
Chapter 19
The Kinetic Theory of Gases

19.2 Avogadro’s Number

One mole is the number of atoms in a 12 g sample of 
carbon-12.

The number of atoms or molecules in a mole is called 
Avogadro’s Number, NA.

If n is the number of moles contained in a sample of any 
substance, N is the number of  molecules,  Msam is the mass 
of the sample, and M is the molar mass, then



19.3: Ideal Gases

Here p is the absolute pressure, n is the number of moles of 
gas present, and T is its temperature in kelvins. R is
the gas constant that has the same value for all gases.

Here, k is the Boltzmann constant, and N the number of 
molecules

19.3: Ideal Gases; Work Done by an Ideal Gas at Constant Temperature



19.3: Ideal Gases; Work Done at Constant Volume and Constant Pressure

W done by an ideal gas (or any other gas) during any process, such as a constant-
volume process and a constant-pressure process. 

If the volume of the gas is constant,

If, instead, the volume changes while the pressure p of the gas is held constant,

Example, Ideal Gas Processes



Example, Work done by an Ideal Gas

19.4: Pressure, Temperature, and RMS Speed
For  a typical gas molecule, of mass m and velocity v, that is about 
to collide with the shaded wall, as shown, if the collision with the 
wall is elastic, the only component of its velocity that is changed 
is the x component.

The only change in the particle’s momentum is along the x axis:

Hence, the momentum Δpx delivered to the wall by the molecule 
during the collision is +2mvx.
The time Δt between collisions is the time the molecule takes to 
travel to the opposite wall and back again (a distance 2L) at speed 
vx.. Therefore, Δt is equal to 2L/vx

. 
Therefore, The pressure:

But,   Therefore, 

With we finally have and  



19.4: RMS Speed

Example:



19.5: Translational Kinetic Energy

19.6: Mean Free Path

The mean free path, λ, is the average distance traversed by 
a molecule between collisions.

The expression for the mean free path does, in fact, turn 
out to be: 



Example, Mean Free Path, Average Speed, Collision Frequency:

19.7: The Distribution of Molecular Speeds
Maxwell’s law of speed distribution 
is: 

Here M is the molar mass of the gas, R
is the gas constant, T is the gas 
temperature, and v is the molecular 
speed. The quantity P(v) is a 
probability distribution function: For 
any speed v, the product P(v) dv is the
fraction of molecules with speeds in 
the interval dv centered on speed v.

The total area under the distribution 
curve corresponds to the fraction of 
the molecules whose speeds lie 
between zero and infinity, and is equal 
to unity.

Fig. 19-8 (a) The Maxwell speed distribution for oxygen
molecules at T =300 K. The three characteristic speeds are
marked.



19.7: Average, RMS, and Most Probable Speeds

The average speed vavg of the molecules in a gas can be found in the following way: 

Weigh each value of v in the distribution; that is, multiply it by the fraction P(v) dv of 
molecules with speeds in a differential interval dv centered on v.

Then add up all these values of v P(v) dv.

The result is vavg:

Therefore, leads to

RMS speed:

The most probable speed vP is the speed at which P(v) is maximum. To calculate vP, we set 
dP/dv =0 and then solve for v, thus obtaining:

Example, Speed Distribution in a Gas:



Example, Different Speeds

19.8: Molar Specific Heat of Ideal Gases: Internal Energy 

The internal energy Eint of an ideal gas is a function of the gas 
temperature only; it does not depend on any other variable.



19.8: Molar Specific Heat at Constant Volume

where CV is a constant called the molar specific 
heat at constant volume. 

But, 

Therefore,

With the volume held constant, the gas cannot 
expand and thus cannot do any work.  

Therefore, 

When a confined ideal gas undergoes temperature change ΔT, the resulting change in 
its internal energy is

A change in the internal energy Eint of a confined ideal gas depends on only the
change in the temperature, not on what type of process produces the change.

19.8: Molar Specific Heat at Constant Pressure



19.8: Molar Specific Heats

Fig. 19-12 The relative values of Q for a monatomic gas (left side) and a diatomic 
gas undergoing a constant-volume process (labeled “con V”) and a constant-
pressure process (labeled “con p”). The transfer of the energy into work W and 
internal energy (Eint) is noted.

Example, Monatomic Gas:



19.9: Degrees of Freedom and Molar Specific Heats

Every kind of molecule has a certain number f of 
degrees of freedom, which are independent ways in 
which the molecule can store energy. Each such degree 
of freedom has associated with it—on average—an 
energy of ½ kT per molecule (or ½ RT permole).

19.9: Degrees of Freedom and Molar Specific Heats



Example, Diatomic Gas:

19.10: A Hint of Quantum Theory



19.11: The Adiabatic Expansion of an Ideal Gas

Starting from:

And using the result for Eint, we get:

From the ideal gas law, 

Also, since CP-CV = R,  

Using the above relations, we get: 

Uisng γ = CP/CV, and integrating, we get:

Finally we obtain:  

19.11: The Adiabatic Expansion of an Ideal Gas



19.11: The Adiabatic Expansion of an Ideal Gas, Free Expansion

A free expansion of a gas is an adiabatic process with no work or change in internal 
energy. Thus, a free expansion differs from the adiabatic process described earlier, in 
which work is done and the internal energy changes.

In a free expansion, a gas is in equilibrium only at its initial and final points; thus, we 
can plot only those points, but not the expansion itself, on a p-V diagram. 

Since Eint =0, the temperature of the final state must be that of the initial state. Thus, 
the initial and final points on a p-V diagram must be on the same isotherm, and we 
have

Also, if the gas is ideal, 

Example, Adiabatic Expansion:



Four Gas Processes for an Ideal Gas


