CHAPTER 2 1

EQUILIBRIUM
ANALYSIS

In this chapter we discuss some topics in general equilibrium analysis that
don’t conveniently fit in the other chapters. Our first topic concerns the
core, a generalization of the Pareto set, and its relationship to Walrasian
equilibrium. We follow this by a brief discussion of the relationship between
convexity and size. Following this we discuss conditions under which there
will be only one Walrasian equilibrium. Finally, the chapter ends with a
discussion of the stability of general equilibrium.

21.1 The core of an exchange economy

We have seen that Walrasian equilibria will generally exist and that they
will generally be Pareto efficient. But the use of a competitive market
mechanism system is only one way to allocate resources. What if we used
some other social institution to facilitate trade? Would we still end up with
an allocation that was “close to” a Walrasian equilibrium?

In order to examine this question we consider a “market game” where
each agent i comes to the market with an initial endowment of w,. Instead
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of using a price mechanism, the agents simply wander around and make
tentative arrangements to trade with each other. When all agents have
made the best arrangement possible for themselves, the trades are carried
out.

As described so far the game has very little structure. Instead of specify-
ing the game in sufficient detail to calculate an equilibrium we ask a more
general question. What might be a “reasonable” set of outcomes for this
game? Here is a set of definitions that may be useful in thinking about this
question.

Improve upon an allocation. A group of agents S is said to improve
upon a given allocation x if there is some allocation x' such that

> =T,
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x;>=;X; foralli€S.

If an allocation x can be improved upon, then there is some group of
agents that can do better by not engaging in the market at all; they would
do better by only trading among themselves. An example of this might
be a group of consumers who organize a cooperative store to counteract
high prices at the grocery store. It seems that any allocation that can be
improved upon does not seem like a reasonable equilibrium—some group
would always have an incentive to split off from the rest of the economy.

Core of an economy. A feasible allocation x is in the core of the
economy if it cannot be improved upon by any coalition.

Notice that, if x is in the core, x must be Pareto efficient. For if x were
not Pareto efficient, then the coalition consisting of the entire set of agents
could improve upon x. In this sense the core is a generalization of the idea
of the Pareto set. If an allocation is in the core, every group of agents gets
some part of the gains from trade—mno group has an incentive to defect.

One problem with the concept of the core is that it places great informa-
tional requirements on the agents—the people in the dissatisfied coalition
have to be able to find each other. Furthermore, it is assumed that there
are no costs to forming coalitions so that, even if only very small gains can
be made by forming coalitions, they will nevertheless be formed.

A geometrical picture of the core can be obtained from the standard
Edgeworth box diagram for the two-person, two-good case. See Figure 21.1.
In this case the core will be the subset of the Pareto set at which each agent
does better than by refusing to trade.

Will the core of an economy generally be nonempty? If we continue to
make the assumptions that ensure the existence of a market equilibrium,
it will, since the market equilibrium is always contained in the core.
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Core in an Edgeworth box. In the Edgeworth box dia-
gram, the core is simply that segment of the Pareto set that
lies between the indifference curves that pass through the initial
endowment.

Walrasian equilibrium is in core. If (x*,p) is a Walrasian equilibrium
with initial endowments w;, then X* is in the core.

Proof. Assume not; then there is some coalition S and some feasible allo-
cation x’ such that all agents ¢ in S strictly prefer x} to x} and furthermore
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But the definition of the Walrasian equilibrium implies
px, > pw; foralliin§
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which contradicts the first equality. Il

We can see from the Edgeworth box diagram that generally there will
be other points in the core than just the market equilibrium. However, if
we allow our 2-person economy to grow we will have more possible coali-
tions and hence more opportunities to improve upon any given allocation.
Therefore, one might suspect that the core might shrink as the economy
grows. One problem with formalizing this idea is that the core is a subset of
the allocation space and thus as the economy grows the core keeps changing
dimension. Thus we want to limit ourselves to a particularly simple type
of growth.

