

Sympathomimetics (adrenergic drugs)

These drugs activate the **adrenoceptors** to mimic the effects of endogenous catecholamines such as epinephrine & norepinephrine.

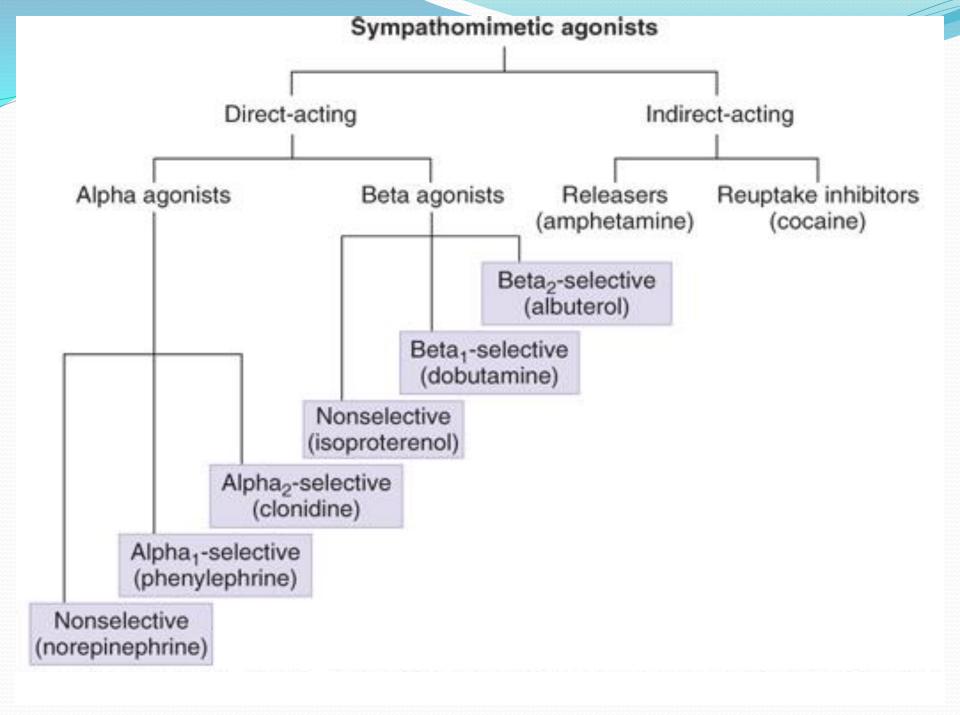
> Sympathetic agonists Adrenoceptor agonists Adrenoceptor activating drugs By DR. M. Sarwar

Classification according to mode of action; > Direct, indirect, mixed acting.

a Direct Acting Agonists; b) Indirect-Acting

(Adrenergic Receptor agonists);

- Adrenaline,
- Nor adrenaline,
- Dopamine,
- Dobutamine,
- Phenylephrine,
- Methoxamine,
- Xylometazoline,
- Oxymetazoline,
- Orciprenaline,
- Isoprenaline,
- Salbutamol,
- Terbutaline,
- Rimiterol,
- Pirbuterol,
- Fenoterol,
- Ritodrine,
- Procaterol.

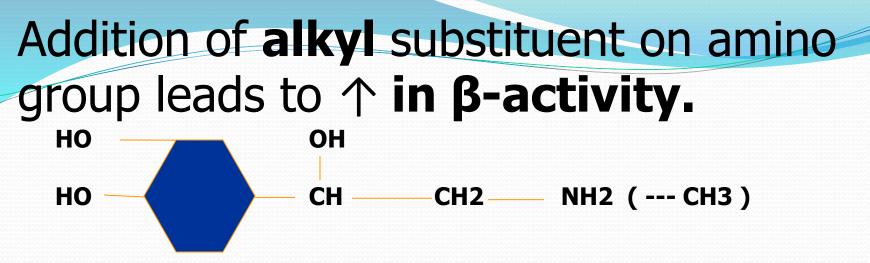

Sympathomimetics; These drugs causes release of NA

from stores at nerve endings.

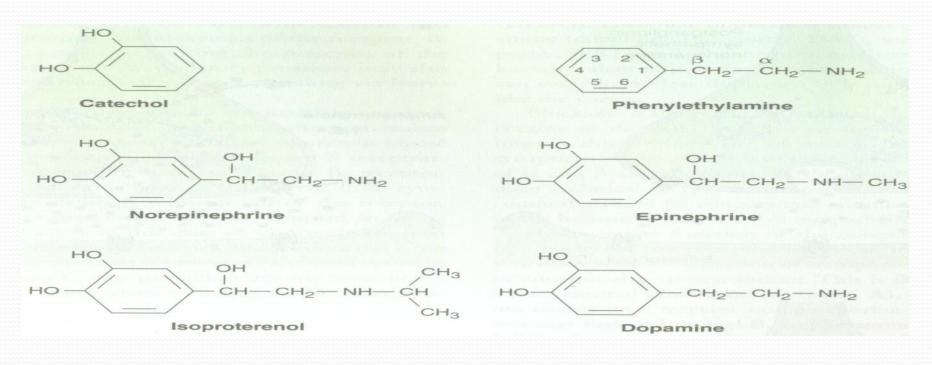
- Amphetamine,
- Dexamphetamine,
- Methylamphetamine,
- Hydroxyamphetamine,
- Tyramine.
- c) Mixed-Acting
 Agonists;
 Acting both directly and

indirectly.

- Ephedrine,
- Pseudoephedrine,
- Metaraminol.



Classification according to **chemical** structure;


- **Phenylethylamine** ---- the parent compound from which sympathomimetic drugs are derived.
- This compound consists of a benzene ring with an ethylamine side chain.

