5 guarantee that the core is non-empty.

Before moving on, we pause to consider what we have shown here. In a Walrasian
equilibrium, each consumer acts completely independently of all other consumers in the
sense that he simply chooses to demand a bundle that maximises his utility given the
prevailing prices and given his income determined by the value of his endowment. In par-
ticular, he does not consider the amount demanded by others or the total amount supplied
of any good. He knows only his own preferences and the prices at which he can carry out
transactions.

Contrast this with the story of pure barter exchange with which we began the chapter.
There, it was crucial that consumers actually could get together, take stock of the total
resources available to them, and then exploit all potential gains from trade. In particular,
each consumer would have to be keenly aware of when a mutually beneficial trade could
be made with some other consumer — any other consumer! As we remarked earlier, it
would be astonishing if such complete coordination could be even approximated, let alone
achieved in practice. And even if it could be approximated, it would appear to require
the aid of some central authority charged with coordinating the appropriate coalitions and
trades.

But we have now shown in Theorem 5.6 that it is possible to achieve outcomes in
the core without the aid of a central planner. Indeed, no one in our competitive economy
requires direction or advice from anyone else. Each consumer simply observes the prices
and places his utility-maximising demands and supplies on the market. In this sense, the
competitive market mechanism is said to be decentralised.
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Note, in particular, that because all core allocations are Pareto efficient, so, too, must
be all Walrasian equilibrium allocations. Although we have proven more, this alone is
quite remarkable. Imagine being charged with allocating all the economy’s resources, so
that in the end, the allocation is Pareto efficient. To keep you from giving all the resources
to one person, let us also insist that in the end, every consumer must be at least as well
off as they would have been just consuming their endowment. Think about how you might
accomplish this. You might start by trying to gather information about the preferences of
all consumers in the economy. (What a task that would be!) Only then could you attempt to
redistribute goods in a manner that left no further gains from trade. As incredibly difficult
as this task is, the competitive market mechanism achieves it, and more. To emphasise the
fact that competitive outcomes are Pareto efficient, we state it as a theorem, called the First
Welfare Theorem.

First Welfare Theorem

Under the hypotheses of Theorem 5.6, every Walrasian equilibrium allocation is Pareto
efficient.

Proof: The proof follows immediately from Theorem 5.6 and the observation that all core
allocations are Pareto efficient. ]

Theorem 5.7 provides some specific support for Adam Smith’s contention that
society’s interests are served by an economic system where self-interested actions of
individuals are mediated by impersonal markets. If conditions are sufficient to ensure
that Walrasian equilibria exist, then regardless of the initial allocation of resources, the
allocation realised in market equilibrium will be Pareto efficient.

It is extremely important to appreciate the scope of this aspect of competitive market
systems. It is equally important to realise its limitations and to resist the temptation to read
more into what we have shown than is justified. Nothing we have argued so far should lead
us to believe that WEAs are necessarily ‘socially optimal’ if we include in our notion of
social optimality any consideration for matters of ‘equity’ or ‘justice’ in distribution. Most
would agree that an allocation that is not Pareto efficient is not even a candidate for the
socially best, because it would always be possible to redistribute goods and make someone
better off and no one worse off. At the same time, few could argue persuasively that every
Pareto-efficient distribution has an equal claim to being considered the best or ‘most just’
from a social point of view.

In a later chapter, we give fuller consideration to normative issues such as these. For
now, a simple example will serve to illustrate the distinction. Consider an economy with
total endowments given by the dimensions of the Edgeworth box in Fig. 5.6. Suppose by
some unknown means society has identified the distribution x as the socially best. Suppose,
in addition, that initial endowments are given by the allocation e. Theorem 5.6 tells us that
an equilibrium allocation under a competitive market system will be some allocation in
C(e), such as x/, which in this case is quite distinct from x. Thus, while competitive market
systems can improve on an initial distribution that is not itself Pareto efficient, there is no
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Figure 5.6. Efficiency and social optimality in a two-person
economy.

assurance a competitive system, by itself, will lead to a final distribution that society as a
whole views as best.

Before we become unduly pessimistic, let us consider a slightly different question.
If by some means, we can determine the allocation we would like to see, can the power of
a decentralised market system be used to achieve it? From Fig. 5.6, it seems this should be
so. If initial endowments could be redistributed to e*, it is clear that x is the allocation that
would be achieved in competitive equilibrium with those endowments and prices p*.

In fact, this is an example of a rather general principle. It can be shown that under
certain conditions, any Pareto-efficient allocation can be achieved by competitive markets
and some initial endowments. This result is called the Second Welfare Theorem.

Second Welfare Theorem

Consider an exchange economy (u', e) ;.7 with aggregate endowment ZLI e > 0, and
with each utility function u' satisfying Assumption 5.1. Suppose that x is a Pareto-efficient
allocation for (i, ) ;c7, and that endowments are redistributed so that the new endow-
ment vector is X. Then X is a Walrasian equilibrium allocation of the resulting exchange
economy (U', X' je7.

Proof: Because X is Pareto efficient, it is feasible. Hence, 31 %= Y"1 e/ > 0.
Consequently, we may apply Theorem 5.5 to conclude that the exchange economy
(U, X") je7 possesses a Walrasian equilibrium allocation x. It only remains to show that
X=X

Now in the Walrasian equilibrium, each consumer’s demand is utility maximising
subject to her budget constraint. Consequently, because / demands x’, and has endowment
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%/, we must have
d& > dx  forallie T. (P.1)

But because % is an equilibrium allocation, it must be feasible for the economy (i, X/) ;7.
Consequently, Y7 &/ =Y %/ = Y"1 ¢ so that % is feasible for the original econ-
omy as well.

Thus, by (P.1), X is feasible for the original economy and makes no consumer worse
off than the Pareto-efficient (for the original economy) allocation x. Therefore, X cannot
make anyone strictly better off; otherwise, X would not be Pareto efficient. Hence, every
inequality in (P.1) must be an equality.

To see now that %' = %’ for every j note that if for some consumer this were
not the case, then in the Walrasian equilibrium of the new economy, that consumer
could afford the average of the bundles % and X’ and strictly increase his utility (by
strict quasiconcavity), contradicting the fact that X’ is utility-maximising in the Walrasian
equilibrium. ]

One can view the Second Welfare Theorem as an affirmative answer to the follow-
ing question: is a system that depends on decentralised, self-interested decision making
by a large number of consumers capable of sustaining the socially ‘best’ allocation of
resources, if we could just agree on what that was? Under the conditions stated before,
the Second Welfare Theorem says yes, as long as socially ‘best’ requires, at least, Pareto
efficiency.

Although we did not explicitly mention prices in the statement of the Second Welfare
Theorem, or in its proof, they are there in the background. Specifically, the theorem says
that there are Walrasian equilibrium prices, p, such that when the endowment allocation
is X, each consumer i will maximise u/(x’) subject to p - x' < p - X’ by choosing x’ = x’.
Because of this, the prices p are sometimes said to support the allocation x.

We began discussing the Second Welfare Theorem by asking whether redistribution
to a point like e* in Fig. 5.6 could yield the allocation x as a WEA. In the theorem, we
showed that the answer is yes if endowments were redistributed to x itself. It should be
clear from Fig. 5.6, however, that x in fact will be a WEA for market prices p under a
redistribution of initial endowments to any point along the price line through x, including,
of course, to e*. This same principle applies generally, so we have an immediate corollary
to Theorem 5.8. The proof is left as an exercise.

Another Look at the Second Welfare Theorem

Under the assumptions of the preceding theorem, if X is Pareto efficient, then X is a
WEA for some Walrasian equilibrium p after redistribution of initial endowments to any
allocation €* € F(e), such thatp -e* = p-x" forallie I.
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5.3 EQUILIBRIUM IN PRODUCTION

Now we expand our description of the economy to include production as well as consump-
tion. We will find that most of the important properties of competitive market systems
uncovered earlier continue to hold. However, production brings with it several new issues
that must be addressed.

For example, the profits earned by firms must be distributed back to the consumers
who own them. Also, in a single firm, the distinction between what constitutes an input and
what constitutes an output is usually quite clear. This distinction becomes blurred when
we look across firms and view the production side of the economy as a whole. An input
for one firm may well be the output of another. To avoid hopelessly entangling ourselves
in notation, it seems best to resist making any a priori distinctions between inputs and
outputs and instead let the distinction depend on the context. Thus, we will view every
type of good or service in a neutral way as just a different kind of commodity. We will
suppose throughout that there is a fixed and finite number n of such commodities. In the
case of producers, we will then adopt simple sign conventions to distinguish inputs from
outputs in any particular context.

Again, we formalise the competitive structure of the economy by supposing con-
sumers act to maximise utility subject to their budget constraints and that firms seek to
maximise profit. Both consumers and firms are price takers.

5.3.1 PRODUCERS

To describe the production sector, we suppose there is a fixed number J of firms that we
index by the set

J=A{1,....J}.

We now let y/ € R” be a production plan for some firm, and observe the convention of
writing y{ < 0 if commodity 4 is an input used in the production plan and y{ > 0if it is an
output produced from the production plan. If, for example, there are two commodities and
y/ = (=7, 3), then the production plan requires 7 units of commodity one as an input, to
produce 3 units of commodity two as an output.

To summarise the technological possibilities in production, we return to the most
general description of the firm’s technology, first encountered in Section 3.2, and sup-
pose each firm possesses a production possibility set, ¥/, j € 7. We make the following
assumptions on production possibility sets.

' ASSUMPTION 5.2 The Individual Firm

1. 0cY/ C R4,
2. Y/ is closed and bounded.

3. Y/ is strongly convex. That is, for all distincty', y* € Y/ and all t € (0, 1), there
existsy € YJ such thaty > ty' + (1 — Hy? and equality does not hold.
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The first of these guarantees firm profits are bounded from below by zero, and the
second that production of output always requires some inputs. The closedness part of
the second condition imposes continuity. It says that the limits of possible production
plans are themselves possible production plans. The boundedness part of this condition
is very restrictive and is made only to keep the analysis simple to follow. Do not be
tempted into thinking that it merely expresses the idea that resources are limited. For the
time being, regard it as a simplifying yet dispensable assumption. We shall discuss the
importance of removing this assumption a little later. The third assumption, strong con-
vexity, is new. Unlike all the others, which are fairly weak restrictions on the technology,
strong convexity is a more demanding requirement. In effect, strong convexity rules out
constant and increasing returns to scale in production and ensures that the firm’s profit-
maximising production plan is unique. Although Assumption 5.2 does not impose it, all
of our results to follow are consistent with the assumption of ‘no free production’ (i.e.,
Y/ NRY = {0}).

Each firm faces fixed commodity prices p > 0 and chooses a production plan to
maximise profit. Thus, each firm solves the problem

v/ 5.3
yl?élxwl’ y (5.3)

Note how our sign convention ensures that inputs are accounted for in profits as costs and
outputs as revenues. Because the objective function is continuous and the constraint set
closed and bounded, a maximum of firm profit will exist. So, for all p > 0 let

/(p) = max p - y/
y/eY.

denote firm j's profit function. By Theorem A2.21 (the theorem of the maximum), I1/(p)
is continuous on R’} . As you are asked to show in Exercise 5.23, strong convexity ensures
that the profit-maximising production plan, y/(p), will be unique whenever p > 0. F1nally,
from Theorem A2.21 (the theorem of the maximum), yJ (p) will be continuous on RY ,
Note that for p > 0, y/(p) is a vector-valued function whose components are the ﬁrm s
output supply and input demand functions. However, we often simply refer to y/(p) as
firm j’s supply function. We record these properties for future reference.

Basic Properties of Supply and Profits

If Y satisfies conditions 1 through 3 of Assumption 5.2, then for every price p > 0, the
solution to the firm’s problem (5.3) is unique and denoted by yJ(p). Moreover; y/(p) is
continuous on Rl | . In addition, T1/(p) is well-defined and continuous on RE.

Finally, note that maximum firm profits are homogeneous of degree 1 in the vector
of commodity prices. Each output supply and input demand function will be homogeneous
of degree zero in prices. (See Theorems 3.7 and 3.8.)
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Next we consider aggregate production possibilities economy-wide. We suppose
there are no externalities in production between firms, and define the aggregate production
possibilities set,

Y= {y | y=Zyj, where y/ € Yj}.
JeJ

The set Y will inherit all the properties of the individual production sets, and we take note
of that formally.

Properties of Y

If each Y/ satisfies Assumption 5.2, then the aggregate production possibility set, Y, also
satisfies Assumption 5.2.

We shall leave the proof of this as an exercise. Conditions 1, 3, and the bounded-
ness of Y follow directly from those properties of the ¥/. The closedness of ¥ does not
follow simply from the closedness of the individual Y7’s. However, under our additional
assumption that the Y/’s are bounded, Y can be shown to be closed.

Now consider the problem of maximising aggregate profits. Under Theorem 5.10,
a maximum of p -y over the aggregate production set ¥ will exist and be unique
when p > 0. In addition, the aggregate profit-maximising production plan y(p) will be
a continuous function of p. Moreover, we note the close connection between aggre-
gate profit-maximising production plans and individual firm profit-maximising production
plans.

Aggregate Profit Maximisation

For any pricesp > 0, we have
P-Yy>p-y forall yeY
if and only if for some yJ € Y/, j e J, we may writey = 'Zjejyf, and
p-y=p-y forall yyeV, jeJ.