Figure
21.1
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We will say two agents are of the same type if both their preferences and
their initial endowments are the same. We will say that one economy is a
replica of another if there are r times as many agents of each type in one
economy as in the other. This means that if a large economy replicates a
smaller one, it is just a “scaled up” version of the small one. For simplicity
we will limit ourselves to only two types of agents, type A and type B.
Consider a fixed 2-person economy; by the r-core of this economy, we mean
the core of the rt* replication of the original economy.

It turns out that all agents of the same type must receive the same bundle
at any core allocation. This result makes for a much simpler analysis.

Equal treatment in the core. Suppose agents’ preferences are strictly
convez, strongly monotonic, and continuous. Then if x is an allocation in
the r-core of a given economy, then any two agents of the same type must
receive the same bundle.

Proof. Let x be an allocation in the core and index the 2r agents using
subscripts Al,...,Ar and Bl,...,Br. If all agents of the same type do
not get the same allocation, there will be one agent of each type who is
most poorly treated. We will call these two agents the “type-A underdog”
and the “type-B underdog.” If there are ties, select any of the tied agents.

Let X4 = 137 x4, and Xp = %Z;zl xp, be the average bundle of

3
the type-A and type-B agents. Since the allocation x is feasible, we have
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It follows that
X4 +Xp =wy +wp,

so that (X4,Xp) is feasible for the coalition consisting of the two underdogs.
We are assuming that at least for one type, say type A, two of the type-A
agents receive different bundles. Hence, the A underdog will strictly prefer
X4 to his present allocation by strict convexity of preferences (since it is
a weighted average of bundles that are at least as good as x4), and the B
underdog will think Xp is at least as good as his present bundle. Strong
monotonicity and continuity allows A to remove a little from X 4, and bribe
the type-B underdog, thus forming a coalition that can improve upon the
allocation. i

Since any allocation in the core must award agents of the same type
with the same bundle, we can examine the cores of replicated two-agent
economies by use of the Edgeworth box diagram. Instead of a point x in
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the core representing how much A gets and how much B gets, we think of
x as telling us how much each agent of type A gets and how much each
agent of type B gets. The above lemma tells us that all points in the r-core
can be represented in this manner.

The following proposition shows that any allocation that is not a market
equilibrium allocation must eventually not be in the r-core of the economy.
This means that core allocations in large economies look just like Walrasian
equilibria.

Shrinking core. Assume that preferences are strictly convex and strongly
monotonic, and that there is a unique market equilibrium x* from initial
endowment w. Then if y is not the market equilibrium, there is some
replication r such that y is not in the r-core.

Proof. Refer to the Edgeworth box in Figure 21.2. We want to show that
a point like y can eventually be improved upon. Since y is not a Walrasian
equilibrium, the line segment through y and w must cut at least one agent’s
indifference curve through y. Thus it is possible to choose a point such as g
which, for example, agent A prefers to y. There are several cases to treat,
depending on the location of g; however, the arguments are essentially the
same, so we treat only the case depicted.

GOOGD 1

TYPEB

GOOD 2

GOOD 2
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The shrinking core. As the economy replicates, a point like
y will eventually not be in the core.

Since g is on the line segment connecting y and w, we can write

g=0wA+(1-9)yA

Figure
21.2
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for some § > 0. By continuity of preference, we can also suppose that
8 = T/V for some integers T and V. Hence,

—Tw + 1—z
gA—VA % YAa-

Suppose the economy has replicated V times. Then form a coalition
consisting of V' consumers of type A and V — T consumers of type B, and
consider the allocation z where agents of type A in the coalition receive
g4 and agents of type B receive yp. This allocation is preferred to y by
all members of the coalition (we can remove a little from the A agents and
give it to the B agents to get strict preference). We will show that it is
feasible for the members of the coalition. This follows from the following
calculation:

Vgat+(V-T)ys

=V [%w,ﬁ <1 - €_> YA] +(V-T)ys

=Tws+(V -T)ya+((V-T)ys
=Twa+(V-T)lya+ysl
=Tws+(V-T)wa +wg]

=Twy +Vws —Tws +(V —Twp
=Vwa+ (V- Tws.

