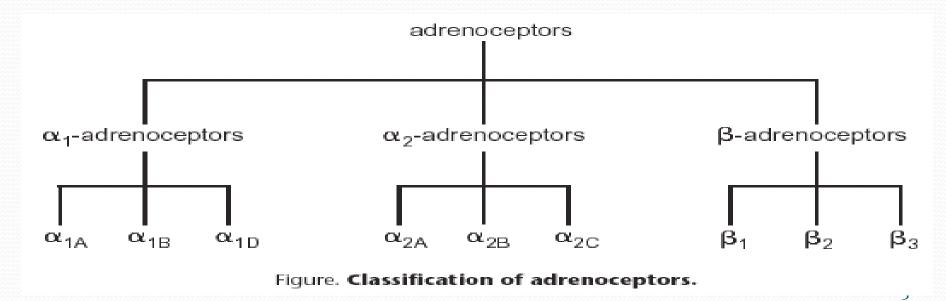

Sympathomimetics (adrenergic drugs)


These drugs activate the **adrenoceptors** to mimic the effects of endogenous catecholamines such as epinephrine & norepinephrine.

> Sympathetic agonists Adrenoceptor agonists Adrenoceptor activating drugs By DR. M. Sarwar

Adrenergic receptors;

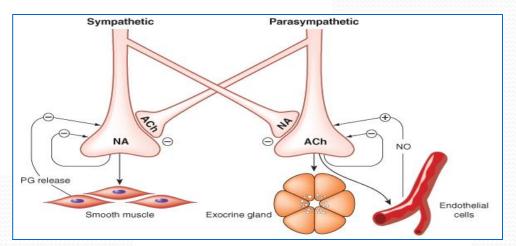
All are G-protein coupled.

Alpha receptors; α₁, α₂

 Blood vessels. Pupillary dilator muscle. 	Vasoconstriction. (peripheral resistance plood pressure) Mydriasis.	• α ₁ Gq • α ₂ Gi
• Prostate.	Contraction.	
(Urethral sphincter)	(Increased closure of internal sphincter of bladder)	Sympathetic (-) nerve
 Presynaptic terminals. 	Inhibition of NA release.	NE
• Some Blood vessels.	Vasoconstriction.	Gq Q1 Q2 Gi
 Pancreatic β cells. 	Inhibition of Insulin release.	Smooth muscle Contraction
	 Pupillary dilator muscle. Prostate. (Urethral sphincter) Presynaptic terminals. Some Blood vessels. Pancreatic β 	 Pupillary dilator muscle. Prostate. (Urethral sphincter) Presynaptic terminals. Some Blood vessels. Pancreatic β Inhibition of NA release. Inhibition of NA release.

α₂ receptors----Regulatory Receptors;

Alpha 2 receptors (presynaptic actions)


Autonomic neuromodulation

> Inhibition of **norepinephrine** release (Inhibitory autoreceptors)

Pancreatic ß cell

Inhibition of insulin release

Inhibition of acetylcholine release (Inhibitory heteroreceptors)

Presynaptic regulation of transmitter release from noradrenergic and cholinergic nerve terminal

β – Adrenoceptors; (β -----Gs)

