Chapter 19

The Kinetic Theory of Gases

19.2 Avogadro’s Number

One mole is the number of atoms in a 12 g sample of
carbon-12.

The number of atoms or molecules in a mole is called
Avogadro’s Number, N,.

No=6.02 X 10®mol™!  (Avogadro’s number),

If n is the number of moles contained in a sample of any
substance, N is the number of molecules, M, is the mass
of the sample, and M is the molar mass, then

N Mo M am —_ M= H?,\"A.

= Ny > "mTM T mN, ~




19.3: Ideal Gases

pV =nRT (ideal gaslaw),

Here p is the absolute pressure, n is the number of moles of

gas present, and T is its temperature in kelvins. R is
the gas constant that has the same value for all gases.

R =8.31J/mol-K.

pV =NkT (idealgaslaw).  Here, k is the Boltzmann constant, and N the number of

molecules

8.31 J/mol-K

k=—=—1"""" * - 138x 103 JK.

6.02 X 10% mol !

19.3: Ideal Gases; Work Done by an Ideal Gas at Constant Temperature

The expansion is along
an isotherm (the gas has
constant temperature).

T=320K
/

T=310K

T=300K

Fig. 19-2 Three isotherms on a
p-V diagram. The path shown along
the middle isotherm represents an
isothermal expansion of a gas from
an initial state i to a final state f.

The path from fto i along the
isotherm would represent the re-
verse process— that is, an isothermal
compression.
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19.3: Ideal Gases; Work Done at Constant Volume and Constant Pressure

W done by an ideal gas (or any other gas) during any process, such as a constant-
volume process and a constant-pressure process.

If the volume of the gas is constant,

(constant-volume process).

If, instead, the volume changes while the pressure p of the gas is held constant,

W=p(V;— V) = pAV

(constant-pressure process).

Example, Ideal Gas Processes

A cylinder contains 12 L of oxygen at 20°C and 15 atm. The
temperature is raised to 35°C, and the volume is reduced to
8.5 L. What is the final pressure of the gas in atmospheres?
Assume that the gas is ideal.

KEY IDEA

Because the gas is ideal, we can use the ideal gas law to relate
its parameters, both in the initial state i and in the final state f.

Calculations: From Eq. 19-5 we can write

pV;=nRT,

Dividing the second equation by the first equation and solving
for py yields Iy,

7

and  p;=nRT}.

(19-17)

Note here that if we converted the given initial and final vol-
umes from liters to the proper units of cubic meters, the
multiplying conversion factors would cancel out of Eq.
19-17. The same would be true for conversion factors that
convert the pressures from atmospheres to the proper pas-
cals. However, to convert the given temperatures to kelvins
requires the addition of an amount that would not cancel
and thus must be included. Hence, we must write

T,=(213+20)K=293K
and T;= (273 +35) K=308 K.
Inserting the given data into Eq. 19-17 then yields

_ (15atm)308 K)(121L)

= 22 (t .
/ (293K)(85L) A

(Answer)




Example, Work done by an Ideal Gas

One mole of oxygen (assume it to be an ideal gas) expands
at a constant temperature 7" of 310 K from an initial volume
Vi of 12 L to a final volume V; of 19 L. How much work is
done by the gas during the expansion?
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Fig. 19-3 The shaded area represents the work done by 1 mol of
oxygen in expanding from Vo Veal a temperature Tol 310 K.

KEY IDEA
Generally we find the work by integrating the gas pressure
with respect to the gas volume, using Eq. 19-11. However, be-
cause the gas here is ideal and the expansion is isothermal,
that integration leads to Eq. 19-14.

Calculation: Therefore, we can write

W =nRTIn Y
' 9L
— __" - 3
(1 mol)(8.31 Jymol-K)(310 K) In L
= 1180 JL. (Answer)

The expansion is graphed in the p-V diagram of Fg.
19-3. The work done by the gas during the expansion is rep-
resented by the area beneath the curve if.

You can show that i the expansion is now reversed,
with the gas undergoing an isothermal compression from 19
L. to 12 L, the work done by the gas will be —1180 1. Thus, an
external force would have to do 1180 J of work on the gas to
compress it.

19.4: Pressure, Temperature, and RMS Speed

For a typical gas molecule, of mass m and velocity v, that is about
to collide with the shaded wall, as shown, if the collision with the

L wall is elastic, the only component of its velocity that is changed
< ~Nomual o is the x component.
m—" s “ Ap, = (—mv,) — (mv,) = —2mv,.
L The only change in the particle’s momentum is along the x axis:
// I .
. 7 Hence, the momentum 4p, delivered to the wall by the molecule

during the collision is +2mv,.