This is exactly the endowment of our coalition since it has V agents of type
A and (V — T agents of type B. Thus, this coalition can improve upon y,
proving the proposition. i

Many of the restrictive assumptions in this proposition can be relaxed. In
particular we can easily get rid of the assumptions of strong monotonicity
and uniqueness of the market equilibrium. Convexity appears to be crucial
to the proposition, but, as in the existence theorem, that assumption is
unnecessary for large economies. Of course, we can also allow for there to
be more than only two types of agents.

In the study of Walrasian equilibrium we found that the price mechanism
leads to a well-defined equilibrium. In the study of Pareto efficient alloca-
tions we found that nearly all Pareto efficient allocations can be obtained
through a suitable reallocation of endowments and a price mechanism. And
here, in the study of a general pure exchange economy, prices appear in a
third and different light: the only allocations that are in the core of a large
economy are market equilibrium allocations. The shrinking core theorem
shows that Walrasian equilibria are robust: even very weak equilibrium
concepts, like that of the core, tend to yield allocations that are close to
Walrasian equilibria for large economies.
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21.2 Convexity and size

Convexity of preference has come up in several general equilibrium models.
Usually, the assumption of strict convexity has been used to assure that
the demand function is well-defined—that there is only a single bundle de-
manded at each price—and that the demand function be continuous—that
small changes in prices give rise to small changes in demand. The convex-
ity assumption appears to be necessary for the existence of an equilibrium
allocation since it is easy to construct examples where nonconvexities cause
discontinuities of demand and thus nonexistence of equilibrium prices.

Consider, for example, the Edgeworth box diagram in Figure 21.3. Here
agent A has nonconvex preferences while agent B has convex preferences.
At the price p*, there are two points that maximize utility; but supply is
not equal to demand at either point.
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Nonexistence of an equilibrium with nonconvex prefer-
ences. Panel A depicts an Edgeworth box example in which
one agent has nonconvex preferences. Panel B shows the asso-
ciated aggregate demand curve, which will be discontinuous.

However, perhaps equilibrium is not so difficult to achieve as this exam-
ple suggests. Let us consider a specific example. Suppose that the total
supply of the good is just halfway between the two demands at p* as in
Figure 21.3B. Now think what would happen if the economy would repli-
cate once so that there were two agents of type A and two agents of type
B. Then at the price p*, one type-A agent could demand z% and the other
type-A agent could demand z’,. In that case, the total demand by the
agents would in fact be equal to the total amount of the good supplied. A
Walrasian equilibrium exists for the replicated economy.

X, ~ QUANTITY

Figure
21.3
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It is not hard to see that a similar construction will work no matter where
the supply curve lies: if it were two-thirds of the way between 2% and 2, we
would just replicate three times, and so on. We can get aggregate demand
arbitrarily close to aggregate supply just by replicating the economy a
sufficient number of times.

This argument suggests that in a large economy in which the scale of
nonconvexities is small relative to the size of the market, there will generally
be a price vector that results in demand being close to supply. For a large
enough economy small nonconvexities do not cause serious difficulties.

This observation is closely related to the replication argument described
in our discussion of competitive firms behavior. Consider a classic model
of firms with fixed costs and U-shaped average cost functions. The sup-
ply functions of individual firms will typically be discontinuous, but these
discontinuities will be irrelevant if the scale of the market is sufficiently
large.

21.3 Uniqueness of equilibrium

We know from the section on existence of general equilibrium that under
appropriate conditions a price vector will exist that clears all markets; i.e.,
there exists a p* such that z(p*) < 0. The question we ask in this section
is that of uniqueness: when is there only one price vector that clears all
markets?

The free goods case is not of great interest here, so we will rule it out
by means of the desirability assumption: we will assume that the excess
demand for each good is strictly positive when its relative price is zero.
Economically this means that, when the price of a good goes to zero, ev-
eryone demands a lot of it, which seems reasonable enough. This has the
obvious consequence that at all equilibrium price vectors the price of each
good must be strictly positive.