- The presence of –**OH groups at the 3 and 4 positions** of the benzene ring yields sympathomimetic drugs collectively known as **catecholamines**.
- Absence of OH group may ↓ potency as in Phenylephrine but ↑es lipid solubility as in Ephedrine or amphetamine.

Nor epinephrine (Epinephrine) β_2 selective agonists – a large substituent group.

Catecholamines; • Natural(endogenous); *Epinephrine (adrenaline) Nor epinephrine(nor adrenaline) Dopamine. • Synthetic; Dobutamine Isoproterenol(isoprenaline)
 • Non-catecholamines; *Ephedrine, Amphetamine, Hydroxyamphetamine, Orciprenaline, Methoxamine. Oxymetazoline, Albuterol (Salbutamol), Terbutaline, Formeterol, Ritodrine.

Pseudoephedrine, Dexamphetamine, Methylamphetamine, Metaraminol, Phenylepherine, Xylometazoline, Pirbuterol, Procaterol, Fenoterol,

Catecholamines;

Catechol structure.Rapidly metabolized by COMT, MAO.

- Inactive by oral route.
 Rapid onset of action.
- Brief duration of action.
 Do not enter the CNS in significant amount.
- •Reuptake into nerve

terminal also occur (NE,E& dopamine) when given as drugs. Isoproterenol (a synthetic catecholamine) is not readily taken up into nerve endings.

Noncatecholamines;

- •Non Catechol structure.
- •Resistant to COMT. Amphetamines & tyramine are resistance to MAO.
- •All can be administered orally.
- •Slow onset of action.
- Effects lasts much **longer.**
- Enter the CNS.

•Not readily taken up into nerve endings.

PHARMACOLOGICAL EFFECTS of ADRENOCEPTOR AGONISTS:

Cardiovascular system(CVS); > β1 receptor agonists; (Dobutamine)

 Heart (β1--- cardiac muscles, SA node, AV node) (Kidney (β1): renin release, Posterior pituitary (β1): ADH secretion, Salivary glands (β1); Viscous, amylase rich secretion). Ciliary Epithelium (β1 & β2); ↑ Secretion.

Heart

Increased

chronotropy and

inotropy

Increased

AV-node

conduction

velocity

- ♦ ↑ force + Ve Inotropic effect.
- ☆ ↑ conduction velocity through the AV node with a ↓ in the refractory period.

β2 receptor agonists; (Salbutamol, β2>>>β1)

 Relaxation of vascular smooth muscle that may invoke a reflex ↑ in heart rate. α₁ Receptor Agonists; (Phenylephrine, Xylometazoline)

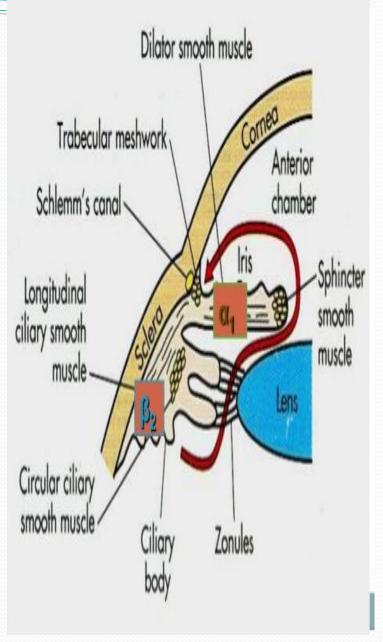
(α_1 Receptors ----- Most vascular muscles, Pupillary dilator muscle, Prostate).

- Constrict smooth muscle of resistance blood Vessels (splanchnic and skin) causing

 peripheral resistance and venous return.
- In normotensive patients (less effect than those with hypotension) the P may invoke a reflex
 baroreceptor vagal discharge and a slowing of the heart, with or without an accompanying change in cardiac output.

A Receptor Agonists; (Clonidine, Methyldopa)

(**α2** Receptors--- CNS, Presynaptic terminals, Some Blood vessels, Pancreatic β cells)


 Reduce BP by a prejunctional action on neurons in the CNS to inhibit sympathetic outflow. Eye;

(α_1 -- Radial muscle of the iris.)

 $(β_2, β_1$ --- Ciliary epithelium.)

α receptor agonists;

- Contracts the radial muscle of the iris and dilate the pupil. (mydriasis).
 - ☆↑ outflow of aqueous humor from the eye.
- >β receptor antagonists;
 - ↓ production of aqueous humor.

Respiratory system;

$>\beta_2$ receptor agonists;

Bronchodilation

Ph

- Induce relaxation of bronchial **smooth muscle** and decrease airway resistance.
- Gastrointestinal tract;
- $\geq \alpha_2$ -Receptor and β_2 Receptor agonists;
 - Relax GIT smooth muscle
 - α₂ receptor agonists **reduce** the **release of ACh**. and other transmitters from intramural nerves by a prejunctional action.
 - β_2 receptors are located directly on smooth muscle & cause relaxation.

>*α***ı**-**Receptor** agonists contract GIT sphincters.

Genitourinary tract effects;

β2 receptor agonists;

 Induce relaxation of uterine smooth muscle and the bladder wall.

α₁ receptor agonists; Constrict the bladder wall and the urethral sphincter.

Metabolic and endocrine effects;

$>\beta_2$ receptor agonists;

- Increase liver and skeletal muscle glycogenolysis.
- Increase insulin & glucagon secretion.

≻β₃ agonists;

• Increase lipolysis in fat cells.

$> \alpha_2$ receptor agonists;

• Decrease insulin secretion.

Thank You