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Fundamental notions of classical thermodynamics

and the

ZEROTH, FIRST & SECOND LAWS

Introduction. It is a familiar fact that classical mechanics is an implication of
quantum mechanics—is quantum mechanics “in the limit that the quantum
numbers are large” (formally: quantum mechanics in the limit � ↓ 0)—but
should in this connection be emphasized that
• classical mechanics stands on its own feet as a self-contained and logically

complete theoretical structure
• many problems are most usefully/efficiently addressed classically, without

reference to quantum mechanics
• it is (as was emphasized by Bohr) by classical experiments that we know all

that we know about the quantum world : it is classical mechanics which—
observationally/theoretically—“supports” the quantum theory.

Nearly identical remarks pertain to the resonant relationship between classical
thermodynamics1 and statistical mechanics. Just as one might preface an

1 Thermodynamics might more appropriately be called “thermostatics.” The
“classical” is intended here to convey a distinction not from “quantum
thermostatics” but from “modern thermodynamics”—that time-dependent
recent generalization of the classical theory which takes
• relaxation processes
• self-organization in driven open systems

and related phenomena as its primary subject matter.
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account of quantum mechanics with a review of the principles of classical
mechanics, so do we proceed here to a review of the fundamentals of classical
thermodynamics.

My objective in this introductory chapter will be to assemble concepts,
language, principles—raw material for the more concrete and informatively
detailed work undertaken in subsequent chapters. My approach will be
“informally axiomatic,” and I will allow myself to make unapologetic use of
notions that on first encounter can be only imperfectly defined. We are, I assert,
no more entitled here than elsewhere in physics to expect conceptual precision
at the outset: we have no alternative but to build upon our tentatively-held
intuitions, in the hope and expectation that the elaborated theory will serve
ultimately and with ever-increasing clarity to illuminate its own foundations,
to expose its own meaning. I cannot account for why that circumstance is
felt to be more acutely embarrassing in the present context than it is in (say)
mechanics (and I admit that by me it is): are we really entitled to suppose that
our mechanical intuitions are that much sharper and secure than our thermal
intuitions?

1. Thermal systems and their states. Let S denote a “thermal system”—a finite
glob of stuff, the internal constitution of which is such as to permit it to
achieve states of thermal equilibrium (in short: to “thermalize”)—and let real
numbers ξ1, ξ2, . . . , ξN record the results of probing S with devices (“gages”)
of the sorts standard to the thermodynamic laboratory. We agree to write
ξξξ ≡

{
ξ1, ξ2, . . . , ξn

}
when those numbers comprise a least set sufficient to

determine the thermodynamic state of the system.2 Thus are we led (by
instrumental procedures) to an identification of the form

state of S ←→ point ξξξ in n-dimensional state space Ξ

Notice in this connection that
• the ξ-variables can be expected to be dimensionally diverse.
• it becomes natural to say that S has “n thermodynamic degrees of

freedom;” generally we can expect n to be small, but it will vary from
case to case, and not principle supplies an a priori value in any particular
case3

• thermodynamic state space Ξ is not a metric space: it is not possible to
ascribe a natural meaning to “how far” state ξξξ1 lies from state ξξξ2.

We will find it essential to distinguish thermal systems of several types.
Specifically, we will distinguish open systems from closed systems (Figure 1),

2 “Determine” in the sense “identify: distinguish one from another.”
3 Recall that it took many years to discover how many degrees of freedom to

ascribe to an electron, or to an atom (i.e., to discover “spin”), and that when
this was finally accomplished it was by tinkering with theory until it conformed
to the experimental facts.



Thermal systems and their states 3

Figure 1: At left: a system open to interaction—in this instance:
to energetic interaction—with external agents. At right: a closed
system: idealized walls prevent mass, energy and other kinds of
exchange with exterior agents of systems.

Figure 2: At left: the physically isolated compose of two systems.
At right: the merely mental compose.

S S1 S2

Figure 3: A frequently useful trick: compare the thermodynamics
of a closed system (left) with that of its “mental resolution into a
pair of subsystems” (right).
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and solitary systems from composite systems (Figure 2). It is evident that
an expanded set

{
ξξξ1, ξξξ2

}
of variables will be needed to describe the state of the

composite system S = S1⊕S2. Figure 3 alludes to a non-obvious application of
the composite system idea of which we will have occasion to make fundamental
use.

2. State transitions: processes. Thermalized systems—when tickled, kicked or
allowed to interact in this way or that with other systems—typically respond
by moving out of equilibrium . . . and coming to rest finally in a state different
from the one from which they departed. The point to notice (see Figure 4) is
that during the temporal interval

ξξξinitial −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
succession of hard-to-describe microstates

ξξξfinal

(which is typically—though by no means invariably—quite brief) the system,
since disequilibrated, cannot be said even to possess state variables ξξξtransitional ,
cannot be associated with a “moving point ξξξ(t) in state space.”