As before, we will want to assume z is continuous, but now we need
even more than that—we want to assume continuous differentiability. The
reasons for this are fairly clear; if indifference curves have kinks in them,
we can find whole ranges of prices that are market equilibria. Not only are
the equilibria not unique, they aren’t even locally unique.

Given these assumptions, we have a purely mathematical problem: given
a smooth mapping z from the price simplex to R, when is there a unique
point that maps into zero? It is too much to hope that this will occur in
general, since one can construct easy counterexamples, even in the two-
dimensional case. Hence, we are interested in finding restrictions on the
excess demand functions that ensure uniqueness. We will then be inter-
ested in whether these restrictions are strong or weak, what their economic
meaning is, and so on.

We will here consider two restrictions on z that ensure uniqueness. The
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first case, that of gross substitutes, is interesting because it has clear eco-
nomic meaning and allows a simple, direct proof of uniqueness. The second
case, that of index analysis, is interesting because it is very general. In
fact it contains almost all other uniqueness results as special cases. Un-
fortunately, the proof utilizes a rather advanced theorem from differential
topology.

Gross substitutes

Roughly speaking, two goods are gross substitutes if an increase in the
price of one of the goods causes an increase in the demand for the other
good. In elementary courses, this is usually the definition of substitutes.
In more advanced courses, it is necessary to distinguish between the idea
of net substitutes—when the price of one good increases, the Hicksian
demand for the other good increases—and gross substitutes—which re-
places “Hicksian” with “Marshallian” in this definition.

Gross substitutes. Two goods, i and j, are gross substitutes at a price

vector p if a—zég >0 fori#j.

This definition says that two goods are gross substitutes if an increase
in price 7 brings about an increase in the excess demand for good j. If all
goods are gross substitutes, the Jacobian matrix of z, Dz(p), will have all
positive off-diagonal terms.

Gross substitutes implies unique equilibrium. If all goods are gross
substitutes at all prices, then if p* is an equilibrium price vector, it is the
unique equilibrium price vector.

Proof. Suppose p’ is some other equilibrium price vector. Since p* > 0
we can define m = max p}/p; # 0. By homogeneity and the fact that p*
is an equilibrium, we know that z(p*) = z(mp*) = 0. We know that for
some price, px, we have mpj; = pj, by the definition of m. We now lower
each price mp} other than pj successively to p;. Since the price of each
good other than k goes down in the movement from mp* to p’, we must
have the demand for good k going down. Thus z;(p’) < 0 which implies
p’ cannot be an equilibrium.

Index analysis

Consider an economy with only two goods. Choose the price of good 2
as the numeraire, and draw the excess demand curve for the good 1 as a
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function of its own price. Walras’ law implies that, when the excess demand
for good 1 is zero, we have an equilibrium. The desirability assumption we
have made implies that, when the relative price of good 1 is large, the
excess demand for good 1 is negative; and when the relative price of good
1 is small, the excess demand for gooa 1 is positive.

Refer to Figure 21.4, where we have drawn some examples of what can
happen. Note that (1) the equilibria are usually isolated; (2} and (3) the
cases where they are not isolated are not “stable” with respect to minor
perturbations; (4) there is usually an odd number of equilibria; (5) if the
excess demand curve is downward sloping at all equilibria, there can be only
one equilibrium, and if there is only one equilibrium, the excess demand
curve must be downward sloping at the equilibrium.

p \ P
Uniqueness and local uniqueness of equilibrium. These

panels depict some examples used in the discussion of uniqueness
of equilibrium.

In the above one-dimensional case note that if dz(p)/dp < 0 at all equi-
libria, then there can be only one equilibrium. Index analysis is a way of
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generalizing this result to k dimensions so as to give us a simple necessary
and sufficient condition for uniqueness.