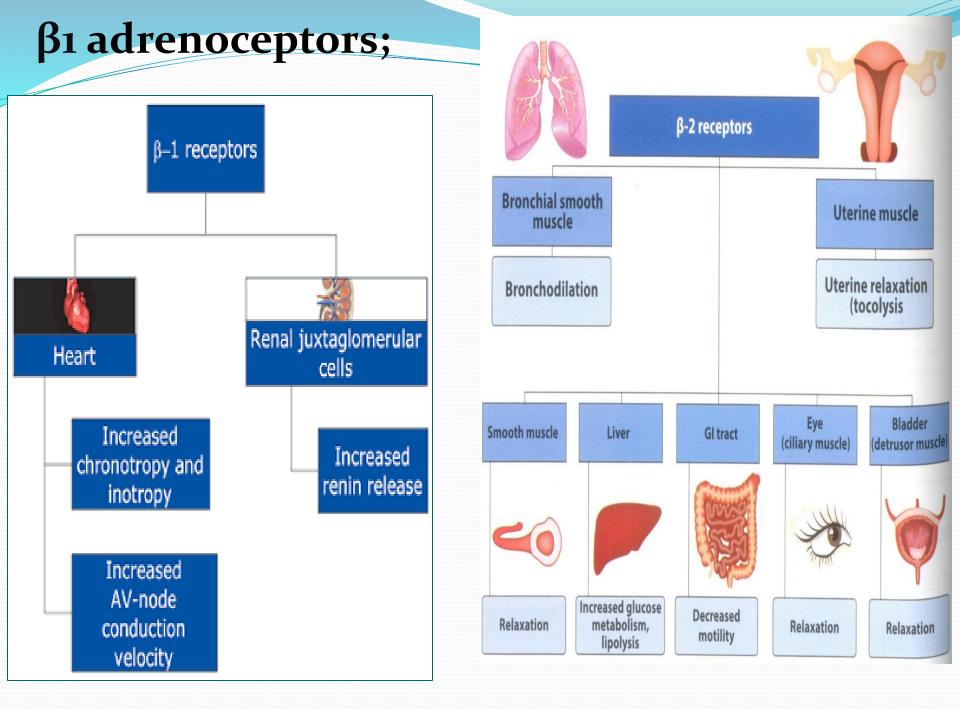
• Heart;

(SA node, AV node, cardiac muscles)

- Juxtaglomerular cells;
- β2

βı

- Respiratory smooth muscles
- Uterine smooth muscle
- Vascular smooth muscle
- Skeletal muscle
- Pancreatic β & α cells.


Renin release

Stimulate

Relax Relax Relax K⁺ uptake Increased insulin & glucagon secretion

Stimulate lipolysis

β3 • fat

Characteristic responses;

a

Vasoconstriction

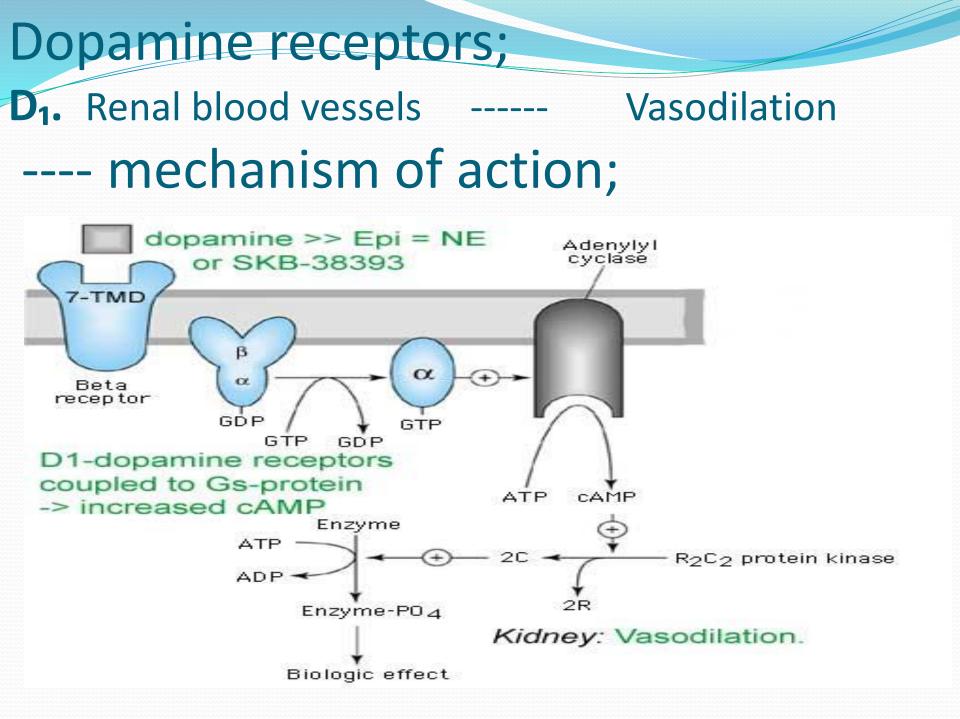
Increased peripheral resistance

Increased blood pressure

Mydriasis

 Increased closure of internal sphincter of the bladder Inhibition of norepinephrine release