In words, the theorem says that y € ¥ maximises aggregate profit if and only if it
can be decomposed into individual firm profit-maximising production plans. The proof is
straightforward.

Proof: Let y € ¥ maximise aggregate profits at price p. Suppose that y = ) e y/ for
§/ € YJ. If y* does not maximise profits for firm £, then there exists some other y* e Y¥
that gives firm & higher profits. But then the aggregate production vector y € Y composed
of 7* and the sum of the § for j # k must give higher aggregate profits than the aggregate
vector y, contradicting the assumption that y maximises aggregate profits at price p.
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Next, suppose feasible production plans §!, ..., y/ maximise profits at price p for
the individual firms in 7. Then

p-y>py fory/ e YVandje J.
Summing over all firms yields

Zp-yszp-yj fory/ € ¥ andje J.
JjeJ JeJ

Rearranging, we can write this as

p-Zyjzp-Zyj fory/ € ¥andje J.
JjeJd JeJ

But from the definitions of y and Y, this just says

PY>PpP'Yy fory e Y,

S0 y maximises aggregate profits at price p, completing the proof. ]

5.3.2 CONSUMERS

Formally, the description of consumers is just as it has always been. However, we need to
modify some of the details to account for the distribution of firm profits because firms are
owned by consumers. As before, we let

I={1,....1}

index the set of consumers and let ¢ denote 7's utility function over the consumption
set R

Before continuing, note that our assumption that consumer bundles are non-negative
does not preclude the possibility that consumers supply goods and services to the market.
Indeed, labour services are easily included by endowing the consumer with a fixed number
of hours that are available for consumption. Those that are not consumed as ‘leisure’ are
then supplied as labour services. If the consumer’s only source of income is his endow-
ment, then just as before, whether a consumer is a net demander or supplier of a good
depends upon whether his (total) demand falls short of or exceeds his endowment of that
good.

Of course, we must here also take account of the fact that consumers receive income
from the profit earned by firms they own. In a private ownership economy, which we shall
consider here, consumers own shares in firms and firm profits are distributed to sharehold-
ers. Consumer 7’s shares in firm j entitle him to some proportion 0 < 8% < 1 of the profits
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of firm j. Of course, these shares, summed over all consumers in the economy, must sum
to 1. Thus,

0<0¥<1 forallie Z andj € J,
where

Zeif'zl forall je J.
el

In our economy with production and private ownership of firms, a consumer’s
income can arise from two sources - from selling an endowment of commodities already
owned, and from shares in the profits of any number of firms. If p > 0 is the vector of
market prices, one for each commodity, the consumer’s budget constraint is

p-x<p-e+ ZQI]HJ(P)- (5.4)
JjeJ

By letting m'(p) denote the right-hand side of (5.4), the consumer’s problem is

max u'(x’) s.t. P x < nzi(p). (5.5)

i n
x’eRY

Now, under Assumption 5.2, each firm will earn non-negative profits because each
can always choose the zero production vector. Consequently, n/(p) > 0 because p > 0
and e’ > 0. Therefore, under Assumptions 5.1 and 5.2, a solution to (5.5) will exist and
be unique whenever p > 0. Again, we denote it by x/(p, m'(p)), where m(p) is just the
consumer’s income.

Recall from Chapter 1 that under the assumptions we made there (and also here),
x/(p. y) is continuous in (p, y) € R” x R”. Consequently, as long as n7(p) is continuous
in p, x/(p, m'(p)) will be continuous in p. By appealing to Theorem 5.9, we see that m;(p)
is continuous on R’ under Assumption 5.2. Putting this all together we have the following
theorem.

Basic Property of Demand with Profit Shares

Ifeach Y/ satisfies Assumption 5.2 and if u' satisfies Assumption 5.1, then a solution to the
consumer’s problem (5.5) exists and is unique for all p > 0. Denoting it by x'(p, m'(p)).
we have furthermore that x'(p, m(p)) is continuous in p on RY .. In addition, mi(p) is
continuous on R .

This comp}etes the description of the economy. Altogether, we can represent it as
the collection (', €',0Y, ¥))je1 jc 7.
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5.3.3 EQUILIBRIUM

As in the case with no production, we can again define a real-valued aggregate excess
demand function for each commodity market and a vector-valued aggregate excess demand
function for the economy as a whole. Aggregate excess demand for commodity £ is

2P =Y %@.m@) - > yim - e

ieT JjeJ ieZ
and the aggregate excess demand vector is

z(p) = (Aa@). ... z(p)).

As before (see Definition 5.5), a Walrasian equilibrium price vector p* > 0 clears all
markets. That is, z(p*) = 0.

Existence of Walrasian Equilibrium with Production

Consider the economy (i, &, 69, YJ)) .1 jc 7. If each i satisfies Assumption 5.1, each Y/
satisfies Assumption 5.2, and'y + ) _ ;.7 € > 0 for some aggregate production vectory €
> jes Y/, then there exists at least one price vector p* > 0, such that z(p*) = 0.

Recall that when there was no production, we required the aggregate endowment
vector to be strictly positive to guarantee existence. With production, that condition can be
weakened to requiring that there is a feasible production vector for this economy whose net
result is a strictly positive amount of every good (i.e.,y + Y, € > 0 for some aggregate
production vector y).

Proof: We shall get the proof started, and leave the rest for you to complete as an exer-
cise. The idea is to show that under the assumptions above, the aggregate excess demand
function satisfies the conditions of Theorem 5.3. Because production sets are bounded and
consumption is non-negative, this reduces to showing that some consumer’s demand for
some good is unbounded as some, but not all, prices approach zero. (However, you should
check even this logic as you complete the proof for yourself.) Therefore, we really need
only mimic the proof of Theorem 5.4.

So, consider a sequence of strictly positive price vectors, {p™}, converging to p # 0,
such that py = 0 for some good 4. We would like to show that for some, possibly other,
good ¥ with py = 0, the sequence {zy (p™)}, of excess demands for good &' is unbounded.

Recall that our first step in the proof of Theorem 5.4 was to identify a consumer
whose income was strictly positive at the limit price vector p. This is where we shall use
the new condition on net aggregate production.

Because y + Z;I': L € > 0 for some aggregate production vector y, and because the

non-zero price vector p has no negative components, we must have p - (y + ZLI e) > 0.
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Consequently, recalling that both m/(p) and I1/(p) are well-defined for all p > 0,

RAOEDS (1‘: X Zeff'nfu'»))

ieZ el jeJ

= pe+) P

ieZ jeJg

=) petpy

where the first equality follows by the definition of m(p), the second follows because total
non-endowment income is simply aggregate profits, and the weak inequality follows from
Theorem 5.11, which ensures that the sum of individual firm maximised profits must be at
least as large as maximised aggregate profits and hence aggregate profits from y. Therefore,
there must exist at least one consumer whose income at prices p, n7(p), is strictly positive.
The rest of the proof proceeds now as in the proof of Theorem 5.4, and we leave it for you
to complete as an exercise. (You will need to use the result noted in Theorem 5.12 that
m(p) is continuous on R” ) ]

As before, because excess demand is homogeneous of degree zero, when Walrasian
equilibrium prices exist, they will not be unique. Also, note that once again the assumption
that each ' is strongly increasing (and strictly quasiconcave) on all of R” rules out Cobb-
Douglas utility functions. However, you are asked to show in Exercise 5.14 that, under
Assumption 5.2 on the production sector, the aggregate excess demand function nonethe-
less satisfies all the conditions of Theorem 5.3 even when utilities are of the Cobb-Douglas
form.

EXAMPLE 5.2 In the classic Robinson Crusoe economy, all production and all consump-
tion is carried out by a single consumer. Robinson the consumer sells his labour time 4 (in
hours) to Robinson the producer, who in turn uses the consumer’s labour services for that
amount of time to produce coconuts, y, which he then sells to Robinson the consumer. All
profits from the production and sale of coconuts are distributed to Robinson the consumer.

With only one firm, the production possibility set for the firm and the economy
coincide. Let that set be

Y={(-hy)|0<h<b and 0 < y < I},

where b > 0, and o € (0, 1).
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So, for example, the production vector (—2, 2%) is in the production set, which
means that it is possible to produce 2% coconuts by using 2 hours of Robinson’s time.

The set Y is illustrated in Fig. 5.7(a), and it is easy to verify that it satisfies all the
requirements of Assumption 5.2. Note that parameter b serves to bound the production set.
Because this bound is present for purely technical purposes, do not give it much thought.
In a moment, we will choose it to be large enough so that it is irrelevant.

As usual, the consumption set for Robinson the consumer is just the non-negative
orthant, which in this two-good case is RZ . Robinson’s utility function is

uth, y) = By,

where 8 € (0, 1). Here, h denotes the number of hours consumed by Robinson (leisure, if
you will), and y denotes the number of coconuts consumed. We will suppose that Robinson
is endowed with 7 > 0 units of A (i.e., T hours), and no coconuts. That is, e = (T, 0).

We will now choose b large enough so that b > T. Consequently, in any Walrasian
equilibrium, the constraint for the firm that # < b will not be binding because in equilib-
rium the number of hours demanded by the firm cannot exceed the total available number
of hours, 7.

This economy satisfies all the hypotheses of Theorem 5.13 except that Robinson’s
utility function, being of the Cobb-Douglas form, is neither strongly increasing nor strictly
quasiconcave on all of R”,. However, as you are asked to show in Exercise 5.14, the result-
ing aggregate excess demand function nonetheless satisfies the conditions of Theorem 5.3.
Consequently, a Walrasian equilibrium in strictly positive prices is guaranteed to exist. We
now calculate one.

Let p > 0 denote the price of coconuts, y, and w > 0 denote the price per hour
of Robinson’s time, A (Thus, it makes sense to think of w as a wage rate.) Consumer
Robinson’s budget set, before including income from profits, is depicted in Fig. 5.7(b),
and Fig. 5.7(c) shows Robinson’s budget set when he receives his (100 per cent) share of
the firm’s profits, equal to 77 in the figure.

To determine Walrasian equilibrium prices (w*, p*), we shall first determine the
firm’s supply function (which, in our terminology also includes the firm’s demand for
hours of labour), then determine the consumer’s demand function, and finally put them
together to find market-clearing prices. We begin with Robinson the firm. From this point,
we use the terms firm and consumer and trust that you will keep in mind that both are in
fact Robinson.

Because it never pays the firm to waste hours purchased, it will always choose
(—h, y) € ¥, so that y= K. Consequently, because we have chosen b large enough so
that it will not be a binding constraint, the firm will choose / > 0 to maximise

pi* — wh.
When o < 1, h=0 will not be profit-maximising (as we shall see); hence, the

first-order conditions require setting the derivative with respect to A equal to zero, i.e.,
aph~! — w= 0. Rewriting this, and recalling that y = /*, gives the firm’s demand for
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Figure 5.7. Production possibility set, Y, pre-profit budget line, and post-profit budget line in
the Robinson Crusoe economy.

hours, denoted A/, and its supply of output, denoted y, as functions of the prices w, p:*

1/(1-a)
Wl = “—”) ,
(%

r_ (Q))Ot/(l—a)
J W .

Consequently, the firm’s profits are

1l—a [ap\V1™®
w(w, p) = - W(—;j) .

Note that profits are positive as long as prices are. (This shows that choosing /# = 0 is not
profit-maximising just as we claimed earlier.)

41n case you are keeping track of sign conventions, this means that (—A”, yf) € Y.
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We now turn to the consumer’s problem. Robinson’s income is the sum of his endow-
ment income, (w, p) - (T, 0) = w7, and his income from his 100 per cent ownership in
the firm, 7 (w, p), the firm’s profits. So the consumer’s budget constraint, which will be
satisfied with equality because his utility function is strictly increasing, is

py+ wh= wT + 7 (w, p).

He chooses (4, y) > (0, 0) to maximise utility subject to this constraint. By now, you
are familiar with the demand functions of a consumer with Cobb-Douglas utility. He will
spend the fraction 1 — 8 of his total income on 4 and fraction g of it on y. So, letting h°
and y© denote the consumer’s demands, we have

_ A =P T+xW p)
- :
,B(WT-I-JT(W,]?))‘

p

hC

¥ =

We can now put all of this together to search for a price vector (w, p) that will
clear both markets. There are two simplifications we can make, however. The first is that
because aggregate excess demand is homogeneous of degree zero, and we are guaranteed
a Walrasian equilibrium in strictly positive prices, we may set the Walrasian equilibrium
price of y, p*, equal to one without any loss. The second is that we need now only find a
price w* so that the market for 4 clears, because by Walras’ law, the market for y will then
clear as well.

It thus remains to find w* such that h° + h” = T, or using the equations above and
setting p* =1,

A= BWT+ a(w, 1)) . <1>1/(1—a) .
wr W

or

(1 _ ﬂ)(l _ Ol) o 1/(1—-w) o 1/1—w) B
e

where we have substituted for the firm’s profits to arrive at the second equality. It is
straightforward now to solve for w* to obtain the equilibrium wage

. <l—ﬁ(1—oc)>1‘“ 0
w =« —OK,BT > V.

We invite you to check that for this value of w*, and with p* = 1, both markets do indeed
clear.
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Figure 5.8. Equilibrium in a Robinson Crusoe economy.