Given an equilibrium p*, define the index of p* in the following way:
write down the negative of the Jacobian matrix of the excess supply func-
tion —Dz(p*), drop the last row and column, and take the determinant of
the resulting matrix. Assign the point p* an index +1, if the determinant
is positive, and assign p* an index —1 if the determinant is negative. (Re-
moving the last row and column is equivalent to choosing the last good to
be numeraire just as in our simple one-dimensional example.)

We also need a boundary condition; there are several general possibilities,
but the simplest is to assume z;(p) > 0 when p; = 0. In this case, a
fundamental theorem of differential topology states that, if all equilibria
have positive index, there can be only one of them. This immediately gives
us a uniqueness theorem.

Uniqueness of equilibrium. Suppose z is a continuously differentiable
aggregate excess demand function on the price simplex with z;(p) > 0 when
pi equals zero. If the (k — 1) by (k — 1) matrizc (—Dz(p*)) has positive
determinant at all egquilibria, then there is only one equilibrium.

This uniqueness theorem is a purely mathematical result. It has the
advantage that the theorem can be applied to a number of different equi-
librium problems. If an equilibrium existence theorem can be formulated as
a fixed point problem, then we can generally use an index theorem to find
conditions under which that equilibrium is unique. However, the theorem
has the disadvantage that it is hard to interpret what it means in economic
terms.

In the case we are examining here, we are interested in the determinant
of the aggregate excess supply function. We can use Slutsky’s equation to
write the derivative of the aggregate excess supply function as

n n s
_Dz(p) = Z Dphi(p; ui) - Z Dmx'i(p, p“’i)[wi - xi]-
i=1 i=1

When will the matrix on the left-hand side have a positive determinant?
Let’s look at the right-hand side of the expression. The first term on
the right-hand side works out nicely; the substitution matrix is a negative
semidefinite matrix, so the (negative) of the (k — 1) x (k — 1) principal
minor of that matrix will typically be a positive definite matrix. The sum
of positive definite matrices is positive definite, and will therefore have a
positive determinant.

The second term is more problematic. This term is essentially the co-
variance of the excess supplies of the goods with the marginal propensity
to consume the goods. There is no reason to think that it would have
any particular structure in general. All we can say is that if these income
effects are small relative to the substitution effects, so that the first term
dominates, it is reasonable to expect that equilibrium will be unique.
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21.4 General equilibrium dynamics

We have shown that under plausible assumptions on the behavior of eco-
nomic agents there will always exist a price vector that equates demand
and supply. But we have given no guarantee that the economy will actu-
ally operate at this “equilibrium” point. What forces exist that might tend
to move prices to a market-clearing price vector? In this section we will
examine some of the problems encountered in trying to model the price
adjustment mechanism in a competitive economy.

The biggest problem is one that is the most fundamental, namely the
paradoxical relationship between the idea of competition and price adjust-
ment: if all economic agents take market prices as given and outside their
control, how can prices move? Who is left to adjust prices?

This puzzle has led to the erection of an elaborate mythology which
postulates the existence of a “Walrasian auctioneer” whose sole function is
to search for the market clearing prices. According to this construction, a
competitive market functions as follows:

At time zero the Walrasian auctioneer calls out some vector of prices. All
agents determine their demands and supplies of current and futures goods
at those prices. The auctioneer examines the vector of aggregate excess
demands and adjusts prices according to some rule, presumably raising the
price of goods for which there is excess demand and lowering the price
of goods for which there is excess supply. The process continues until an
equilibrium price vector is found. At this point, all trades are made including
the exchanges of contracts for future trades. The economy then proceeds
through time, each agent carrying out the agreed upon contracts.

This is, of course, a very unrealistic model. However, the basic idea that
prices move in the direction of excess demand seems plausible. Under what
conditions will this sort of adjustment process lead one to an equilibrium?

21.5 Tatonnement processes

Let’s consider an economy that takes place over time. Each day the market
opens and people present their demands and supplies to the market. At
an arbitrary price vector p, there will in general be excess demands and
supplies in some markets. We will assume that prices adjust according to
the following rule, the so-called law of supply and demand.