This is in sharp contradistinction to the situation in classical dynamics
(also in quantum dynamics, up until the time of the next “measurement”),
where it is fundamental that the progress

initial state −→ final state

proceeds always through a smooth t -parameterized continuum of intermediate
states, as described by the equations of motion.

It is, however, possible to imagine—and to realize in the laboratory—
processes that proceed ξξξinitial −→ ξξξfinal via an arbitrarily large number of
arbitrarily proximate intermediate states. Such quasi-static processes might
take arbitrarly long to accomplish (though in practice can be actually quite
brisk), but they possess the property that, by tickled design and intent, S is
never detectably far from equilibrium. Quasic-static processes can be
represented (Figure 5) by curves (if “pointillistic” curves) drawn on state space.
Thermodynamics recognizes—attaches importance to—before-after distinctions
(“time’s arrow”), so directionality can/should be assigned to such curves. But
thermodynamics is blind to “time’s measure:” it assigns no importance to, and
has nothing to say about . . . the temporal rate of progress along such a curve.

As we proceed we will acquire means and reason to refine our “catalog of
process types.”

3. Heat and work. Thermals physics is mainly concerned with the energetics
of systems—with the distribution of energy within systems, with the exchange
of energy among interactive systems, with the injection/extraction of energy
by external agents. It is occasionally remarked4 that the methods of statistical

4 See, for example, E. Schrödinger, Statistical Thermodynamics (2nd edition
), page 1.
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ξξξfinal

ξξξinitial

Figure 4: joule free expansion: a thermalized gas is initially
separated from an evacuated chamber by a diaphram. The diaphram
is punctured, the gas spills into the expanded volume, and eventually
equilibrates. During the interval, the gas cannot be said to possess
a thermodynamic state.

mechanics—whence also of thermodynamics—could, in principle, be adjusted
so that instead of fixating on energy (a constant of the internal microscopic
motion, however complex that motion may be) they fixate on other constants
of the motion (momentum? angular momentum?), but efforts to pursue that
idea have not borne useful fruit. The practical fact of the matter is that it is
mainly—but, on the evidence of the preceding figure, by no means exclusively—
by energy injection/extraction that we tickle, prod and kick thermal systems.
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ξξξfinal

ξξξinitial

Figure 5: Above: schematic representation of quasi-static process.
It is intended that the sequential state adjustments are to be made
finer and finer (but they become soon too fine to draw). Below: a
cycle inscribed on state space, of the sort encountered in discussions
of the theory of refrigerators and engines.5 Such figures evidently
allude to quasi-static processes, and can pertain successfully to the
real physics of engines (which operate typically at thousands of
cycles per minute) only if the thermal equilibration of the working
fluid is quite rapid.

Thermodynamics recognizes the existence of two and only two modes of
energy injection:
• one can heat the system, or
• one can do mechanical work upon it.

The discovery (Count Rumford [Benjamin Thompson] ; James Prescott
Joule ) that heat has not the nature of a “substance,” has not to do with
a hypothetical “flow of caloric,” but with energetics . . .marks a watershed in the

5 See, for example, Halliday, Resnick & Walker, Fundamentals of Physics
(5th edition ) Figure 21-8 on page 516; D. C. Giancoli, Physics for Scientists
& Engineers (3rd edition ) Figure 20-5 on page 521.



Processes, heat & work 7

prehistory of thermodynamics, but does not in itself cast any light upon this
seldom-asked question: Why do heat and work exhaust the possibilities?

Essential insight into the issue is provided by a look to some of the most
rudimentary aspects of the underlying microdynamics. . .which, for the purposes
of this discussion, I will assume to be classical. The short of it:
• “Heating” refers to energy injection by “flicking” the system from one

solution of the equations of micromotion to a higher-energy solution of
those same equations.

• “Working on” involves adjusting the parameters that control the design of
the equations of micromotion : during that process the former solution of
the old equations “tracks” to a higher-energy solution of the new equations.
Which solution of the new equations depends critically upon details of the
adjustment process.

“Heating” is, in this light, the easier of the two processes to comprehend
(see Figure 6), though it is by no means mechanically obvious that if one reaches
into a thermalized system and “flicks” some of its constituent parts the system
as a whole will then “re-thermalize;” i.e., that it will relax again to an (elevated)
equilibrated state.