We can illustrate the equilibrium diagrammatically. Fig. 5.8(a) shows the firm’s
profit-maximising solution. The line given by 7* = py+ wh is an iso-profit line for the
firm, because profits are constant and equal to 7* for every (4, y) on it. Note that when
(h,y) € Y, h <0, so that py+ wh is indeed the correct formula for profits in the figure.
Also note that this iso-profit line (and all others) has slope —w/p. Moreover, the iso-profit
line depicted yields the highest possible profits for the firm because higher profits would
require a production plan above the 7 * iso-profit line, and none of those is in the production
set. Therefore, 7* = 7 (w*, 1).

Fig. 5.8(b) shows the consumer’s utility-maximising solution given the budget con-
straint py + wh = wT + 7*. Note the slope of the consumer’s budget constraint is —w/p,
which is the same as the slope of the firm’s iso-profit line.

Fig. 5.8(c) puts Figs. 5.8(a) and 5.8(b) together by superimposing the consumer’s
figure over the firm’s, placing the point marked 7 in the consumer’s figure onto the origin
in the firm’s figure. The origin for the consumer is marked as 0. and the origin for the firm
is O7. Point A shows the Walrasian equilibrium allocation.

Fig. 5.8(c) allows us to conclude that this competitive equilibrium with production
is Pareto efficient. Consider the shaded region in the figure. With the origin at 0y, the
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shaded region denotes the set of feasible production plans — those that can be actually
implemented in this economy, taking into account the available resources. Any production
plan in the shaded region can be carried out because it calls for no more than T hours, and
this is the total number of hours with which the economy is endowed. On the other hand, a
production plan like point Bis technologically possible because it is in the production set,
but it is infeasible because it requires more than 7 hours.

Switching our point of view, considering 0. as the origin, the shaded region indicates
the set of feasible consumption bundles for this economy. With this in mind, it is clear that
the Walrasian allocation at A is Pareto efficient. It maximises Robinson’s utility among all
feasible consumption bundles.

Soon, we shall show that, just as in the case of a pure exchange economy, this is a
rather general result even with production. O

We now return to the assumption of boundedness of the firms’ production sets. As
mentioned earlier, this assumption can be dispensed with. Moreover, there is very good
reason to do so.

The production possibilities set is meant to describe the firm’s technology, nothing
more. It describes how much of various outputs can be produced with different amounts
of various inputs. Thus, if the amount of inputs applied to the process increases without
bound, so too might the amount of output produced. So, the first point is that there is
simply no place in the description of the technology itself for bounds on the amounts of
inputs that are available.

However, this might not impress a practical person. After all, who cares if it is pos-
sible to fill the universe with fountain pens if most of the universe were filled with ink! Is
it not sufficient to describe the technology for only those production plans that are actu-
ally feasible? On the one hand, the answer is yes, because in equilibrium the production
plans in fact be must feasible. But there is a more subtle and important difficulty. When
we impose constraints on production possibilities based on aggregate supply, then we are
implicitly assuming that the firm takes these aggregate input constraints into account when
making its profit-maximising decisions. For example, if we bound the production set of a
producer of pens because the supply of ink is finite, then at very low ink prices, the pro-
ducer’s demand for ink will be up against this constraint. But were it not for this constraint,
the producer would demand even more ink at the current low price. Thus, by imposing
this seemingly innocent feasibility constraint on production possibilities, we have severed
the all-important connection between price and (excess) demand. And indeed, this is the
essence of the competitive model. Producers (and consumers) make demand and supply
decisions based on the prevailing prices, not on whether there is enough of the good to
supply their demands (or vice versa). Thus, imposing boundedness on the production set
runs entirely against the decentralised aspect of the competitive market that we are try-
ing to capture. (A similar argument can be made against placing upper bounds on the
consumption set.)

Fortunately, the boundedness assumption is not needed. However, do not despair that
all of the hard work we have done has been wasted. It turns out that a standard method of
proving existence without bounded production sets is to first prove it by placing artificial
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bounds on them (which is essentially what we have done) and then letting the artificial
bounds become arbitrarily large (which we will not do). Under suitable conditions, this
will yield a competitive equilibrium of the economy with unbounded production sets.

For the record, strict convexity of preferences and strong convexity of firm produc-
tion possibility sets assumed in Theorem 5.13 are more stringent than needed to prove
existence of equilibrium. If, instead, merely convexity of preferences and production pos-
sibility sets is assumed, existence can still be proved, though the mathematical techniques
required are outside the scope of this book. If production possibility sets are convex, we
allow the possibility of constant returns to scale for firms. Constant returns introduces the
possibility that firm output supply and input demand functions will be set-valued rela-
tionships and that they will not be continuous in the usual way. Similarly, mere convexity
of preferences raises the possibility of set-valued demand functions together with similar
continuity problems. All of these can be handled by adopting generalised functions (called
‘correspondences’), an appropriately generalised notion of continuity, and then applying
a generalised version of Brouwer’s fixed-point theorem due to Kakutani (1941). In fact,
we can even do without convexity of individual firm production possibility sets altogether,
as long as the aggregate production possibility set is convex. The reader interested in
exploring all of these matters should consult Debreu (1959). But see also Exercise 5.22.

5.3.4 WELFARE

Here we show how Theorems 5.7 and 5.8 can be extended to an economy with production.
As before, we focus on properties of the allocations consumers receive in a Walrasian
equilibrium. In a production economy, we expand our earlier definition of Walrasian
equilibrium allocations as follows.

WEA:s in a Production Economy

Let p* >> 0 be a Walrasian equilibrium for the economy (i, €/, 69, YJ);c1 jc 7. Then the
pair (x(p*), y(p*)) is a Walrasian equilibrium allocation (WEA) where x(p*) denotes
the vector, (x,x2,...,x"), whose ith entry is the utility-maximising bundle demanded
by consumer i facing prices p* and income m'(p*); and where y(p*) denotes the vec-
tor; (y',y2, ....y/), of profit-maximising production vectors at prices p*. (Note then that
because p* is a Walrasian equilibrium, Y ;.7 X' =", 7€ + > je y/).

In other words, a consumption and production allocation is a WEA at prices p* if
(1) each consumer’s commodity bundle is the most preferred in his budget set at prices
P, (2) each firm’s production plan is profit-maximising in its production possibility set at
prices p*, and (3) demand equals supply in every market.

We are now ready to extend the First Welfare Theorem to economies with produc-
tion. Recall from our Robinson Crusoe example that the Walrasian equilibrium allocation
there was such that no other feasible allocation could make Robinson better off. We now
define Pareto efficiency when there are many consumers and firms based on the same idea.
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Throughout the remainder of this section, we shall be concerned with the fixed econ-
omy (i, €', 07, ¥J) 1 je 7. Thus, all definitions and theorems are stated with this economy
in mind.

An allocation, (x,y) = ((x',...,x)), (y',...,y/), of bundles to consumers and
production plans to firms is feasible if x' € R” forall ,y/ € ¥/ forall j and } ;.7 x' =

Zz’eI e+ ZjeJ yj-

Pareto-Efficient Allocation with Production

The feasib1¢ a{]oca tion (x, y) is Pareto efficient if there is no other feasible allocation (X, y)
such that u'(x") > u'(x') for all i € T with at least one strict inequality.

Thus, a feasible allocation of bundles to consumers and production plans to firms
is Pareto efficient if there is no other feasible allocation that makes at least one consumer
strictly better off and no consumer worse off.

It would be quite a task indeed to attempt to allocate resources in a manner that
was Pareto efficient. Not only would you need information on consumer preferences, you
would also require detailed knowledge of the technologies of all firms and the productivity
of all inputs. In particular, you would have to assign individuals with particular skills to the
firms that require those skills. It would be a massive undertaking. And yet, with apparently
no central direction, the allocations obtained as Walrasian equilibria are Pareto efficient as
we now demonstrate.

First Welfare Theorem with Production

If each u' is strictly increasing on R", then every Walrasian equilibrium allocation is
Fareto efficient.

Proof: We suppose (x,y) is a WEA at prices p*, but is not Pareto efficient, and derive a

contradiction.
Because (x, y) is a WEA, it is feasible, so

doxi=>"y+ ) e (P.1)

ieT jeJ €T

Because (x, y) is not Pareto efficient, there exists some feasible allocation (X, y) such
that

I&) > dxh, el (P.2)
with at least one strict inequality. By Lemma 5.2, this implies that

p*-ﬁjzp*-xj, ieT, (P.3)
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with at least one strict inequality. Summing over consumers in (P.3) and rearranging gives

pr-) & >p ) X (P.4)

i€l i€l

Now (P.4) together with (P.1) and the feasibility of (x, y) tell us

P (ny+ Ze’) > p*- <Zyj+2ej),

jeJg el jeJg €T

SO

JjeJ jeJ

However, this means that p* - / > p* - y/ for some firm j, where §/ € ¥/. This contradicts
the fact that in the Walrasian equilibrium, y/ maximises firm ;s profit at prices p*. ]

Next we show that competitive markets can support Pareto-efficient allocations after
appropriate income transfers.

Second Welfare Theorem with Production

Suppose that (i) each u' satisfies Assumption 5.1, (ii) each Y/ satisfies Assumption 5.2, (iii)
Y+ .7 € > 0 for some aggregate production vectory, and (iv) the allocation (%, y) is
Pareto efficient.

Then there are income transfers, Ti, ..., Ty, satistying ;.7 Ti =0, and a price
vector, p, such that

1. % maximises '(x) s.t. p-x' <m(p)+ T, ieT.
2. §/ maximisesp -y/ st y/ eV jeJ.

Proof: For each je 7, let ¥/ = ¥/ — {§/}, and note that so defined, each ¥/ satisfies
Assumption 5.2. Consider now the economy € = (/, %/, 67, Yj) jeT jes obtained from
the original economy by replacing consumer /'s endowment, e’, with the endowment
%/, and replacing each production set, ¥/, with the production set ¥/. It is straightfor-
ward to show using hypotheses (i) to (iii) that & satisfies all the assumptions of Theorem
5.13. Consequently, £ possesses a Walrasian equilibrium, p > 0, and an associated
WEA, (X, §).

Now because 0 € ¥/ for every firm j, profits of every firm are non-negative in
equilibrium, so that each consumer can afford his endowment vector. Consequently,

d&x > d&, iel. (P.1)
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Next we shall argue that for some aggregate production vector y, (X, y) is feasible
for the original economy. To see this, note that each y/ € ¥/ is of the form y/ = §/ — §/
for some §/ € Y/, by the definition of ¥/, Now, because (x, §) is a WEA for &, it must be
feasible in that economy. Therefore,

YH=y Yy

el el JjeJ
- YY)
ieZ jeJg

DB RES R

ieT jeJ jeJ

=Y e+ ¥

ieT jeJ

where the last equality follows from the feasibility of (%,y) in the original economy.
Consequently, (X, y) is feasible for the original economy, wherey =3, 7 §/.
We may conclude that every inequality in (P.1) must be an equality, otherwise (%, y)
would not be Pareto efficient. But the strict quasiconcavity of ' then implies that
X =% ieZ
because otherwise some consumer would strictly prefer the average of the two bundles to
x', and the average is affordable at prices p because both bundles themselves are afford-

able. This would contradict the fact that (%, y) is a WEA for £ at prices p. Thus, we may
conclude that

%/ maximises '(x’) st p-x'<p-x+ Z@"jﬁ ¥/, iel.
JeJ

But because utility is strongly increasing, the budget constraint holds with equality
at x’ = %/, which implies that each consumer 7's income from profits is zero. This means
that every firm must be earning zero profits, which in turn means that y/ = 0 for every
firm j.

We leave it as an exercise to show that because §/ = 0 maximises firm ;s profits at
prices p when its production set is ¥/, then (by the definition of ¥/) §/ maximises firm j's
profits at prices p when its production set is ¥/ (i.e., in the original economy).

So altogether, we have shown the following:

%’ maximises ¢/(x’)  s.t. P x < P %, ieZ, (P.2)

¥/ maximises p-y/ st y e ¥V, jeJ. (P.3)
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Note then that setting 7; = p - X — m'(p) provides the appropriate transfers, where
n'(p) =p- e+, 76Yp-§/ is consumer 7's income in the original economy at prices
p- These transfers sum to zero by the feasibility of (x,y), and when employed (in the
original economy), they reduce each consumer’s problem to that in (P.2). Consequently,
both (1) and (2) are satisfied. |

5.4 CONTINGENT PLANS

Up to now we have considered the problem of how a market economy allocates resources
through a competitive price system in what appears to be a static environment. There
has been no mention of ¢time in the model. So, for example, discussions of interest rates,
inflation, borrowing, and lending seem to be out of reach. But in fact this is not so. The
model we have developed is actually quite capable of including not only time, interest
rates, borrowing, and lending, but also uncertainty about many things, including the future
state of the economy, the value of stocks and bonds, and more. The key idea is to refine
the notion of a good to include all of the characteristics of interest to us.

5.4.1 TIME

If we wish to include time in our model, then we simply index goods not only by what
they are, e.g. apples, oranges, etc., but also by the date at which they are consumed (or
produced). So instead of keeping track only of x;, the amount of good 4 consumed by a
consumer, we also keep track of the date ¢at which it is consumed. Thus, we let x;; denote
the amount of good k& consumed at date ¢. If there are two goods, £ = 1, 2, and two dates
t =1, 2, then a consumption bundle is a vector of four numbers (xi1, x12, X21, X22), where,
for example, xi2 is the amount of good & = 1 consumed at date ¢ = 2.