α,


 Inhibition of insulin release _ Tachycardia

Increased lipolysis

 Increased myocardial contractility

Increased release of renin Vasodilation

- Slightly decreased peripheral resistance
- Bronchodilation
- Increased muscle and liver glycogenolysis
- Increased release of glucagon
- Relaxed uterine smooth muscle

Receptor	Location	G Protein	Second Messenger	Major Functions	
Alpha ₁ (α_1)	Effector tissues: smooth muscle, glands	G _q	↑IP ₃ , DAG	Ca ²⁺ , causes contraction, secretion	
Alpha ₂ (α_2)	Nerve endings, some smooth muscle	G _i	↓ cAMP	Transmitter release, causes contraction	
Beta ₁ (β ₁)	Cardiac muscle, juxtaglomerular apparatus	G _s	↑ cAMP	Heart rate, force; renin release	
$\operatorname{Beta}_2(\beta_2)$	Smooth muscle, liver, heart	G _s	↑ cAMP	Relax smooth muscle; glycogenolysis; heart rate, force	
Beta ₃ (β_3)	Adipose cells	G _s	↑ cAMP	Lipolysis	
Dopamine 1 (D1)	Smooth muscle	G _s	↑ cAMP	Relax renal vascular smooth muscle	

Classification of Adrenergic Drugs; May be classified according to ***Receptors** on which drugs act. *Mode of action; > Direct, indirect, mixed. ***Chemical structure. ***Therapeutic uses. Classification according to receptor selectivity;

- A drug may **preferentially binds** to one subgroup of receptors at **concentration** too low to interact with another subgroup.
- Selectively is not usually absolute.
- NA preferentially activates β1 receptors as compared to β2 receptors.

Alpha₁ Agonists;

- Phenylephrine
- Methoxamine (has some β blocking effect also)
- Xylometazoline
- Oxymetazoline
- Naphazoline

Alpha₂ Agonists;

- Clonidine,
- α methyldopa (alpha methyl noradrenaline).
 *They inhibit central sympathetic outflow and act as anti hypertensive agents.

β agonists;

βı selective agonists;

Dobutamine

β2 selective agonists;

- Salbutamol,
- Terbutaline,
- Procaterol,
- Rimiterol,
- Formeterol
- Fenoterol,
- Pirbuterol,
- Ritodrine.

Acting on both β1 and β2 receptors;

- Isoprenaline,
- Orciprenaline.

Acting on both α and β receptors;

- Adrenaline,
- Ephedrine,
- Amphetamine,
- Dexamphetamine,
- Methyl amphetamine,
- Hydroxyamphetamine,
- Metaraminol.

Dopaminergic agonists;

Dopamine Selectivity;

- Low dose;
 - **Dopaminergic receptors (renal &** splanchnic blood vessels) D₁----- Vasodilatation.

Moderate dose;

• β₁ agonist activity --- increase in contraction and cardiac output.

• High dose;

 Act on α₁ receptors in BV causing vasoconstriction and increase total peripheral resistance causing increase in systolic and diastolic blood pressure. **Relative receptor selectivity of adrenergic drugs;**

Alpha agonists Phenylephrine, methoxamine	$\alpha_1 > \alpha_2 >>>> \beta$
Clonidine, methylnorepinephrine	$\alpha_2 > \alpha_1 > >>> \beta$
Mixed alpha and beta agonists Norepinephrine	$\alpha_1 = \alpha_2; \beta_1 >> \beta_2$
Epinephrine	$\alpha_1 = \alpha_2; \beta_1 = \beta_2$
Beta agonists Dobutamine ¹	$\beta_1 > \beta_2 >>>> \alpha$
Isoproterenol	$\beta_1 = \beta_2 >>> \alpha$
Terbutaline, metaproterenol, albuterol, ritodrine	$\beta_2 >> \beta_1 >>> \alpha$
Dopamine agonists Dopamine	$D_1 = D_2 \gg \beta \gg \alpha$
Fenoldopam	$D_1 >> D_2$

Thank You