Price adjustment rule. p; = G;(z(p)) fori = 1,...,k where G; is
some smooth sign-preserving function of excess demand.

It is convenient to make some sort of desirability assumption to rule out
the possibility of equilibria at a zero price, so we will generally assume that
zi(p) > 0 when p; = 0.
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It is useful to draw some pictures of the dynamical system defined by
this price adjustment rule. Let’s consider a special case where G;(z;) equals
the identity function for each i = 1,..., k. Then, along with the boundary
assumption, we have a system in R* defined by:

p = z(p)

From the usual considerations we know that this system obeys Walras’ law,
pz(p) = 0. Geometrically, this means that z(p) will be orthogonal to the
price vector p.

Walras’ law implies a very convenient property. Let’s lock at how the
the Euclidean norm of the price vector changes over time:

k k k
" (Z pf(t)) = Yo om@nlt) =23 pu()(p(e) =0

=1

by Walras’ law. Hence, Walras’ law requires that the sum-of-squares of the
prices remains constant as the prices adjust. This means that the paths of
prices are restricted on the surface of a k-dimensional sphere. Furthermore,
since z;(p) > 0 where p; = 0, we know that the paths of price movements
always point inwards near the points where p; = 0. In Figure 21.5 we have
some pictures for k = 2 and k = 3.

The third picture is especially unpleasant. It depicts a situation where we
have a unique equilibrium, but it is completely unstable. The adjustment
process we have described will almost never converge to an equilibrium.
This seems like a perverse case, but it can easily happen.

Debreu (1974) has shown essentially that any continuous function that
satisfies Walras’ law is an excess demand function for some economy; thus
the utility maximization hypothesis places no restrictions on aggregate de-
mand behavior, and any dynamical system on the price sphere can arise
from our model of economic behavior. Clearly, to get global stability results
one has to assume special conditions on demand functions. The value of
the results will then depend on the economic naturalness of the conditions
assumed.

We will sketch an argument of global stability for one such special as-
sumption under a special adjustment process, namely the assumption that
aggregate demand behavior satisfies the Weak Axiom of Revealed Prefer-
ence described in Chapter 8, page 133. This says that if px(p) > px(p*) we
must have p*x(p) > p*x(p*) for all p and p*. Since this condition holds
for all p and p*, it certainly must hold for equilibrium values of p*. Let us
derive the implications of this condition for the ezcess demand function.

Subtracting pw and p*w from each of these inequalities yields the fol-
lowing implication:

*

px(p) — pw > px(p*) — pw implies p*x(p) — p*w > p*x(p*) — p*w.
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Figure Examples of price dynamics. The first two examples show
21.5 a stable equilibrium; the third example has a unique unstable
equilibrium.

Using the definition of excess demand, we can write this expression as
pz(p) > pz(p*) implies p*z(p) > p*z(p*). (21.1)

Now observe that the condition on the left side of (21.1) must be sat-
isfied by any equilibrium price vector p*. To see this simply observe that
Walras’ law implies that pz(p) = 0, and the definition of equilibrium im-
plies pz(p*) = 0. It follows that the right-hand side must hold for any
equilibrium p*. Hence, we must have p*z(p) > 0 for all p # p*.

WARP implies stability.  Suppose the adjustment rule is given by
D = z(p) fori=1,...,k and the excess demand function obeys the Weak
Aziom of Revealed Preference; i.e., if p* is an equilibrium of the economy,
then p*z(p) > 0 for all p # p*. Then all paths of prices following the
above rule converge to p*.
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Proof. (Sketch) We will construct a Liaponov function for the economy.
(See Chapter 26, page 485.) Let V(p) = Ele[(pi —p})?]. Then

k k
Wie) > 209 = )i(0) = 23 (01 = 2D (p)

d

k
=2 Zh’izi(P) —p;z(p)] = 0~ 2p”z(p) < 0.