But if a consumption bundle is (x11, x12, X21, x22), then in keeping with our conven-
tion up to now, we should really think of each of the four coordinates of the consumption
bundle as representing the quantities of distinct goods. That is, with two ‘ basic’ goods,
apples and oranges, and two dates, today and tomorrow, we actually have four goods -
apples today, apples tomorrow, oranges today, and oranges tomorrow.

5.4.2 UNCERTAINTY

Uncertainty, too, can be captured using the same technique. For example, suppose there
is uncertainty about today’s weather and that this is important because the weather might
affect the desirability of certain products (e.g., umbrellas, sunscreen, vacations,. . .) and/or
the production possibilities for certain products (e.g., agriculture). To keep things simple,
let us suppose that there are just two possibilities for the state of the weather. In state
s =1 it rains, and in state s = 2 it is sunny. Then, analogous to what we did with time,
we can index each good & with the state in which it is consumed (or produced) by letting
Xks denote the amount of good & consumed in state s, and letting yjs denote the amount of
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good k produced in state s. This permits consumers to have quite distinct preferences over
umbrellas when it is sunny and umbrellas when it rains, and it also permits production
possibilities, for agricultural products for example, to be distinct in the two states. We
can also model the demand for insurance by allowing a consumer’s endowment vector to
depend upon the state, with low endowments being associated with one state (fire or flood,
for example) and high endowments with another.

5.4.3 WALRASIAN EQUILIBRIUM WITH CONTINGENT COMMODITIES

Let us put all of this together by incorporating both time and uncertainty. We will then step
back and interpret the meaning of a Walrasian equilibrium of the resulting model.

There are NVbasic goods, k= 1,2,..., N, T'dates, t=1, 2, ..., T, and for each date
t there are S; mutually exclusive and exhaustive events s; = 1,2, ..., S; that can occur.
Consequently, the state of the world at date ¢is described by the vector (si, ..., s;) of the
t events that occurred at the start of dates 1 through ¢ inclusive. A consumption bundle is
a non-negative vector x = (Xj), where & runs from 1 to N, ¢runs from 1 to 7, and given
t, s=(s1,...,sp is one of the 515 ....5 states of the world describing the events that
have occurred up to date ¢. Thus, x € R™™, where M = S; + 515 + ...+ 515 ... Sris
the total number of date-state pairs (¢, s).

NA’l/;here are J firms and each firm j € 7 has a production possibilities set, ¥/, contained
in R™.

There are I consumers. Each consumer 7 € 7 has preferences over the set of con-
sumption bundles in Rﬂ\r/M and 7's preferences are represented by a utility function u/(-).
Consumer 7 has an endowment vector ¢/ € RYM and ownership share 6% of each firm
j € J.% Note that the endowment vector ¢’ specifies that at date ¢and in state s, consumer
1's endowment of the N goods is (€] . . . ., €ly)-

In terms of our previous definitions, this is simply a private ownership economy
with n = NM goods. For example x;;s = 2 denotes two units of good ks or equivalently
it denotes two units of the basic good £ at date ¢in state s. Thus, we are treating the same
basic good as distinct when consumed at distinct dates or in distinct states. After all, the
amount one is willing to pay for an automobile delivered today might well be higher than
the amount one is willing to pay for delivery of an otherwise identical automobile six
months from today. From this perspective, treating the same basic good at distinct dates
(or in distinct states) as distinct goods is entirely natural.

Under the hypotheses of Theorem 5.13, there is a price vector p* € Rﬂ’_f constituting
a Walrasian equilibrium for this private ownership economy. In particular, demand must
equal supply for each of the NM goods, that is for every basic good at every date and in
every state of the world. Let us now understand what this means starting with firms.

For each firm je J, let §¥ = (§,) € ¥ € R"M denote its (unique) profit-
maximising production plan given the price vector p*. Consequently, at date ¢ in state
s, firm j will produce j{ds units of the basic good (output) & if j}fds > 0 and will demand

50ne could allow ownership shares to depend upon the date and the state, but we shall not do so.
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‘jﬂm’ units of the basic good (input) & if ¥, < 0. Thus, §/ is a profit-maximising contin-
gent production plan, describing output supply and input demand for the NV basic goods
contingent upon each date and state. Let us now turn to consumers.

For each ieZ, let %' = (&,) € RYM denote consumer /s (unique) utility-
maximising affordable consumption bundle given prices p* and income n7'(p*).
Consequently, at date ¢ in state s consumer i will consume i}, units of the basic good
k. Thus X' is a utility-maximising affordable contingent consumption plan for consumer i,
specifying his consumption of each of the basic goods contingent on each date and state.

Now, on the one hand, because demand equals supply for every good, we have

Z Ky = Z}A’ﬁts + Z e}, forevery k. ¢, s. (5.6)

I SIA jeJ ieZ

Consequently, at every date and in every state, demand equals supply for each of the basic
goods. On the other hand, each consumer 7 has only a single budget constraint linking his
expenditures on all goods as follows:

Z PhisXias = Z PiisCias + Z oY sz’fs%fts’ forevery i e 7. (5.7)
kts kts JjeTJ  kts

In particular, when state s’ occurs at date ¢, it may turn out that for some consumer(s) /,

Z PiesXies > Z Pies €hes + Z 0Y Z PresThes
X X jed  k

That is, consumer 7’s expenditures on basic goods at date ¢ in state s’ might exceed his
income at that date and in that state. Does this make sense? The answer is ‘yes, it absolutely
makes sense’. Indeed, this budget shortfall is an expression of two important economic
phenomena, namely borrowing and insurance. When one borrows at date ¢, one is effec-
tively spending more than one’s endowment and profit-share income at date ¢, and when
one receives an insurance payment due to loss in state s (e.g., fire or flood) then again
one is able to spend in state s more than one’s endowment and profit-share income. On
the other side of the coin, there can very well be some states and dates associated with
budget surpluses (e.g., when one lends or when one provides insurance on states that did
not occur).

But if each consumer’s budget need balance only overall, as given in (5.7), then how
is this Walrasian equilibrium allocation actually implemented? The answer is as follows.
Think of a prior date zero at which firms and consumers participate in a market for binding
contracts. A contract is a piece of paper on which is written a non-negative real number, a
basic good £, a date ¢ and a state, s. For example, the contract (107.6, k=3,t=2,s=7)
entitles the bearer to 107.6 units of basic good k = 3 at date ¢t = 2 in state s = 7. Notice
that each consumer’s equilibrium net consumption bundle &/ — &/ = (fv};[s — e};ts) can be

reinterpreted as a vector of contracts. That is, for each £, ¢, and s, if &}, — €}, > 0 then
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consumer  is entitled to receive from the market %}, — ef . units of basic good & at date

t in state s. If %, — e}, < 0, consumer / is required to supply to the market |%i, — ¢} |
units of basic good k at date ¢ in state s.

Similarly, each firm’s production plan § = @{ds) can be reinterpreted as the vector
of contracts requiring firm j to supply to the market J, . units of basic good £ at date ¢ in

state s if jf};ts > 0 and entitling firm j to receive from the market ’jf}'m

units of basic good k

at date ¢in state sif 7, < 0.

Finally, note that if for each £, ¢, and s, the price of a contract per unit of basic
good k at date ¢ in state s is pj,., then at date zero the market for contracts will clear
with consumers maximising utility and firms maximising profits. When each date ¢ arrives
and any state s occurs, the contracts that are relevant for that date and state are executed.
The market-clearing condition (5.6) ensures that this is feasible. After the initial trading
of contracts in period zero, no further trade takes place. The only activity taking place as
time passes and states occur is the execution of contracts that were purchased and sold at
date zero.

Let us now provide several important remarks on this interpretation of our model.
First, we have implicitly assumed that there is perfect monitoring in the sense that it is not
possible for a firm or consumer to claim that he can supply more units of a basic good in
state s at date ¢ than he actually can supply. Thus, bankruptcy is assumed away. Second,
it is assumed that there is perfect information in the sense that all firms and consumers
are informed of the state when it occurs at each date. Otherwise, if only some agents
were informed of the state, they might have an incentive to lie about which state actu-
ally did occur. Third, it is assumed that all contracts are perfectly enforced. Clearly, each
of these assumptions is strong and rules out important economic settings. Nonetheless,
it is quite remarkable how much additional mileage we are able to get from a model
that appears entirely static and deterministic simply by reinterpreting its variables! The
exercises explore this model further, examining how it provides theories of insurance,
borrowing and lending, interest rates, and asset pricing.

5.5 CORE AND EQUILIBRIA

In this final section, we return to the world of pure exchange economies and pursue further
the relation between the core of an economy and the set of Walrasian equilibrium alloca-
tions. As we have seen, every Walrasian equilibrium allocation is also a core allocation.
On the other hand, simple Edgeworth box examples can be constructed that yield core
allocations that are not Walrasian. Thus, it would seem that the connection between the
two ideas is limited.

Edgeworth (1881), however, conjectured a more intimate relationship between
Walrasian allocations and the core. He suggested that when the economy is ‘large’, and
so when the Walrasian assumption of price-taking behaviour by consumers makes most
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sense, the distinction between core allocations and Walrasian equilibrium ones disap-
pears. In considering that possibility anew, Debreu and Scarf (1963) extended Edgeworth’s
framework and proved him to be correct. Loosely speaking, they showed that as an
economy becomes ‘larger’, its core ‘shrinks’ to include only those allocations that are
Walrasian!

All in all, their result is heartening to those who believe in the special qualities of
a market system, where the only information a consumer requires is the set of market
prices he faces. It suggests a tantalising comparison between the polar paradigms of central
planning and laissez-faire in very large economies. If the objective of the planning process
is to identify and then implement some distribution of goods that is in the core, and if there
are no other allocations in the core but those that would be picked out by a competitive
market system, why go to the bother (and expense) of planning at all? To find the core, a
central planner needs information on consumers’ preferences, and consumers have selfish
incentives to be less than completely honest in revealing that information to the planner.
The market does not need to know anything about consumers’ preferences at all, and in
fact depends on consumers’ selfishness. What is a vice in one case is a virtue of sorts in
the other.

There is, of course, a great deal of loose language in this discussion. On a broad
plane, the choice between planning and market systems would never hinge on efficiency
alone. In addition, we know that core allocations from arbitrary initial endowments need
not be equitable in any sense of the word. Planning may still be justified as a means of
achieving a desired redistribution of endowments. On a narrower plane, there are technical
issues unaddressed. What does it mean for an economy to be ‘large’, or to be ‘larger’, than
another? Moreover, because an ‘allocation’ involves a vector of goods for each consumer,
and because presumably a larger economy has a greater number of consumers, is not the
‘dimensionality’ of the core in large economies different from that in small economies?
If so, how can we speak of the core ‘shrinking’? We will answer each of these questions
before we finish.

5.5.1 REPLICA ECONOMIES

To keep the analysis manageable, we follow Debreu and Scarf by formalising the notion
of a large economy in a very particular way. We start with the idea of a basic exchange
economy consisting of a finite but arbitrary finite number 7 of consumers, each with
his or her own preferences and endowments. Now think of each consumer’s preferences
and/or endowments as making that consumer a different ‘type’ of consumer from all the
rest. Two consumers with different preferences but the same endowments are considered
different types. So, too, are two consumers with the same preferences but different endow-
ments.® Thus, we now think of there being an arbitrary finite number of different types of
consumers, and the basic exchange economy consists of one consumer of each type.

6Tn fact, we would also call two consumers with the same preferences and endowments different types even
though the distinction would just be a formal one. For now, however, it is best to think of no two consumers as
having both the same preferences and the same endowments.
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Now imagine that each consumer suddenly acquires a twin. The twins are completely
identical, having the same preferences and the same endowments. The new economy, con-
sisting of all the original consumers and their twins, now has two consumers of each type
rather than one. This new economy is clearly larger than the original one because it con-
tains exactly twice as many consumers. We call this new economy the twofold replica of
the original one. If each original consumer was tripled, or quadrupled, we could similarly
construct threefold or fourfold replicas of the original economy, each in turn being larger
than the preceding one in a well-defined way. Now you get the idea of a replica economy.
It is one with a finite number of ‘types’ of consumers, an equal number of consumers
of each type, and all individuals of the same type are identical in that they have identi-
cal preferences and identical endowments. Formally, we have the following definition and
assumptions.

An r-Fold Replica Economy

Let there be I types of consumers in the basic exchange economy and index these types
by the setZ = {1, ..., I}. By the r-fold replica economy, denoted &,, we mean the econ-
omy with r consumers of each type for a total of rl consumers. For any type i € I, all
r consumers of that type share the common preferences ' on R" and have identical
endowments ¢ > 0. We further assume for i € T that preferences -’ can be represented
by a utility function u' satistying Assumption 5.1.

Thus, when comparing two replica economies, we can unambiguously say which of
them is larger. It will be the one having more of every type of consumer.

Let us now think about the core of the r-fold replica economy £;. Under the assump-
tions we have made, all of the hypotheses of Theorem 5.5 will be satisfied. Consequently,
a WEA will exist, and by Theorem 5.5, it will be in the core. So we have made enough
assumptions to ensure that the core of &, is non-empty.

