

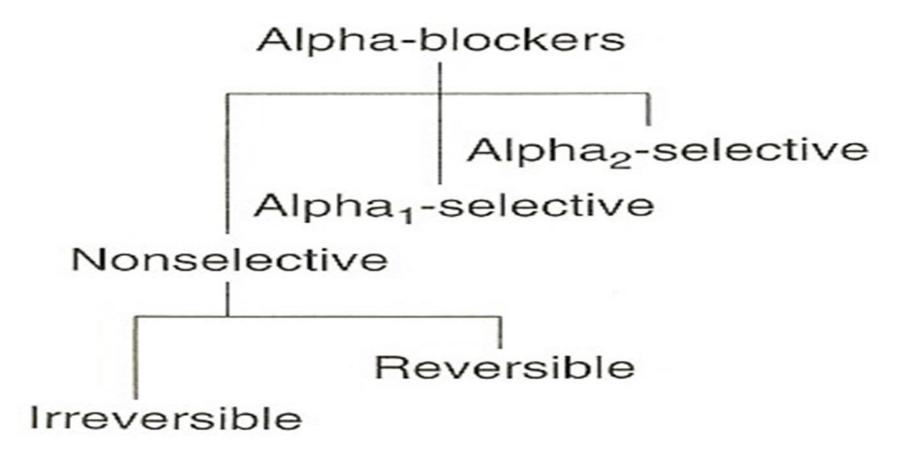
# Sympatholytic drugs;

- Adrenergic Blockers.
- Adrenergic antagonists.
- Adrenergic receptor antagonists.
  - Adrenoceptor antagonists.
    by
    - **DR. Muhammad Sarwar**

#### Adrenoceptors;

- Q1 ... Blood vessels
  Pupillary dilator m.
  Prostate
- Q2 ... presynaptic terminals
  β-Cells of Pancreas
- B1.... Heart Juxtaglomerular cells
- **B**2.....
  - Respiratory smooth m
  - Uterine smooth muscle
  - Vascular smooth muscle
  - Skeletal muscle
- **B**3..... Fat
- D1..... Renal blood vessels

- Vasoconstriction Mydriasis
- Contraction
- Inhibition
- Inhibition of insulin release
- Stimulate
- **Renin release**
- Relax
- Relax
- Relax
- K uptake
- Stimulate lipolysis Vasodilation


## **Classification of Sympatholytics;**

- α blockers; e.g., Prazosin, Doxazosin, Terazosin.
- β blockers; e.g., Propranolol, Timolol, Pindolol.
- **> Block both α and β;** e.g.,
  - Labetalol and Carvedilol ( $\beta >> \alpha_1$ )
- Adrenergic neuron blockers; e.g.,
  - Reserpine, Guanethidine, bethanidine.
- Centrally acting sympatholytics;
  - Methyldopa, Clonidine.

# Peripheral dopamine blockers; – no clinical significance

# **α blockers;**

These agents cause **blockade of**  $\alpha$  **mediated responses** to sympathetic nervous system & exogenous sympathomimetics.



#### **Classification of α blockers;**

•  $\alpha_1$  selective antagonists;  $(\alpha_1^{A}, \alpha_1^{B}, \alpha_1^{D})$ 

 $\alpha_1 >>> \alpha_2$ 

- Prazosin, Doxazosin, Terazosin, Indoramin
- Tamsulosin ( $\alpha_{1A}$ ), Alfuzosin ( $\alpha_{1A}$ ), (for BPH).
- $\alpha_2$  selective antagonists; ( $\alpha_2A$ ,  $\alpha_2B$ ,  $\alpha_2C$ )

– Yohimbine. ( $\alpha_2 >> \alpha_1$ )

- Non selective antagonists; (block  $\alpha_1 \& \alpha_2$ )
  - Reversible;
    - Phentolamine (competitive, reversible,  $\alpha_1 = \alpha_2$ )
  - Irreversible;
    - Phenoxybenzamine  $(\alpha_1 > \alpha_2)$

- Blockers of both  $\alpha$  and  $\beta$  Receptors;

-Labetalol, Carvedilol ( $\beta_1 = \beta_2 \ge \alpha_1 > \alpha_1$ )

• Other drugs with α antagonist activity;

## -Neuroleptic drugs;

• chlorpromazine, Haloperidol.