The time At between collisions is the time the molecule takes to
travel to the opposite wall and back again (a distance 2L) at speed
v, Therefore, At is equal to 2L/v,

Fig. 19-4 A cubical box of edge
length L, containing n moles of an
ideal gas. A molecule of mass m and
velocity Vis about to collide with the
shaded wall of area L%, A normal to
that wall is shown.

} Ap,  2mv,  mi p= L: _ mvi/L + ””‘fz-"if s+ mviy/L
Therefore, “Ar ~ 2Lw, | L The pressure: L L2
m . N N
=\ )m tvn e i),
nM(v?) 40 Ny nM(v2) g
vi=pl4 vl p=———8 = S0 e ST
But, R Therefore, 3V L’ o 4
. nMvZ,. IRT
. (¥avg = Vems . P="3y Vems = [~
With 2 ’ we finally have 3V and M




19.4: RMS Speed

Some RMS Speeds at Room
Temperature (T = 300 K)*

Molar
Mass
4]0 Wi
Gas kg/mol) (m/s)
Hydrogen (H;) 2.02 1920
Helium (He) 4.0 1370
Water vapor
(H,0) 18.0 645
Nitrogen (N;) 28.0 517
Oxvgen (O,) 320 483
Carbon dioxide
(CO,) 44.0 412
Sulfur dioxide
(SO,) 64.1 342

“For convenience, we often set room
temperature equal to 300 K even though (at
27°C or 81°F) that represents a fairly warm
room.

Example:

Sample Problem

Average and rms values
Here are five numbers: 5,11,32,67,and 89, Calculation: We find this from
(a) What s the average value n,y, of these numbers? . \/ SHI12+ 320+ 67 + 89
Calculation: We find his rom h o s o
Nayg = M =408 (Answer) The rms valuIe Iis greater than the average value because

the larger numbers—being squared—are relatively more
(b) Whatis the rms value r,,,; of these numbers? important in forming the rms value.




19.5: Translational Kinetic Energy

P U N I N B
Kﬂvg = (f‘m" )avg = 5”1“ )nvg = 3/MViyg,

3RT
M

Kavg = (%m)

3RT
Kavg = ﬁ

Koy = 5kT.

19.6: Mean Free Path

s® © ° o o o The mean free path, A, is the average distance traversed by
o Q ..
R ) R a molecule between collisions.
@ 0 0295,% . p °
) _Jla‘ o/ g "a’)/ < X .
*yifa ~‘Mi'/_} %o % o The expression for the mean free path does, in fact, turn
3 %g LN o5 B out to be:
a @ \Q a . *
‘_M‘\E‘i-i{f'_' }{:f“ ¢ o e A= —Vr—il (mean free path).
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Fig. 19-5 A molecule traveling through
a pas, colliding with other gas molecules in
its path. Although the other molecules are
shown as stationary, they are also moving

in asimils

Fig. 19-7 Intime Af the moving mole-
cule effectively sweeps out a cylinder of
length v Ar and radius d.

fashion.

_ length of path during Ar v At
number of collisions in Ar wd?v At NIV
1

T RPNV




Example, Mean Free Path, Average Speed, Collision Frequency:

(a) What is the mean free path A for oxygen molecules at tem-
perature T'= 300 K and pressure p = L0 atm? Assume that
the molecular diameter is d = 290 pm and the gas is ideal.

Each oxygen molecule moves among other moving oxygen
molecules in a zigzag path due to the resulting collisions. Thus,
we use Eq. 19-25 for the mean free path.

Calculation: We first need the number of molecules per unit
volume, N/V. Because we assume the gas is ideal. we can use
the ideal gas law of Eq. 19-9 (pV = NkT) to write NIV = p/kT.
Substituting this into Eq. 19-25, we find
A= 1 _ kT
VI:d®NIV  VIadp
_ (1.38 % 10" J/K)(300 K)
V2w(2.9 % 107" m)*(1.01 X 10° Pa)
=1.1x107"m.
This is about 380 molecular diameters.

(Answer)

(b) Assume the average speed of the oxygen molecules is
v =450 m/s, What is the average time ¢ between successive

collisions for any given molecule? Al what rate does the mol-
ecule collide; that is, what is the frequency fof its collisions?