To keep track of all of the consumers in each replica economy, we shall index each
of them by two superscripts, 7 and ¢, where /=1, ..., I runs through all the types, and
g=1, ..., rruns through all consumers of a particular type. For example, the index ig =
23 refers to the type 2 consumer labelled by the number 3, or simply the third consumer
of type 2. So, an allocation in &, takes the form

x=M x2 . xlr X X, (5.8)
where x7 denotes the bundle of the gth consumer of type i. The allocation is then feasible if
r . .
Z Z x'1 = rZ e (5.9)
ieZ g=1 ieT

because each of the r consumers of type i has endowment vector e’.
The theorem below exploits this fact and the strict convexity of preferences.
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Equal Treatment in the Core

Ifx is an allocation in the core of &, then every consumer of type i must have the same
bundle according tox. That is, foreveryi=1, ..., x'"1 =x"" foreveryq,. ¢ =1, ..., r.

This theorem with the delightfully democratic name identifies a crucial property of
core allocations in replica economies. It is therefore important that we not only believe
equal treatment of like types occurs in the core but that we also have a good feel for why
it is true. For that reason, we will give a leisurely ‘proof” for the simplest, two-type, four-
person economy. Once you understand this case, you should be able to derive the formal
proof of the more general case for yourself, and that will be left as an exercise.

Proof: Let I = 2, and consider &, the replica economy with two types of consumers and
two consumers of each type, for a total of four consumers in the economy. Suppose that

X = (Xll, XIZ’ XZI, XZZ)

is an allocation in the core of &s. First, we note that because x is in the core, it must be
feasible, so

x4 x12 4 x21 4 x?2 — 2el 4 2¢? (P.1)

because both consumers of each type have identical endowments.

Now suppose that x does not assign identical bundles to some pair of identical types.
Let these be consumers 11 and 12, so x'! and x!? are distinct. Remember that they each
have the same preferences, = 1.

Because ! is complete, it must rank one of the two bundles as being at least as
good as the other. Let us assume that

xi =1x12 (P.2)

Of course, the preference may be strict, or the two bundles may be ranked equally.
Figs. 5.9(a) and 5.9(b) illustrate both possibilities. Either way, we would like to show
that because x!! and x!? are distinct, x cannot be in the core of &. To do this, we will
show that x can be blocked.

Now, consider the two consumers of type 2. Their bundles according to x are x?! and
x?2, and they each have preferences - 2. Let us assume (again without loss of generality)
that

X1 = 2 x%2, (P.3)
So, consumer 2 of type 1 is the worst off type 1 consumer, and consumer 2 of type 2 is the

worst off type 2 consumer. Let us see if these worst off consumers of each type can get
together and block the allocation x.
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Figure 5.9. Demonstration of equal treatment in the core.

Let the bundles x'2 and %22 be defined as follows:

2 x!1 4 x12

—

Ly x4 x
N 2

The first bundle is the average of the bundles going to the type 1 consumers and the second
is thezaverage of the bundles going to the type 2 consumers. See Fig. 5.9 for the placement
of x!2.

Now, suppose it were possible to give consumer 12 the bundle x'2. How would
this compare to giving him the bundle he’s getting under %, namely, x'?? Well, remember
that according to (P.2), consumer 12 was the worst off consumer of type 1. Consequently,
because bundles x'! and x!? are distinct, consumer 12 would strictly prefer x'? to x!2
because his preferences, =1, are strictly convex. That is,

Y o~ 0

g2 1412
This is shown in Figs. 5.9(a) and 5.9(b).

Similarly, the strict convexity of consumer 22’s preferences, - 2, together with (P.3)
imply

’—(22 - 2 X22,

where the preference need not be strict because we may have x?! = x?2.
The pair of bundles (x!2, X?2) therefore makes consumer 12 strictly better off and

consumer 22 no worse off than the allocation x. If this pair of bundles can be achieved
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by consumers 12 and 22 alone, then they can block the allocation x, and the proof will be
complete.
To see that together they can achieve (x'2, X?2), note the following:

2 x11 +x12 N x21 +X22
B 2 2
= %(Ze1 + 26%)

—e + ¢,

’—(12 +x

where the third equality follows from (P.1). Consequently, the two worst off consumers
of each type can together achieve a pair of bundles that makes one of them strictly better
off and the other no worse off. The coalition .S = {12, 22} therefore can block x. But this
contradicts the fact that x is in the core.

We conclude then that x must give consumers of the same type the same bundle. &

Now that we have made clear what it means for one economy to be larger than
another, and have demonstrated the equal treatment property in the core of a replica econ-
omy, we can clarify what we mean when we say the core ‘shrinks’ as the economy gets
larger by replication. First, recognise that when we replicate some basic economy, we
increase the number of consumers in the economy and so increase the number of bundles
in an allocation. There should be no confusion about that. However, when we restrict our
attention to core allocations in these economies, the equal-treatment property allows us to
completely describe any allocation in the core of £, by reference to a similar allocation in
the basic economy, &.

To see this, suppose that x is in the core of &,. Then by the equal treatment property,
x must be of the form

x=(x!,.. . x1,%% .. %% x L x ),

—
rtimes rtimes rtimes

because all consumers of the same type must receive the same bundle. Consequently, core
allocations in & are just r-fold copies of allocations in £; - i.e., the above core allocation
is just the r~fold copy of the &£ allocation

!, %2, ... xD. (5.10)

In fact, this allocation is feasible in £;. To see this, note first that because x is a core
allocation in &,, it must be feasible in &,. Therefore, we have

K=y
e el

which, dividing by r, shows that the allocation in (5.10) is feasible in the basic economy &;.
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Altogether then, we have shown that every core allocation of the r-fold replica
economy is simply an r-fold copy of some feasible allocation in the basic economy &;.
Consequently, we can keep track of how the core changes as we replicate the economy
simply by keeping track of those allocations in &£; corresponding to the core of each r-fold
replica. With this in mind, define C; as follows:

Cr= {x:(xl,...,xl)eF(e) | (xl,...,xl,...,xl,...,xl> isinthecoreof&}.

rtimes rtimes

We can now describe formally the idea that the core ‘shrinks’ as the economy is
replicated.

The sequence of sets C1, Cy, . .., is decreasing. ThatisCiy 2 G 2 ...2 (2D ...

Proof: It suffices to show that for r > 1, C; € C,_1. So, suppose that x = (x!, ..., x/) €
Cr. This means that its r-fold copy cannot be blocked in the r-fold replica economy. We
must show that its (r — 1)-fold copy cannot be blocked in the (r — 1)-fold replica econ-
omy. But a moment’s thought will convince you of this once you realise that any coalition
that blocks the (r — 1)-fold copy in £,_; could also block the r-fold copy in &, - after all,
all the members of that coalition are present in &, as well, and their endowments have not
changed. ]

So, by keeping track of the allocations in the basic economy whose r-fold copies
are in the core of the r-fold replica, Lemma 5.3 tells us that this set will get no larger
as rincreases. To see how the core actually shrinks as the economy is replicated, we shall
look again at economies with just two types of consumers. Because we are only concerned
with core allocations in these economies, we can exploit the equal-treatment property and
illustrate our arguments in an Edgeworth box like Fig. 5.10. This time, we think of the
preferences and endowments in the box as those of a representative consumer of each type.

Figure 5.10. An Edgeworth box for a

02
two-type replica economy.

01
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In the basic economy with one consumer of each type, the core of & is the squiggly
line between the two consumers’ respective indifference curves through their endowments
at e. The core of £; contains some allocations that are WEA and some that are not. The
allocation marked x is not a WEA because the price line through X and e is not tangent
to the consumers’ indifference curves at X. Note that X is on consumer 11’s indifference
curve through his endowment. If we now replicate this economy once, can the replication
of this allocation be in the core of the larger four-consumer economy?

The answer is no; and to see it, first notice that any point along the line joining e and
x is preferred to both e and x by both (there are now two) type 1’s because their preferences
are strictly convex. In particular, the midpoint x has this property. Now consider the three-
consumer coalition, S'= {11, 12, 21}, consisting of both type 1’s and one type 2 consumer
(either one will do). Let each type 1 consumer have a bundle corresponding to the type 1
bundle at x and let the lone type 2 consumer have a type 2 bundle like that at x. We know
that each type 1 strictly prefers this to the type 1 bundle at X, and the type 2 consumer is
just as well off. Specifically, we know

= %(el +i11) >1 ill,

%(el +i12) >1 ilz’

’—‘11

’—‘12

Are bundles {x!!, x!2, X!} feasible for S? From the definitions, and noting that
%1 = %12 we have

’—(11+’—(12+’~(21 =2(%e1+%i“)+i21
— el +x!l %% (5.11)

Next recall that x is in the core of &1, so it must be feasible in the two-consumer economy.
This implies

x4 2% = el ¢ (5.12)
Combining (5.11) and (5.12) yields
214 %12 4 521 = 2el + €2,

so the proposed allocation is indeed feasible for the coalition .S of two type 1’s and one
type 2. Because we have found a coalition and an allocation they can achieve that makes
two of them strictly better off and the other no worse off than their assignments under x,
that coalition blocks x in the four-consumer economy, ruling it out of the core of ;.

If we continue to replicate the economy, so that more consumers can form more
coalitions, can we ‘shrink’ the core even further? If so, are there any allocations that are
never ruled out and so belong to the core of every replica economy? The answer to both
questions is yes, as we now proceed to show in the general case.
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LEMMA 5.4

THEOREM 5.17

We would like to demonstrate that the set of core allocations for £, converges to its
set of Walrasian equilibrium allocations as r increases. Through the equal treatment prop-
erty, we have been able to describe core allocations for &£, as r-fold copies of allocations
in the basic economy. We now do the same for &,’s set of Walrasian equilibria.

An allocation x is a WEA for &, if and only if it is of the form

x=(x', ... xx% . %2 x X)),

I times I times I times

and the allocation (x!,x2, ..., x!) isa WEA for &,.

Proof: If x is a WEA for £, then by Theorem 5.5, it is in the core of £, so that by Theorem
5.16 it must satisfy the equal treatment property. Hence, it must be an r-fold copy of some
allocation in &;. We leave it as an exercise for you to show that this allocation in &; is a
WEA for &;. In addition, we leave the converse as an exercise. |

Lemma 5.4 says that as we replicate the economy, the set of Walrasian equilibria
remains ‘constant’ in the sense that it consists purely of copies of Walrasian equilibria of
the basic economy. Consequently, the set of Walrasian equilibria of the basic economy
keeps track, exactly, of the set of Walrasian equilibria of the r~fold replicas.

We can now compare the set of core allocations for &, with its set of Walrasian
equilibrium allocations by comparing the set C; - whose members are allocations for &; -
with the set of Walrasian equilibrium allocations for &;.

Because C1 D (3 D ..., the core is shrinking, as we have already seen. Moreover,
Ci1 D G D....D> We), the set of WEAs for &;. To see this, note that by Lemma 5.4,
the r-fold copy of a WEA for & is in the core of &£, which by the definition of C, means
that the original WEA for &; is in C;.

Now, as we replicate the economy and consider Cy, in the limit only those allocations
satisfying x € C; for every r =1, 2, ... will remain. Thus, to say that the core shrinks to
the set of competitive equilibria is to say that if x € C; for every r, then x is a competitive
equilibrium allocation for &;. This is precisely what Debreu and Scarf have shown.

(Edgeworth-Debreu-Scarf) A Limit Theorem on the Core

Ifx e Cyforeveryr=1,2, ..., thenx is a Walrasian equilibrium allocation for £;.

Before presenting the general argument, we will sharpen our intuition by consid-
ering the two-type Edgeworth box case. So, consider Fig. 5.11. Let us suppose, by way
of contradiction, that some non-Walrasian equilibrium allocation, X, is in C, for every r.
In particular, then, X is in the core of the basic two consumer economy consisting of one
consumer of each type. In Fig. 5.11, this means that X must be within the lens and on the
contract curve. That is, it must be on the squiggly line, and the consumers’ indifference
curves through x must be tangent.



248

CHAPTER 5

Figure 5.11. Illustration for the 02

proof of Theorem 5.17. e

01

Now consider the line joining the endowment point, e, and x. This corresponds to a
budget line for both consumers and an associated pair of prices p;, ps for the two goods.
Because MRS., (') =MRS%, (%), either p1/ps > MRS}, (%), or p/p1 > MRS, (%?). Note
that equality cannot hold; otherwise, these prices would constitute a Walrasian equilibrium,
and x would be a Walrasian equilibrium allocation. Fig. 5.11 depicts the first case. The
second is handled analogously by reversing the roles of types 1 and 2.

As shown, the line from e to x therefore cuts the type 1’s indifference curve at point
A, and by strict convexity, lies entirely above it between A4 and x. Thus, there exists some
point like X on the segment from A to X, which a type 1 consumer strictly prefers to his
bundle at x. Because x lies on the chord from e to X, it can be expressed as a convex
combination of e and x. Thinking ahead a little, let us then write the type 1 bundle at x as
follows:

X (5.13)

for some r > 1. Notice first that this is indeed a convex combination of the sort described
because 1/r+ (r— 1)/r = 1. For the record, let us recall that

gl (5.14)

Suppose, as can always be arranged, that r is an integer, and consider &,, the econ-
omy with r consumers of each type. Because we are assuming X € C;, this means that the
r-fold copy of x is in the core of £;. But can this be so? Not if we can find a coalition and
an allocation that blocks it, and that is just what we will do.