### -Antidepressant;

• Trazodone (also block  $\alpha_1$ ).

### **Relative selectivity α antagonists;**

• Prazosin, Terazosin, Doxazosin.  $\alpha_1 >>> \alpha_2$ 

- Phenoxybenzamine
- Phentolamine
- Yohimbine

 $\alpha_1 > \alpha_2$  $\alpha_1 = \alpha_2$  $\alpha_2 > \alpha_1$ 

## **Pharmacokinetics of α-blockers;**

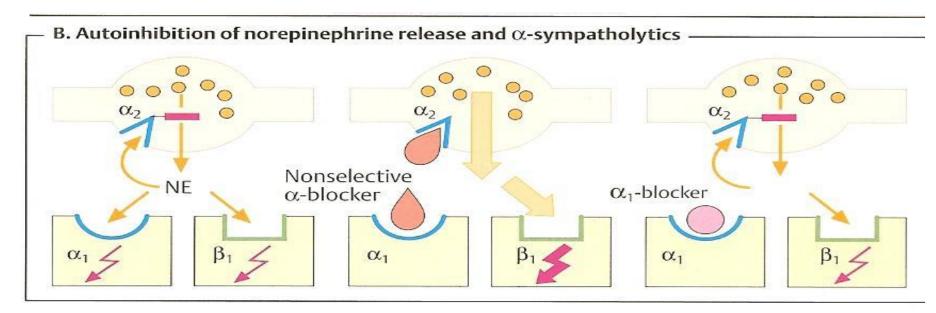
- Well absorbed after oral administration.
- Undergo extensive hepatic metabolism.
- The main difference between agents is in elimination half-life;
  - short with Indoramin and Prazosin and
  - much longer with Doxazosin and Terazosin.

## Pharmacodynamics;

#### Mechanism of action;

- Prazosin, Terazosin and Doxazoxin act at α<sub>1</sub>
  receptors.
  - **Cause competitive blockade** α<sub>1</sub>**-mediated responses** to sympathetic nervous system & exogenous sympathomimetics.
- Phentolamine causes competitive blockade of both α<sub>1</sub> & α<sub>2</sub> receptors.
- Phenoxybenzamine binds covalently to α receptors. (slight α1 selectivity).

## Pharmacological effects;


- Predominantly cardiovascular;
  - Sympathetic tone (Arteriolar & venous tone) is due to  $\alpha_1$  receptors on vascular smooth muscles.
  - α<sub>1</sub> blockers inhibit vasoconstriction, so
    vasodilatation occurs in arterioles and veins.
  - leading to total peripheral resistance and a fall in BP, which is more in upright position (Postural, orthostatic hypotension).
  - Baroreceptor reflexes oppose fall in BP, so there is increase in the heart rate (Reflex tachycardia) & cardiac output and also fluid retention.

#### Urinary bladder;

- α<sub>1</sub> blockers inhibit contraction of trigon & sphincter muscles of urinary bladder thus decreasing the resistance to urinary outflow.
- Pancreas;
  - They facilitate insulin secretion.
- Minor effects of α blockade;
  - Miosis.
  - Nasal stuffiness.
  - No significant direct cardiac effect.

#### α<sub>2</sub> antagonists (Yohimbine);

- Activation of  $\alpha_2$  receptors presynaptically inhibit release of NE from peripheral nerve endings.
- Activation of  $\alpha_2$  receptors in Ponto-medullary region centrally inhibits sympathetic activity and causes a fall in BP.
- Yohimbine blocks  $\alpha_2$  receptors, thus increasing the release of NE from sympathetic nerve endings, which activates  $\alpha_1$  and  $\beta_1$ receptors postsynaptically causing rise of BP.



# Thank You