KEY IDEAS

(1) Between collisions. the molecule travels, on average. the
mean free path A at speed v (2) The average rate or fre-
quency at which the collisions occur is the inverse of the
time t between collisions.

Calculations: From the first key idea. the average lime be-
tween collisions is

distance A

1.1 x 107" m
450 m/s

=244 % 1075 = 0.24 ns. (Answer)

This tells us that, on average, any given oxygen molecule has
less than a nanosecond between collisions.
From the second key idea, the collision frequency is
1 1
f r 244 x10"s
This tells us that, on average, any given oxygen molecule
makes about 4 billion collisions per second.

=41 % 10°s7'.  (Answer)

19.7: The Distribution of Molecular Speeds

Maxwell’s law of speed distribution
is:

P(v) = 4#(%

372 z
V2 e—Mv IZRT_

Here M is the molar mass of the gas, R
is the gas constant, T is the gas
temperature, and v is the molecular
speed. The quantity P(v) is a
probability distribution function: For
any speed v, the product P(v) dv is the
fraction of molecules with speeds in
the interval dv centered on speed v.

The total area under the distribution
curve corresponds to the fraction of
the molecules whose speeds lie
between zero and infinity, and is equal
to unity.

ij(v) dv = 1.
o

Fig. 19-8 (a) The Maxwell speed distribution for oxygen
molecules at T =300 K. The three characteristic speeds are
marked.




19.7: Average, RMS, and Most Probable Speeds

The average speed v,

Weigh each value of v in the distribution; that is, multiply it by the fraction P(v) dv of

molecules with speeds in a differential interval dv centered on v.

Then add up all these values of v P(v) dv.

. , - SRT
The result is Vavg! Vavg = ‘[) v P(v) dv. Vi = oM
i 3RT
Therefore, (V) aye = j V2 P(v) dv. leads to (12)ay, = i
0
3RT
RMS speed: Vems = [~ (mmsspeed).

of the molecules in a gas can be found in the following way:

The most probable speed v;, is the speed at which P(v) is maximum. To calculate v,, we set

dP/dv =0 and then solve for v, thus obtaining:

2RT
Vp = T (most probable speed).

Example, Speed Distribution in a Gas:

A container is filled with oxygen gas maintained at room
lemperature (300 K). What fraction of the molecules have

speeds in the interval 399 1o 601 m/s? The molar mass M of

oxygen is 0.0320 kg/mol.

KEY IDEAS
. The speeds of the molecules are distributed over a wide
range of values, with the distribution P(v) of Eq. 19-27.
. The fraction of molecules with speeds in a dilferential
interval dv is P(v) dv.

(=]

=

. For a larger interval, the fraction is found by integrating
P(v)over the interval.
4. However, the interval Av = 2 m/s here is small compared
to the speed v = 600 m/s on which it is centered.
Calculations: Because Ay is small, we can avoid the inte-
gration by approximating the fraction as
a2
M ) pRe-MA2RT £
27RT

The function P(v) is plotted in Fig. 19-8a. The total arca
between the curve and the horizontal axis represents the to-

frac = P(v) Av = 411'(

tal fraction of molecules (unity). The arca of the thin gold
strip represents the fraction we seek.
To evaluate frac in parts, we can write

frac = (470 AN ) Av),

(19-36)
where

L ( M ) 7 ( 0.0320 kg/mol )‘f
2aRT L (2a)(8.31 Jimol - K)(300 K)
=292 % 107 s¥m®

and B = — M2 __ (00320 kg/mol)(600 /sy
‘ 2RT (2)(8.31 J/mol - K)(300 K)
= -231.

Substituting A and B into Eq. 19-36 yields
frac = (4 A)(V ) e")(Av)
= (47)(2.92 = 10 sYmM) (600 m/s)P e )2 mis)
=72.62 x 1073, {Answer)
Thus, at room temperature, 0.262% of the oxygen molecules
will have speeds that lic in the narrow range between 599
and 601 m/s. If the gold strip of Fig, 19-8a were drawn (o the
scale of this problem., it would be a very thin strip indeed.