This implies that V (p) is monotonically declining along solution paths for
p # p*. According to Liaponov’s theorem we need only to show bound-
edness of p to conclude that V(p) is a Liaponov function and that the
economy is globally stable. We omit this part of the proof. il

21.6 Nontatonnement processes

The tatonnement story makes sense in two sorts of situations: either no
trade occurs until equilibrium is reached, or no goods are storable so that
each period the consumers have the same endowments. If goods can be
accumulated, the endowments of consumers will change over time and this
in turn will affect demand behavior. Models that take account of this
change in endowments are known as nontatonnement models.

In such models, we must characterize the state of the economy at time
t by the current vector of prices p(t) and the current endowments (w;(t)).
We normally assume that the prices adjust according to the sign of excess
demand, as before. But how should the endowments evolve?

We consider two specifications. The first specification, the Edgeworth
process, says that the technology for trading among agents has the prop-
erty that the utility of each agent must continually increase. This is based
on the view that agents will not voluntarily trade unless they are made bet-
ter off by doing so. This specification has the convenient property that it
quickly leads to a stability theorem; we simply define the Liaponov function
tobe > | ui(w;(t)). By assumption, the sum of the utilities must increase
over time, so a simple boundedness argument will give us a convergence
proof.

The second specification is known as the Hahn process. For this process
we assume that the trading rule has the property that there is no good in
excess demand by some agent that is in excess supply by some other agent.
That is, at any point in time, if a good is in excess demand by a particular
agent, it is also in aggregate excess demand.

This assumption has an important implication. We have assumed that
when a good is in excess demand its price will increase. This will make the
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indirect utility of agents who demand that good lower. Agents who have
already committed themselves to supply the good at current prices are
not affected by this price change. Hence, aggregate indirect utility should
decline over time.

To make this argument rigorous, we need to make one further assumption
about the change in endowments The value of consumer ¢’s endowment
at time ¢ is m;(t) = Z j=1Pj (t)w! (t). Differentiating this with respect to t
gives

dmi(t) & duwl (¢ dp; (t
) 3 gy 2il by
j=1 j=1
It is reasonable to suppose that the first term in this expression is zero.
This means that the change in the endowment at any instant, valued at
current prices, is zero. This is just saying that each agent will trade a
dollar’s worth of goods for a dollar’s worth of goods. The value of the
endowment will change over time due to changes in price, but not because

agents managed to make profitable trades at constant prices.
Given this observation, it is easy to show that the sum of indirect utilities
decreases with time. The derivative of agent ¢’s indirect utility function is

p]wq

dvi(p(t), P(t)wz(t)) Z Ovi dp; | z ?;
8m

* Op; dt dt

Using Roy’s law and the fact that the value of the change in the endowment
at current prices must be zero, we have

dvi(p(t), P(Hwi(t)) _ avz u dp; (t)
dt g[”]( P, Pwi) = “’J] at

By assumption if good j is in excess demand by agent i, dp;/dt > 0 and
vice versa. Since the marginal utility of income is positive, the sign of
the whole expression will be negative as long as aggregate demand is not
equal to aggregate supply. Hence the indirect utility of each agent ¢ must
decrease when the the economy is not in equilibrium.

Notes

See Arrow & Hahn (1971) for a more elaborate discussion of these topics.
The importance of the topological index to uniqueness was first recognized
by Dierker (1972). The core convergence result was rigorously established
by Debreu & Scarf (1963).
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Exercises

21.1. There are two agents with identical, strictly convex preferences and
equal endowments. Describe the core of this economy and illustrate it in
an Edgeworth box.

21.2. Consider a pure exchange economy in which all consumers have dif-

ferentiable quasilinear utility functions of the form w(z1,...,z,) + zo. As-
sume that u(zy,...,z,) is strictly concave. Show that equilibrium must
be unique.

21.3. Suppose that the Walrasian auctioneer follows the price adjustment
rule p = [Dz(p)|~'z(p). Show that V(p) = —z(p)z(p) is a Liaponov
function for the dynamical system.