This time, our coalition S consists of all r type 1 consumers and r — 1 of the type 2
consumers. If we give each type 1 the bundle %!, then from (5.14), each would prefer it to
his assignment under %. If we give each type 2 in the coalition a bundle X? identical to her
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assignment under X, each type 2 of course would be indifferent. Thus, we would have

I 1g1
2

ZNZi

>

for each of the rtype 1 consumers,

for each of the (r — 1) type 2 consumers. (5.15)

X

Is such an allocation feasible for S? Summing over the consumers in S, their
aggregate allocation is %! + (r — 1)X%. From the definition of %! in (5.13),

r_lil]—i-(r—l)iz
r

w4+ (r— D% = r[;el +
_ ol <1 | =2
=e + (r— H(x +x°). (5.16)

Now recall that X! and X* are, by assumption, in the core of the basic two-consumer
economy. They therefore must be feasible for the two-consumer economy, so we know

1

!+ %% =el + € (5.17)

Using (5.16) and (5.17), we find that

K +r-D=e +r-DHE +5°)
—e + (=1 (e +é)
= rel + (r— l)ez,

confirming that the proposed allocation in (5.15) is indeed feasible for the coalition of r
type 1’s and (r — 1) type 2’s. Because that allocation is feasible and strictly preferred by
some members of S, and no worse for every member of S than the r-fold copy of x, .S
blocks the r-fold copy of x and so it is not in the core of £;. We conclude that if x € C; for
every r, then it must be a Walrasian equilibrium allocation in the basic economy.

We now give the general argument under two additional hypotheses. The first is that
if x € Cy, thenx > 0. The second is that for each i € Z, the utility function ' representing
- Tis differentiable on R” | with a strictly positive gradient vector there.

Proof: Suppose that X € C, for every r. We must show that x is a WEA for &;.
We shall first establish that

F((1 — px' + te') < d'(xY), Vite[0,1], andVie 7. (P.1)

To see that this inequality must hold, let us suppose that it does not and argue to a
contradiction. So, suppose that for some 7 € [0, 1], and some i € Z,

d((1 - D% + 7)) > '(x).
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By the strict quasiconcavity of ¢/, this implies that
d(1 - 0% + te') > v’ (%)), forall t € (0, 7.

Consequently, by the continuity of i, there is a positive integer, r, large enough such

ul'((l — 1):2’4 1e") > U(x)).
r r

But we can now use precisely the same argument that we gave in the discussion
preceding the proof to show that the r-fold copy of x is then not in the core of £,. But this
contradicts the fact that X € C,. We therefore conclude that (P.1) must hold.

Now, look closely at (P.1). Considering the left-hand side as a real-valued function
of ton [0, 1], it says that this function achieves a maximum at ¢ = 0. Because this is on the
lower boundary of [0, 1] it implies that the derivative of the left-hand side is non-positive
when evaluated at ¢ = 0. Taking the derivative and evaluating it at f = 0 then gives

that

Vi) - (e —x) <0, forallie I (P.2)

Now, because x is in the core of &, it is Pareto efficient. Moreover, by our addi-
tional hypotheses, X >> 0, and each V /(%) > 0. Consequently, as you are asked to show
in Exercise 5.27, the strictly positive gradient vectors, Vul (%), ..., Vul(%?), are propor-
tional to one another and so to a common vector p >>> 0. Consequently, there are strictly
positive numbers, Aj, ..., A;such that

Vi(xh) = AP, forallie 7. (P.3)

Together, (P.2), (P.3), and the positivity of each of the 1;’s give

p-x>p-e forallicZ. (P.4)

Note that we would be finished if each inequality in (P.4) were an equality. For in this
case, X’ would satisfy the first-order conditions for a maximum of the consumer’s utility-
maximisation problem subject to the budget constraint at prices p. Moreover, under the
hypotheses we have made, the first-order conditions are sufficient for a utility-maximising
solution as well (see Theorem 1.4). That is, X would be a Walrasian equilibrium allocation
for &;.

We now show that indeed each inequality in (P.4) must be an equality. Note that
because x € C,, it must be feasible in £;. Therefore,

Y-y

i€l i€l
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5.6 EXERCISES

so that
By E=p Y
i€l i€l

However, this equality would fail if for even one consumer j, the inequality in (P.4) were
strict. M

We have shown that for large enough economies, only WEAs will be in the core. This
astonishing result really does point towards some unique characteristics of large market
economies and suggests itself as a sort of ultimate ‘proof’ of Adam Smith’s intuitions
about the efficacy of competitive market systems. The result does bear some scrutiny,
however. First of all, it was obtained within the rather rigid context of replica economies
with equal numbers of each type of consumer. Second, we cannot lose sight of the fact
that the core itself is a very weak solution concept with arguable equity properties. To
the extent that a ‘good’ solution to the distribution problem from society’s point of view
includes considerations of equity, even the broadest interpretation of this result does not
provide support to arguments for pure laissez-faire. The ‘equity’ of any core allocation,
and so of any WEA, depends on what the initial endowments are.

The first of these objections can be, and has been, addressed. Abandoning the rigid
world of replica economies in favour of more flexible ‘continuum economies’, Aumann
(1964), Hildenbrand (1974), and others have proved even stronger results without the
assumption of equal numbers of each type. What then of the second objection cited? Well,
if we want to use the market system to achieve the ‘good society’, the Second Welfare
Theorem tells us that we can. All we need to do is decide where in the core we want to
be and then redistribute ‘endowments’ or ‘income’ and use the market to ‘support’ that
distribution. Ah, but there’s the rub. How do we decide where we want to be? How does
‘society’ decide which distribution in the core it ‘prefers’? This is the kind of question we
take up in the next chapter.

5.1

5.2

In an Edgeworth box economy, do the following:

(@) Sketch a situation where preferences are neither convex nor strictly monotonic and there is no
Walrasian equilibrium.

(b) Sketch a situation where preferences are neither convex nor strictly monotonic yet a Walrasian
equilibrium exists nonetheless.

(c) Repeat parts (a) and (b), but this time assume preferences are not continuous.

Let some consumer have endowments e and face prices p. His indirect utility function is thus
v(p, p - e). Show that whenever the price of a good rises by a sufficiently small amount, the consumer
will be made worse off if initially he was a net demander of the good (i.e., his demand exceeded his
endowment) and made better of if he was initially a net supplier of the good. What can you say if
the price of the good rises by a sufficiently /arge amount?
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5.3 Consider an exchange economy. Let p be a vector of prices in which the price of at least one good is
non-positive. Show that if consumers’ utility functions are strongly increasing, then aggregate excess
demand cannot be zero in every market.

5.4 Derive the excess demand function z(p) for the economy in Example 5.1. Verify that it satisfies
Walras’ law.

5.5 In Example 5.1, calculate the consumers’ Walrasian equilibrium allocations and illustrate in an
Edgeworth box. Sketch in the contract curve and identify the core.

5.6 Prove Lemma 5.1 and complete the proof of Lemma 5.2.

5.7 Consider an exchange economy with two goods. Suppose that its aggregate excess demand function
is z(p1, pp) = (=1, p1/pe) for all (p1, p) > (0, 0).

(a) Show that this function satisfies conditions 1 and 2 of Theorem 5.3, but not condition 3.

(b) Show that the conclusion of Theorem 5.3 fails here. That is, show that there is no (pj, p5) >
(0, 0) such that z(py, p;) = (0, 0).

5.8 Let p™ be a sequence of strictly positive prices converging to p, and let a consumer’s endowment
vector be e. Show that the sequence {p™ - e} of the consumer’s income is bounded. Indeed, show
more generally that if a sequence of real numbers converges, then it must be bounded.

5.9 Prove the corollary to Theorem 5.8. Extend the argument to show that, under the same assumptions,
any Pareto-efficient allocation can be supported as a WEA for some Walrasian equilibrium p and
some distribution of income, (R!, ..., R!), where R! is the income distributed to consumer .

5.10 In a two-person, two-good exchange economy with strictly increasing utility functions, it is easy to
see that an allocation X € F(e) is Pareto efficient if and only if X solves the problem

max ui(xj) s.t. uj(xj) > u/(ij),
X+x = el +d,
N+EG =6+

fori=1,2and i # j
(a) Prove the claim.

(b) Generalise this equivalent definition of a Pareto-efficient allocation to the case of n goods and /
consumers. Then prove the general claim.

5.11 Consider a two-consumer, two-good exchange economy. Utility functions and endowments are

u(x, %) = (x)?  and e =(18,4),
Cxi,x) =hx)+2In(xe) and & =3, 6).

(@) Characterise the set of Pareto-efficient allocations as completely as possible.
(b) Characterise the core of this economy.

(c) Find a Walrasian equilibrium and compute the WEA.

(d) Verify that the WEA you found in part (c) is in the core.
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5.12 There are two goods and two consumers. Preferences and endowments are described by

' (x1, x2) = min(xi, Xp) and el = (30,0,
A,y =y/2/pie and € =(0,20),

respectively.
(@) Find a Walrasian equilibrium for this economy and its associated WEA.
(b) Do the same when 1’s endowment is e! = (5, 0) and 2’s remains €2 = (0, 20).

5.13 An exchange economy has two consumers with expenditure functions:

1/3
el(p, u = (3(1.5)2[)%])2 exp(u)) ,

1/3
&P, u) = (3(1.5)2p§p1 exp(u)) .

If initial endowments are e! = (10, 0) and €? = (0, 10), find the Walrasian equilibrium.

5.14 Suppose that each consumer 7 has a strictly positive endowment vector, ¢/, and a Cobb-Douglas

. ’ 1 1 .
utility function on R’ of the form u'(x) = X(lxlxgz - X", where oy > 0 for all consumers i, and
goods & and ) }_; o = 1forall i

(@) Show that no consumer’s utility function is strongly increasing on R”, so that one cannot apply
Theorem 5.5 to conclude that this economy possesses a Walrasian equilibrium.

(b) Show that conditions 1, 2, and 3 of Theorem 5.3 are satisfied so that one can nevertheless use
Theorem 5.3 directly to conclude that a Walrasian equilibrium exists here.

(c) Prove that a Walrasian equilibrium would also exist with Cobb-Douglas utilities when pro-
duction is present and each production set satisfies Assumption 5.2. Use the same strategy as
before.

5.15 There are 100 units of x; and 100 units of xo. Consumers 1 and 2 are each endowed with 50 units of
each good. Consumer 1 says, ‘I love xi, but I can take or leave x2’. Consumer 2 says, ‘I love xy, but
I can take or leave x; .

(a) Draw an Edgeworth box for these traders and sketch their preferences.
(b) Identify the core of this economy.
(c) Find all Walrasian equilibria for this economy.

5.16 Consider a simple exchange economy in which consumer 1 has expenditure function

%(pl—l—pz)u for po/2 < p1 < 2pg,
el(p, u =4 up for p1 > 2ps,
upy for p1 < p2/2,

and consumer 2 has expenditure function

eZ(p, u = (p+ po)u for all (p1, p2).
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(@) Sketch the Edgeworth box for this economy when aggregate endowments are (1, 1). Identify
the set of Pareto-efficient allocations.

(b) Sketch the Edgeworth box for this economy when aggregate endowments are (2, 1). Identify
the set of Pareto-efficient allocations.

5.17 Consider an exchange economy with two identical consumers. Their common utility function is
U(xi, xo) = x"‘Xl “ for O <a < 1. Society has 10 units of x; and 10 units of x; in all. Find endow-
ments e! and e?, where el = 2, and Walrasian equilibrium prices that will ‘support’ as a WEA the
equal-division allocation giving both consumers the bundle (5, 5).

5.18 In a two-good, two-consumer economy, utility functions are

1 2
u(x, x2) = x1(x2)°,

¥ (x, ) = (x1)2x.

Total endowments are (10, 20).

(@) A social planner wants to allocate goods to maximise consumer 1’s utility while holding con-
sumer 2’s utility at 1> = 8000/27. Find the assignment of goods to consumers that solves the
planner’s problem and show that the solution is Pareto efficient.

(b) Suppose, instead, that the planner just divides the endowments so that e! = (10, 0) and e? =
(0, 20) and then lets the consumers transact through perfectly competitive markets. Find the
Walrasian equilibrium and show that the WEAs are the same as the solution in part (a).

5.19 (Scarf) An exchange economy has three consumers and three goods. Consumers’ utility functions
and initial endowments are as follows:

u'(x1, x, x3) = min(x, x) et =(1,0,0),
(X1, X2, X3) = min(xe, x3) €8 = (0,1,0),
(X1, X, x3) = min(x;, x3) et =(0,0,1).

Find a Walrasian equilibrium and the associated WEA for this economy.

5.20 In an exchange economy with two consumers, total endowments are (e, &) = (e 1, e2 + éd).
Consumer i requires s’ units of good j to survive, but consumers differ in that (sl, SZ) £ (& 1,352

Consumers are 0therw1se identical, with utility functions o = (X’ s’)"‘ + (Xé Sé)"‘ for 0 <
a< landi=1,2.