Example, Different Speeds I
~.2.0 ™N

[The molar mass M of oxygen is 0.0320 kg/mol. E
o L

a) What is the average speed vy, of oxygen gas molecules é va:: Area = P(v) dv

it T = 300 K? = 1.0 b

Calculation: We end up with Eq. 19-31, which gives us X Ve

SRT Vems N
Varg = ‘\III g=va 0

i 0 200 400 600 800 1000 1200
_ [8(831 J/mol-K){300 K} Fig. 19-8 Speed (m/s)
- #(0.0320 kg/mol)
= 445 m/s. (Answer)
This result is plotied in Fig. 19-8a. (c) What is the most probable speed vp at 300 K7
b) Whal is the rool-mean-square speed v, al 300 K? 2RT
Vo = .1
Calculation: We end up with Eq. 19-34, which gives us d M
- 3RT - \/2{8.3I J/mol - K)(300 K)
M 0.0320 kg/mol
_ [3(8.31 J/mol-K)(300 K} = 395 m/s. (Answer
v 0.0320 kg/mol This result is also plotted in Fig. 19-8a.
= 483 m/s. {Answer)

This result, plotted in Fig. 19-8a, is greater than v,,, because
the greater speed values influence the calculation more
when we integrate the v¥ values than when we integrate the
v values,

19.8: Molar Specific Heat of Ideal Gases: Internal Energy

The internal energy E;, of an ideal gas is a function of the gas
temperature only; it does not depend on any other variable.

E. = %HRT (monatomic ideal gas).




19.8: Molar Specific Heat at Constant Volume

The temperature
increase is done
without changing
the volume.

O = nCy AT

(constant volume),

where C,, is a constant called the molar specific
heat at constant volume.

p+Ap

———————— . But,
T+AT
T Therefore,

AEy=Q— W.

Pressure
=3

AE,, = nCy AT — W.

With the volume held constant, the gas cannot

Volume expand and thus cannot do any work.
( _ AEin'l
Therefore, Y nAT

AE, =3nRAT. ——> (C,=3R = 125J/mol-K

(monatomic gas).

When a confined ideal gas undergoes temperature change AT, the resulting change in
its internal energy is AE,,, = nCy AT (ideal gas, any process).

A change in the internal energy E;, of a confined ideal gas depends on only the
change in the temperature, not on what type of process produces the change.

19.8: Molar Specific Heat at Constant Pressure

Q =nC,AT

(constant pressure),
The temperature i

increase is done
without changing
the pressure.

where C, is a constant called the molar
specific heat at constant pressuare.

o

2l __p N This C, is greater than the molar specific
£ | heat at constant volume C,.
- } ' T+AT

i # Avi T We also have: AE, =0 - W.
v V+ AV
NV
b) Volume And W=pAV
W=pAV =nRAT.
Therefore, C,=C,— R
C,=Cy+R




19.8: Molar Specific Heats

Monatomic

—— Qaconp

| ey
w AE, ,— trans
l Qacon V

nt
L> AFE;,,— trans

int

3
9 nRAT

Fig. 19-12 The relative values of Q for a

gas undergoing a constant-volume process (labeled “con V) and a constant-
pressure process (labeled “con p”). The transfer of the energy into work W and

internal energy (E;,,) is noted.

Diatomic
Qacon p
t: N
AElm_<:

Qacon V

L»AE"“{:

rotation
trans

rotation
trans

monatomic gas (left side) and a diatomic

Example, Monatomic Gas:

A bubble of 5.00 mol of helium is submerged at a certain
depth in liquid water when the water (and thus the helium)
undergoes a temperature increase AT of 20.0 C* at constant
pressure. As a result, the bubble expands. The helium is
monatomic and ideal.
(a) How much energy is added to the helium as heat during
the increase and expansion?
(Calculations: Because the pressure p is held constant dur-
ing the addition of energy, we use the molar specific heat at
constant pressure C, and Eq. 19-46,
Q =nC, AT, (19-50)
Lo find Q. To evaluale C, we go o Eq. 19-49, which tells us
that for any ideal gas, C, = Cy + R. Then from Eq. 19-43, we
know that for any monatomic gas (like the helium here).
Cy = 3R. Thus. Eq. 19-50 gives us
Q =n(Cy + R)AT = n(3R + R) AT = n(3R) AT

= (5.00 mol)(2.5)(8.31 J/mol - K)(20.0 C*)

=2077.51 = 2080 1. (Answer)
(b) What is the change AL, in the internal energy of the
helium during the temperature increase?

Calculation: We can now easily find the constant-volumg
change AE,, with Eq. 19-45:
AEy, = nCy AT = n(3R) AT
= (5.00 mol)(1.5)(8.31 J/mol - K)(20.0 C*)
= 1246.5] ~ 1250 J.
(¢) How much work W is done by the helium as it expands
against the pressure of the surrounding water during the

temperature increase?
Calculation: We end up with

W =nR AT
= (5.00 mol)(8.31 J/mol - K)(20.0 C*)
831 1.

(Answer)

(Answer
Another way: Because we happen to know ¢ and AE;,. wq
can work this problem another way: We can account for thg
energy changes of the gas with the first law of thermody
namics, wriling

W=0Q - AE,=20775] - 12465]

=8311] (Answer)




19.9: Degrees of Freedom and Molar Specific Heats

g Every kind of molecule has a certain number f of
degrees of freedom, which are independent ways in
(a) He which the molecule can store energy. Each such degree
| of freedom has associated with it—on average—an
N %9 o energy of % KT per molecule (or %2 RT permole).
>\
O ™ g
oL ¢y = (L)r = 4.16f ymol-K
5 O, v=1{3 = 4.16f J/mol-K,
H

Fig. 19-13 Models of molecules as
used in kinetic theory: (a) helium.a
typical monatomic molecule: (b) oxy-
gen, a typical diatomic molecule; and
(c) methane. a typical polyatomic
molecule. The spheres represent
atoms, and the lines between them
represent bonds. Two rotation axes
are shown for the oxygen molecule.

19.9: Degrees of Freedom and Molar Specific Heats

Degrees of Freedom for Various Molecules

Degrees of Freedom Predicted Molar Specific Heats
Molecule Example Translational Rotational Total (f) Cy(Eq.19-51) C,=Cy+R
Monatomic He 3 0 3 iR IR
Diatomic 0, 3 2 5 3R IR

Polyatomic CH, 3 3 6 3R 4R




Example, Diatomic Gas:

'We transfer 1000 ] as heat ¢ Lo a diatomic gas, allowing the
2as to expand with the pressure held constant. The gas mole-
cules each rotate around an internal axis but do not oscil-
late. How much of the 1000 J goes into the increase of the
gas’s internal energy? Of that amount, how much goes into
AK 0 (the kinetic energy of the translational motion of the
molecules) and AK, (the kinetic energy of their rotational
motion)?

IIncrease in E;: Let's first get the temperature change AT
due to the transfer of energy as heat. From Eq. 19-46, substi-
tuting ;R for C,, we have

o
AT = :
R

(19-52)

We next find AE;, from Eq. 19-45, substituting the molar
specific heat Cy (= %RJ for a constant-volume process and
using the same AT. Because we are dealing with a di-
jitomic gas, let’s call this change AE,, 4,- Equation 19-45
jrives us

J
A = nCy AT = ugR( L(;R ) =30

= (714280 = 7143 J. (Answer)
In words, about 71% of the energy transferred to the gas
poes into the internal energy. The rest goes into the work re-
[uired to increase the volume of the gas, as the gas pushes
khe walls of its container outward.

Increases in K: If we were to increase the temperature of a
monatomic gas (with the same value of i) by the amount
given in Eq. 19-52. the internal energy would change by a
smaller amount, call it AFy, mon. because rotational motion
is not involved. To calculate that smaller amount. we still use
Eq. 19-45 but now we substitute the value of Cy for a
monatomic gas—namely, Cy = 3R. So,

AE = mRAT.

int.mon

Substituting for AT from Eq}. 19-52 leads us to

0 ) ;
=30

R ¢

= (.42857Q = 428.6 J.

AEnim0n = R(

For the monatomic gas, all this energy would go into the
kinetic energy of the translational motion of the atoms. The
important point here is that for a diatomic gas with the same
values of n and AT, the same amount of energy goes inlo the
kinetic energy of the translational motion of the molecules.
The rest of AE,, 4, (that is, the additional 285.7 I) goes into
the rotational motion of the molecules. Thus, for the di-
atomic gas,

AK jpans = 428,61

and AK,, = 285.7)  (Answer)

19.10: A Hint of Quantum Theory

0 | 1 1

Translation

20 50 100 200

| |
500 1000 2000
Temperature (K)

1 |
5000 10,000

Fig. 19-14 (/R versus temperature for (diatomic) hydrogen
gas. Because rotational and oscillatory motions begin at certain
energies, only translation is possible at very low temperatures. As
the temperature increases, rotational motion can begin. At still
higher temperatures, oscillatory motion can begin.




19.11: The Adiabatic Expansion of an Ideal Gas

Starting from:  4E,, = Q — pdV.

int

And using the result for E; ,, we get: ndT = —(

From the ideal gas law,

Also, since C,-C,, = R,

Using the above relations, we get:  p

ndl =

P

pdV +Vdp=nRdT.

pdV+Vdp
C,— Cy
d_P+(&)ﬂ
Cy) v

O

)dV.