(@) Suppose now that there is a single hypothetical consumer with initial endowments (eq, e2)
and utility function u= (x; — s1)* + (x2 — 52)“, where s; = sjl + ¢ for Jj=1,2. Calculate
(0u/0x1)/(du/dxe) for this consumer and evaluate it at (x1, x2) = (e1, e2). Call what you've
obtained p*.

(b) Show that p* obtained in part (a) must be an equilibrium relative price for good x; in the
exchange economy previously described.

5.21 Cons1der an exchange economy with the two consumers. Consumer 1 has utility functlon
u'(x1, x2) = x2 and endowment e! = (1, 1) and consumer 2 has utility function ?(x!, ) = x' + &
and endowment ¢ = (1, 0).
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(@)
(b)

255

Which of the hypotheses of Theorem 5.4 fail in this example?

Show that there does not exist a Walrasian equilibrium in this exchange economy.

5.22 This exercise will guide you through a proof of a version of Theorem 5.4 when the consumer’s utility
function is quasiconcave instead of strictly quasiconcave and strictly increasing instead of strongly
increasing.

(@

(b)

(c)

(d)

If the utility function u: R”, — R is continuous, quasiconcave and strictly increasing, show that
for every ¢ € (0, 1) the approximating utility function v : R} — R defined by

Vg(x)=u(Xi+(1—s)ZA’f,...,Xf]+(1—s)Zx‘f>,
j =1

=1

is continuous, strictly quasiconcave and strongly increasing. Note that the approximation to u(-)
becomes better and better as ¢ — 1 because v, (x) — u(x) as ¢ — 1.

Show that if in an exchange economy with a positive endowment of each good, each consumer’s
utility function is continuous, quasiconcave and strictly increasing on R”, there are approximat-
ing utility functions as in part (a) that define an exchange economy with the same endowments
and possessing a Walrasian equilibrium. If, in addition, each consumer’s endowment gives him
a positive amount of each good, show that any limit of such Walrasian equilibria, as the approxi-
mations become better and better (e.g., as ¢ — 1 in the approximations in part (a)) is a Walrasian
equilibrium of the original exchange economy.

Show that such a limit of Walrasian equilibria as described in part (b) exists. You will then have
proven the following result.

If each consumer in an exchange economy is endowed with a positive amount of each good and
has a continuous, quasiconcave and strictly increasing utility function, a Walrasian equilibrium
€xists.

Which hypotheses of the Walrasian equilibrium existence result proved in part (b) fail to hold in
the exchange economy in Exercise 5.217

5.23 Show that if a firm’s production set is strongly convex and the price vector is strictly positive, then
there is at most one profit-maximising production plan.

5.24 Provide a proof of Theorem 5.10.

5.25 Complete the proof of Theorem 5.13 by showing that z(p) in the economy with production satisfies
all the properties of Theorem 5.3.

5.26 Suppose that in a single-consumer economy, the consumer is endowed with none of the consumption
good, y, and 24 hours of time, 4, so that e = (24, 0). Suppose as well that preferences are defined
over R% and represented by u(h, y) = hy, and production possibilities are ¥ = {(—h, y) [0 < h< b
and 0 < y < +/h}, where bis some large positive number. Let Py and py, be prices of the consumption
good and leisure, respectively.

(@
(b)
(c)

Find relative prices py/pj that clear the consumption and leisure markets simultaneously.
Calculate the equilibrium consumption and production plans and sketch your results in IR?F

How many hours a day does the consumer work?
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Consider an exchange economy (i, /) ;.7 in which each ' is continuous and quasiconcave on RA.
Suppose that x = x!, %%, ..., x") > 0is Pareto efficient, that each  is continuously differentiable
in an open set containing x/, and that V/(x) > 0. Under these conditions, which differ somewhat
from those of Theorem 5.8, follow the steps below to derive another version of the Second Welfare
Theorem.

(a) Show that for any two consumers i and j, the gradient vectors Vu/(x) and Vw/(%/) must be
proportional. That is, there must exist some o > 0 (which may depend on 7 and j) such that
Vu'(x') = aVi/(x/). Interpret this condition in the case of the Edgeworth box economy.

(b) Deﬁng p= Vu'(x') > 0. Show that for every consumer i, there exists A; > 0 such that
Vi (&) = Ajp.

(c) Use Theorem 1.4 to argue that for every consumer i, X’ solves

max u'(x)) s.t. P x < P x!,
xl
Suppose that all of the conditions in Exercise 5.27 hold, except the strict positivity of x and the
consumers’ gradient vectors. Using an Edgeworth box, provide an example showing that in such a
case, it may not be possible to support X as a Walrasian equilibrium allocation. Because Theorem
5.8 does not require X to be strictly positive, which hypothesis of Theorem 5.8 does your example
violate?

Consider an exchange economy (/, e/) i1 in which each ¢ is continuous and quasiconcave on RE.
Suppose that X = (x!, %%, ..., x!) >> 0/s Pareto efficient. Under these conditions, which differ from
those of both Theorem 5.8 and Exercise 5.27, follow the steps below to derive yet another version of
the Second Welfare Theorem.

(@) Let C={yeR"|y=),;x, somex’ € R”such that u'(x) > u'(%) forall i € I, with at least
one inequality strict}, andlet Z = {z € R" | z < ) ,_; ¢'}. Show that Cand Z are convex and that
their intersection is empty.

(b) Appeal to Theorem A2.24 to show that there exists a non-zero vector p €R” such that
p-z<p-y foreveryze Zandeveryy e C.

Conclude from this inequality that p > 0.

(c) Consider the same exchange economy, except that the endowment vector is x = (x!, X2, . . . x1).
Use the inequality in part (b) to show that in this new economy, p is a Walrasian equilibrium
price supporting the allocation x.

Suppose that y = 0 solves

m}gxp-y s.t. ye Y-y

Show that y° solves

m;lx Py S.t. yelt

Consider an economy with production in which there are many goods produced by the production
sector, but each firm produces only one of them. Suppose also that each firm’s output is given by a
differentiable production function and that each consumer’s utility function is differentiable as well.
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Assume that this economy is in a Walrasian equilibrium with strictly positive prices and that all
consumer’s marginal utilities (of consumption goods) and all firm’s marginal products (of inputs)
are also strictly positive.

(@) Show that the MRS between any two consumption goods is the same for each consumer, and
that it is equal to the ratio of their prices.

(b) Show that the MRTS between any two inputs is the same for every firm and equal to the ratio of
their prices.

(c) What does this tell you about the information content of Walrasian equilibrium prices?

Consider a simple economy with two consumers, a single consumption good x, and two time periods.
Consumption of the good in period ¢is denoted x; for ¢ = 1, 2. Intertemporal utility functions for the
two consumers are,

ui(x, xo) = x1x9, i=1,2,

and endowments are e! = (19, 1) and € = (1,9). To capture the idea that the good is perfectly
storable, we introduce a firm producing storage services. The firm can transform one unit of the
good in period one into one unit of the good in period 2. Hence, the production set Y is the set of all
vectors (y1, )2) € R? such that y1+ y2 < 0and y; < 0. Consumer 1 is endowed with a 100 per cent
ownership share of the firm.

(a) Suppose the two consumers cannot trade with one another. That is, suppose that each consumer
is in a Robinson Crusoe economy and where consumer 1 has access to his storage firm. How
much does each consumer consume in each period? How well off is each consumer? How much
storage takes place?

(b) Now suppose the two consumers together with consumer 1’s storage firm constitute a compet-
itive production economy. What are the Walrasian equilibrium prices, p; and p»? How much
storage takes place now?

(c) Interpret p; as a spot price and p; as a futures price.

(d) Repeat the exercise under the assumption that storage is costly, i.e., that Y is the set of vectors
(71, y2) € R? such that 8y; + y» < 0 and y; < 0, where § € [0, 1). Show that the existence of
spot and futures markets now makes both consumers strictly better off.

The contingent-commodity interpretation of our general equilibrium model permits us to consider
time (as in the previous exercise) as well as uncertainty and more (e.g. location). While the trading
of contracts nicely captures the idea of futures contracts and prices, one might wonder about the
role that spot markets play in our theory. This exercise will guide you through thinking about this.
The main result is that once the date zero contingent-commodity contracts market has cleared at
Walrasian prices, there is no remaining role for spot markets. Even if spot markets were to open up
for some or all goods in some or all periods and in some or all states of the world, no additional trade
would take place. All agents would simply exercise the contracts they already have in hand.

(a) Consider an exchange economy with / consumers, NV goods, and 7" = 2 dates. There is no uncer-
tainty. We will focus on one consumer whose utility function is u(x;, x2), where x; € Rﬁ isa
vector of period-¢ consumption of the N goods.

Suppose that p = (p1, p2) is a Walrasian equilibrium price vector in the contingent-
commodity sense described in Section 5.4, where p; € RY, is the price vector for period-¢
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contracts on the N goods. Let X = (X;, X2) be the vector of contracts that our consumer purchases
prior to date 1 given the Walrasian equilibrium price-vector p = (p1, p2).
Suppose now that at each date ¢ spot-markets open for trade.

(i) Because all existing contracts are enforced, argue that our consumer’s available endowment
in period ¢is X;.

(ii) Show that if our consumer wishes to trade in some period ¢ spot-market and if all goods
have period ¢ spot-markets and the period ¢ spot-prices are p;, then our consumer’s period ¢
budget constraint is,

Pt Xt < Pt X¢

(iii) Conclude that our consumer can ultimately choose any (x1, x2) such that
Pr-x1 <p1-X and P2 -xp < P2 -%s.

(iv) Prove that the consumer can do no better than to choose x; = X; in period / = 1 and x3 = X3
in period ¢ = 2 by showing that any bundle that is feasible through trading in spot-markets
is feasible in the contingent-commodity contract market. You should assume that in period
1 the consumer is forward-looking, knows the spot-prices he will face in period 2, and that
he wishes to behave so as to maximise his lifetime utility u(x;, x2). Further, assume that if
he consumes X; in period ¢ = 1, his utility of consuming any bundle x, in period = 2 is
u(Xq,X2).

Because the consumer can do no better if there are fewer spot-markets open, parts (i)-
(iv) show that if there is a period #spot-market for good k and the period ¢ spot-price of good
k is Dy then our consumer has no incentive to trade. Since this is true for all consumers,
this shows that spot-markets clear at prices at which there is no trade.

(b) Repeat the exercise with uncertainty instead of time. Assume N goods and two states of the
world, s = 1, 2. What is the interpretation of the assumption (analogous to that made in part (iv)
of (a)) that if the consumer would have consumed bundle x; had state s = 1 occurred, his utility
of consuming any bundle x; in state s = 2 is u(x;, x2)?

The next question shows that spot-markets nevertheless have a role.

(Arrow Securities) Exercise 5.33 shows that when there are opportunities to trade a priori in any
commodity contingent on any date, state, etc., there is no remaining role for spot-markets. Here we
show that if not all commodities can be traded contingent on every date and state, then spot-markets
do have a role. We will in fact suppose that there is only one ‘commodity’ that can be traded a priori,
an Arrow security (named after the Nobel prize winning economist Kenneth Arrow). An Arrow
security for date ¢ and state s entitles the bearer to one dollar at date ¢ and in state s and nothing
otherwise.

We wish to guide you towards showing that if p > 0 is a Walrasian equilibrium price in the
contingent-commodity sense of Section 5.4 when there are NV goods as well as time and uncertainty,
and X > 0 is the corresponding Walrasian allocation, then the same prices and allocation arise when
only Arrow securities can be traded a priori and all other goods must be traded on spot-markets. This
shows that as long as there is a contingent-commodity market for a unit of account (money), the full
contingent-commodity Walrasian equilibrium can be implemented with the aid of spot-markets. We
will specialise our attention to exchange economies. You are invited to conduct the same analysis
for production economies.
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Consider then the following market structure and timing. At date zero, there is a market for
trade in Arrow securities contingent on any date and any state. The price of each Arrow security is
one dollar, and each date ¢and state s security entitles the bearer to one dollar at date and in state s,
and nothing otherwise. Let ai; denote consumer i’s quantity of date #and state s Arrow securities. No
consumer is endowed with any Arrow securities. Hence, consumer 7’s budget constraint for Arrow
securities at date zero is,

> di=0.
ts

At each date ¢ > 1, the date-f event s; is realised and all consumers are informed of the date-
t state of the world s = (sq, ..., s;). Each consumer i receives his endowment eﬁt € Rﬂ of the N
goods. Spot-markets open for each of the V goods. If the spot-price of good k& is pys, then consumer
I's date-¢ state-s budget constraint is,

IE:JMBXLS==2{:}%5625+'ag'
k k

Each consumer 7is assumed to know all current and future spot prices for every good in every
state (a strong assumption!). Consequently, at date zero consumer 7 can decide on the trades he will
actually make in each spot-market for each good at every future date and in every state. At date zero
consumer i therefore solves,

max (X))
(@) () g

subject to the Arrow security budget constraint,
S =0
ts
and subject to the spot-market budget constraint,

Zp]fl‘SX}{[s = Zp]l’tse;{ts + a{s Z 09
k k

for each date ¢ and state s. (Note the inequality in the date-f state-s constraints. This ensures that
there is no bankruptcy.)

(@) Argue that the above formulation implicitly assumes that at any date ¢, current and future utility
in any state is given by /(-) where past consumption is fixed at actual levels and consumption in
states that did not occur are fixed at the levels that would have been chosen had they occurred.