= 0.

Uisng y = C,/C,,, and integrating, we get: lnp + yln V' = aconstant.

19.11: The Adiabatic Expansion of an Ideal Gas

Insulation

{a)
Fig. 19-15 (a) The vol-
ume of an ideal gas is in-
creased by removing mass
from the piston. The process
is adiabatic (Q = 0). (b) The
process proceeds from 7 to f
along an adiabat ona p-V
diagram.

Pressure

We slowly remove lead shot, allowing an
expansion without any heat transfer.

Adiabat (0= 0)

Isotherms:
T00 K
500 K
300 K

Volume

o
pV7" = aconstant

pVi= PfV;
\Z
%

TV ! = aconstant

(adiabatic process),

(adiabatic process).

RT
(n—) V7 = a constant.
2

(adiabatic process)




19.11: The Adiabatic Expansion of an Ideal Gas, Free Expansion

A free expansion of a gas is an adiabatic process with no work or change in internal
energy. Thus, a free expansion differs from the adiabatic process described earlier, in
which work is done and the internal energy changes.

In a free expansion, a gas is in equilibrium only at its initial and final points; thus, we
can plot only those points, but not the expansion itself, on a p-V diagram.

Since E;,

have
T,=T;

Also, if the gas is ideal,  pPiVi= psVs

=0, the temperature of the final state must be that of the initial state. Thus,
the initial and final points on a p-V diagram must be on the same isotherm, and we

(free expansion)

(free expansion).

Example, Adiabatic Expansion:

Initially, 1 mol of oxygen (assumed to be an ideal gas) has
temperature 310 K and volume 12 L. We will allow it to ex-
pand to volume 19 L.

(a) What would be the final temperature if the gas expands adi-
abatically? Oxygen (0s) is diatomic and here has rotation but
not oscillation.

KEY IDEAS

1. When a gas expands against the pressure of its environ-
ment, it must do work.

2, When the process is adiabatic (no energy is transferred as
heat), then the energy required for the work can come only
from the internal energy of the gas.

3. Because the internal energy decreases, the temperature
T must also decrease.

Calculations: We can relate the initial and final tempera-
tures and volumes with Eq. 19-56:

TV =Ty (19-64)

Because the molecules are diatomic and have rotation but
nol oscillation, we can lake the molar specilic heals from
Table 19-3. Thus,

—C“’—%R—Mn
o TR

Solving Eq. 19-64 for T, and inserting known data then yield

- TV BI0K)(12L)H
F v}r—l (lq L)I.ln 1

= (310 K)(2)M0 = 258 K.

(Answer)

(b) What would be the final temperature and pressure if|
instead, the gas expands freely to the new volume, from an)
initial pressure of 2.0 Pa?

KEY IDEA
The temperature does not change in a [ree expansion be-
cause there is nothing to change the kinetic energy of the
molecules.

Calculation: Thus, the temperature is
T;=T,=310K.

We find the new pressure using Eq. 19-63, which gives us

(Answer)

(Answer)

Vi AL
pr= PE?; = (2.0 Pa) DL - 1.3 Pa.




Four Gas Processes for an Ideal Gas

Problem-Solving Tactics

A Graphical Summary of Four Gas Processes

In this chapter we have discussed four special processes that an ideal
gas can undergo. An example of each (for a monatomic ideal gas) is  Fig, 19-16
shown in Fig. 19-16, and some associated characteristics are given in A p-V dia-
Table 19-4, including two process names (isobaric and isochoric) that — gram repre- £
we have not used but that you might sce in other courses, senting four - el i
special £ 4 2
\.CHECKPO[NT 5 processes for f % 0K
e . an ideal f 500 K
Rank paths 1. 2, and 3 in Fig. 19-16 according to the encrgy T 400 K
transfer to the gas as heat, greatest first.
#as. Valume
Table 19-4
Four Special Processes
Some Special Results
Path in Fig. 19-16 Constant Quantity Process Type (AE, = O — Wand AE,, = nC AT for all paths)
1 P Isoharic Q=nC,AT;W=pAV
2 T Isothermal O =W=nRTIn(V/¥): AL =0
3 pyhorv! Adiabatic Q=0 W=-ALy,
4 v Isochaoric Q= AE, =nC,AT; W=0