(b) The consumer’s budget constraint in the contingent-commodity model of Section 5.4 specialised
to exchange economies is,

Z PktsX;{tS = Z Pktsef‘(zs-

k.ts kts

Show that (X%, satisfies this budget constraint if and only if there is a vector of Arrow securities
(ay) such that (x},,) and (aj,) together satisfy the Arrow security budget constraint and each of
the spot-market budget constraints.
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(c) Conclude from (b) that any Walrasian equilibrium price and allocation of the contingent-
commodity model of Section 5.4 can be implemented in the spot-market model described here
and that there will typically be trade in the spot-markets. Show also the converse.

(d) Explain why the price of each Arrow security is one. For example, why should the price of a
security entitling the bearer to a dollar today be equal to the price of a security entitling the
bearer to a dollar tomorrow when it is quite possible that consumers prefer consumption today
to the same consumption tomorrow? (Hint: Think about what a dollar will buy.)

(e) Repeat the exercise when, instead of paying the bearer in a unit of account, one date-7 state-s
Arrow security pays the bearer one unit of good 1 at date ¢in state s and nothing otherwise. What
prices must be set for Arrow securities now in order to obtain the result in part (c)? How does
this affect the consumer’s Arrow security and spot-market budget constraints?

(Asset Pricing) We can use our general equilibrium Walrasian model to think about asset pricing.
We do this in the simplest possible manner by considering a setting with N =1 good, 7 = 1 period,
and finitely many states, s=1,2,...,S. Thus a consumption bundle x = (x1, xo, ..., Xs) € ]R;gr
describes the quantity of the good consumed in each state. Once again, we restrict attention to an
exchange economy. There are / consumers and consumer 7’s utility function is w(x1, X2, ..., xs) and
his endowment vector is e = (¢!, .. ., eg). Note that one unit of commodity s yields one unit of the
good in state s. Hence, we can think of commodity s as an Arrow security for the good in state s.
Because all Arrow securities are tradeable here, the market is said to be complete.

Before thinking about asset pricing, let us consider this simply as an exchange economy

and suppose that p >> 0 is a Walrasian equilibrium price vector and that x = (%!, %2, ..., &/) is the
associated Walrasian equilibrium allocation. Therefore, for each consumer 7, X' = (k. X3, ..., X()
maximises u'(xi, Xz, ..., Xs) subject to

f)le+...+f75X5=f)1€i+...+iJSe§,

and markets clear. That is,
YH=2d
1 1

forevery state s=1,2,..., .S

It is convenient to normalise prices throughout this exercise so that they sum to one, i.e., so
that oy + ... + ps = 1. Then, because (1. 1, ..., 1) is the bundle guaranteeing one unit of the good
regardless of the state, py has the interpretation that it is the number of units of the good (i.e., the
number of units of the bundle (1, 1, ..., 1)) that must be paid in order to receive one unit of the good
in state k. Thus, each py is a real, as opposed to a nominal, price.

An asset yields in each state s some non-negative amount of the good. Thus an asset is a
vector, o = (aq, ..., qas) € Ri, where o denotes the amount of the good the asset yields in state .

(@) Suppose that the Walrasian equilibrium prices p are in effect and that in addition to markets for
each Arrow security, a spot-market opens for trade in an asset « = (a1, ..., as). There is zero
aggregate supply of asset « but consumers are permitted to purchase both positive and negative
quantities of it (negative demand is sometimes called taking a ‘short position’ in the asset) so
long as bankruptcy can be avoided in every state. Argue that consumers would be indifferent
to trading in this asset if its price were set equal to p - & and hence that this price is consistent
with zero excess demand for the asset. Show also that, given the price vector p for the Arrow
securities, p - « is the only price consistent with market-clearing and the occurrence of trade in
the asset «.
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(b) Suppose that 7 is the probability that state s occurs and that all consumers agree on this. Further,

suppose that each consumer’s preferences are represented by a von Neumann-Morgenstern util-
ity function, v;(x), assigning VNM utility to any quantity x > 0 of the good and that v; > 0.
Further, assume that each consumer is strictly risk averse, i.e., that v/ < 0. Consequently, for
each consumer 7,

S
lIi(Xl, ce, XS) = Znsvi(xs).
s=1

(i) Suppose the total endowment of the good is constant across states, i.e., suppose that

Z eg = Z e; for all states, s, .

i i

Show that p = (71, ..., ms) is a Walrasian equilibrium in which each consumer’s consump-
tion is constant across all states and in which the equilibrium price of any traded asset
a=(xg,...,as) € Ri is simply its expected value. Thus, when consumers are able to fully
diversify their risk, no asset receives a premium over and above its expected value.

(ii) Suppose the total endowment of the good is not constant across states.
(1) Prove that p # (71, ..., ws) and, assuming X >> 0, prove that no consumer’s consump-
tion is constant across all states.

(2) Argue that the price of any traded asset « = («1, ..., as) € Ri must be equal to,
EVihe) By
E(v) (¥1)) o E(vy(x)

where E' denotes mathematical expectation, % is the random variable describing the
amount of the good consumed by consumer i in equilibrium (¥ = %, in state s), and
@ is the random variable describing the amount of the good the asset yields (& = « in
state s). Conclude, at least roughly, that the real price of an asset is higher the more
negatively correlated are its returns with consumption - it is then more useful for diver-
sifying risk. In particular, conclude that an asset whose returns are independent of any
consumer’s marginal utility of consumption has a price equal to its expected value. Thus,
the price of an asset is not so much related to its variance but rather the extent to which
it is correlated with consumption.

5.36 (Arbitrage Pricing) We shift gears slightly in this question by considering an arbitrage argument that
delivers the same pricing of assets as derived in Exercise 5.35. Suppose once again that there is one

good and S states. Suppose also that there are N assets, !, «

Z .., a¥, that can be traded, each

being a vector in Ri. Let the price of asset & be g;. We shall normalise prices so that they are real
prices. That is, gy is the number of units of the good that must be given up to purchase one unit of
asset k. Suppose an investor purchases x; units of each asset k.

(a) Show that the (column) vector

S
Ax € R

is the induced asset held by the investor subsequent to his purchase, where A is the S x N matrix
whose kth column is o¥, and x = (xq, ..., xy) is the vector of the investor’s asset purchases.
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Argue that the vector
Ax —1(q-x) € ]Rfr

describes the real net gain to the investor in every state, where 1 is the column vector of S'1’s.

Suppose that every coordinate of the real net gain vector
Ax —1(q - x)

is strictly positive. Argue that the investor can earn arbitrarily large profits with an initial outlay
of a single unit of the good by repurchasing x (or an affordable fraction of it) again and again
using short sales to cover his expenses, and always guaranteeing against bankruptcy in any state.

Conclude from (c) that for markets to clear, there can be no x € R" such that every coordinate
of the real net gain vector is strictly positive. (Parts (c) and (d) constitute an ‘arbitrage-pricing’
argument. We next turn to its consequences.)

Let C={y € R": y = Ax — 1(q - x) for some x € R"}. Conclude from part (d) that
cnrY, =4,

and use the separating hyperplane theorem, Theorem A2.24, to conclude that there is a non-zero
vector, p € R" such that

py=p-z

forally € Cand allz € RY, . Show further that p > 0 because otherwise the right-hand side of
the previous inequality could be made arbitrarily negative and therefore for any y, the inequality
would fail for some z. Finally, normalise p > 0 so that its coordinates sum to one.

Using the definition of C and the results from part (e), show that,
(pTA—q)x <0, forallx € RY.

Argue that the inequality cannot be strict for any x € R because the inequality would then fail
for —x. Conclude that,

(p’A—q)x =0, forallx e RY,
and therefore that,
q=p"4,
i.e., that for each asset £,

G =p- ok,
Compare the result in part (f) with the pricing of the asset that arose from the general equilib-
rium model considered in part (a) of Exercise 5.35. In that exercise, we assumed that all Arrow
securities were tradeable, i.e., we assumed that the market was complete. Conclude from the
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current exercise that if there are no opportunities for profitable arbitrage among the assets that
are available for trade, then even if markets are incomplete there are implicit prices, given by
p, for all Arrow securities. Moreover, the prices of all tradeable assets are derived from these
underlying Arrow security prices.

5.37 Complete the proof of Lemma 5.4.

(a) Show that if an allocation x is an r-fold copy of the allocation (x',x?, ..., x/) in &, and x is a
WEA in &, then (x!, x?, ..., x!) isa WEA in &;.

(b) Show that if (x!, x?, ..., x!) is a WEA in &, then its r-fold copy is a WEA in &,.

5.38 Give a general proof of Theorem 5.16 that is valid for an arbitrary number / of consumer types and
an arbitrary number r of consumers of each type.

5.39 (Cornwall) In an economy with two types of consumer, each type has the respective utility function
and endowments:

w(x;, x) = xixe and  e' = (8,2),
uzq(xl, X2) = X1 X2 and et = (2, 8).

(@) Draw an Edgeworth box for this economy when there is one consumer of each type.

(b) Characterise as precisely as possible the set of allocations that are in the core of this
two-consumer economy.

(c) Show that the allocation giving x!! = (4, 4) and x*' = (6, 6) is in the core.

(d) Now replicate this economy once so there are two consumers of each type, for a total of four
consumers in the economy. Show that the double copy of the previous allocation, giving x'! =
x!2 = (4, 4) and x*! = x?? = (6, 6), is not in the core of the replicated economy.

5.40 In a pure exchange economy, consumer i envies consumer j if x/>~/x'. (Thus, i envies j if i likes J's
bundle better than his own.) An allocation x is therefore envy freeif x - x/ for all iand j. We know
that envy-free allocations will always exist, because the equal-division allocation, X = (1/])e, must
be envy free. An allocation is called fair if it is both envy free and Pareto efficient.

(@) Inan Edgeworth box, demonstrate that envy-free allocations need not be fair.

(b) Under Assumption 5.1 on utilities, prove that every exchange economy having a strictly positive
aggregate endowment vector possesses at least one fair allocation.

5.41 There are two consumers with the following characteristics:

d(x, x) = e xp and el =(1,1),
F(xi,x) =e'X and € =(5,5).
(a) Find the equation for the contract curve in this economy, and carefully sketch it in the
Edgeworth box.
(b) Find a fair allocation of goods to consumers in this economy.

(c) Now suppose that the economy is replicated three times. Find a fair allocation of goods to
consumers in this new economy.
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There are two consumers with the following characteristics:

ul(Xl, X)) = 2X| + X2 and el = (1, 6),
uz(xl,x2) =X+ X and el = 3,4).

Find a fair allocation of goods to consumers.

Throughout, we have assumed that a consumer’s utility depends only on his own consumption.
Suppose, however, that consumers’ utilities are inferdependent, depending on their own consump-
tion and that of everyone else as well. For example, in a two-good, two-person economy with total
endowments e, suppose that u! = u!(x}, x}, 2, 2) and ¥ = 2 (£, %%, x}, x}), where du'/dx] # 0
and du'/0x] # 0 for i, j=1,2 and i # j

(@) What are the necessary conditions for a Pareto-efficient distribution of goods to consumers?

(b) Are the WEAS Pareto efficient in an economy like this? Why or why not?

In the text, we have called an allocation x Pareto efficient if there exists no other feasible allocation
x such that x” 7 ‘%’ for all 7and x/>/x/ for at least one j. Sometimes, an allocation X is called Pareto
efficient if there exists no other feasible allocation x such that x’>x! for all i

(@) Show that when preferences are continuous and strictly monotonic, the two definitions are
equivalent.

(b) Construct an example where the two definitions are not equivalent, and illustrate in an
Edgeworth box.

(Eisenberg’s Theorem) Ordinarily, a system of market demand functions need not satisfy the
properties of an individual consumer’s demand system, such as the Slutsky restrictions, negative
semidefiniteness of the substitution matrix, and so forth. Sometimes, however, it is useful to know
when the market demand system does behave as though it were generated from a single, hypo-
thetical consumer’s utility-maximisation problem. Eisenberg (1961) has shown that this will be the
case when consumers’ preferences can be represented by linear homogeneous utility functions (not
necessarily identical), and when the distribution of income is fixed and independent of prices.

In particular, let x/(p, ') solve maxyicgr u'(x') subject to p - x' = y' for i € Z. Let x(p, y*)
solve maxycrs U(x) subject to p-x = y*. If (1) #/(x’) is linear homogeneous for all i € Z; (2) y*
is aggregate income and income shares are fixed so that y' = §'y* for 0 < 8’ < 1and }_,.; 8" = 1;
and (3)

U =max [ [(da)® st x=) x.

ieT i€

then x(p, y*) = > ;.7 X!(p, ), so the system of market demand functions behaves as though
generated from a single utility-maximisation problem.

(a) Consider a two-good, two-person exchange economy with initial endowments e' = (5!, §1)
and e? = (52, 5%), where 0 < 5! < 1 and 8! + 82 = 1. Verify that income shares are fixed and
independent of prices p = (p1, p2).
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(b) Solve for U(x) in the economy of part (a) when

) = ()" (4)
vuty = (4) (2)

for0 <a<land0<pg < 1.
(c) Verity Eisenberg’s theorem for this economy.

5.46 In an exchange economy with initial endowments e, prove that the aggregate excess demand vector,
z(p), is independent of the initial distribution of endowments if and only if preferences are identical
and homothetic.