To grasp the meaning of “work” in its thermodynamic usage one must
recognize that the Hamiltonian (which steers the micromotion) is a function of
• dynamical variables (lots of x’s and p’s);
• system parameters that describe the gross design of the physical system

(things like the size of the box, the strength of the impressed magnetic
field) and that—typically—are under the control of the experimenter: we
will adopt the generic notation α1, α2, . . . to describe such things, which
are invariably few in number;

• constants: things like e, m, the parameters that enter into the description
of the intermolecular potential. Those numbers are not under the control
of the experimenter; it is therefore natural to omit them from our notation,
writing something like

H(ppp,xxx;α1, α2, . . .)

to describe the Hamiltonian.
Procedures that involve averaging over phase space (by whatever yet-to-be-
described protocol) will yield expressions

U(α1, α2, . . .) ≡ 〈H(ppp,xxx;α1, α2, . . .)〉

from which the x’s and p’s have disappeared but in which the α’s (also the
surpressed constants) survive as arguments. It becomes at this point possible/
natural to write

dU =
∑

i

∂U
∂αi

dαi

to describe the adjusted system energy that results from tickling the control
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p
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Figure 6: Attempt to illustrate energy injection by a “heating”
process. Our system has been taken to be a gas—specifically, a
“gas” consisting of a single molecule confined to a box of length α.
The cartoon is unfortunately too simple to capture the meaning of
“thermal equilibrium.” Initially the molecule bounces back and forth
with energy E. After being “flicked” it moves with energy E > E.

parameters α . It is tempting to think of the objects

Fi(ααα) ≡ −∂U(ααα)
∂αi

as “thermodynamic forces,” though they are dimensionally as diverse as the α’s

[Fi][αi] = energy

and the conventions of the field require that we hold that terminology in reserve.

To summarize: “work,” as the term is used in thermodynamics, refers to
energy injection (or extraction) by controlled manipulation of global system
parameters, and is quantified by devices standard to the mechanics laboratory.
“Heat,” on the other hand, refers to energy injection/extraction “by reaching
in and flicking.” Of course, “flicking” amounts also to “doing work,” but in
a micromechanical sense, and is never subject to detailed control. Heat is
quantified its own distinct set of operational procedures and devices, the stuff
of calorimetry .6

6 The word has recently been commandeered by experimental particle
physicists (accelerator people), who use it to refer to energy measurement in
general, by any means.
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Figure 7: The “one-dimensional gas” particle moves initially on
a low energy trajectory within a box of length α0. The box is slowly
compressed α0 −→ α1 < α0 by an external agent. Every time the
particle hits the advancing wall its speed is increased. It ends up
tracing a shorter trajectory with increased energy E > E.

Recall, in the latter connection, the definition of the calorie: it is “the
amount of heat required to raise the temperature of 1 gram of water from 14.5◦

to 15.5◦C at at a constant pressure of 1 standard atmosphere.”7 The apparatus
alluded to (thermometer stuck into a beaker of water, sitting on a hotplate) is
not to be found among the clocks, metersticks and spring scales in a mechanics
laboratory, but that the number produced has to do with energy in the standard
mechanical sense is enshrined in the statement

1 calorie = 4.1855± 0.0005 joules

that quantifies the mechanical equivalence of heat .

Heating S, working on S. . . are extrinsic procedures that serve to alter the
state of S, so deserve to be called “processes.” An adiabatic process is one
that entails no injection/extraction of heat, a process that proceeds under the
presumption that S has been wrapped round and isolated from the rest of the
universe by ideal insulation. Processes that proceed under the complementary
presumption that no work is done on/by S are encountered often enough, but
appear to have no distinctive name.

7 McGraw-Hill Dictionary of Scientific & Technical Terms (2nd edition ).
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4. Process initiation by relaxation of a constraint. I want now to describe a point
of view, and associated language, that will permit us to speak in a unified way
about a broad class of thermodynamic processes and issues. The viewpoint I
advocate will sometimes seem entirely natural, but sometimes seem at first to
be a bit contrived and artificial. I start with an instance of the latter:

In our laboratory—which is thermally isolated (a closed system)—we have
equipped ourselves with
• an sealed ampule of salt, placed within
• an open beaker of water, which is suspended over an unlit burner that has

been connected to
• a closed tank of flamable gas and
• a closed tank of oxygen.

Having assured ourselves that those systems are at thermal equilibrium, both
individually and collectively,

1 We break the ampule; i.e., we “relax the constraint that the salt and water
be separated.” The process

salt + water −→ saltwater

runs to thermalized completion.
2 We turn the valves on the gas tanks; i.e., we “relax the constraint that

the oxygen and fuel be separated.” They come together, spontaneously
combust, the flame heats the water, which evaporates. Ultimately we
recover our salt crystals, but they are in thermal equilibrium with an
atmosphere that can be described now as hot, steamy smog.

The claim is that thermodynamic processes—at least those that take place (or
can be considered to take place) within a closed composite system—can always
be said to have been initiated by the relaxation of a constraint. Or, more
precisely, by the sequential relaxation of a series of constraints (see Figure 8).

Contraints are maintained by real/idealized partitions. We will have need
mainly of
• partitions that are opaque to the matter but transparent to heat (such

partitions are called diathermal walls)
• partitions that are opaque to the heat but transparent to matter

but partitions with other transmission properties are imaginable. A partition
opaque to both matter and heat can be fabricated by “stacking” partitions of

the sorts described above, and the essential idea
admits of many variations. “Relaxation of a
constraint” might then refer to removal of one
but not the other of the elements of a composite
partition, as illustrated. But the phrase might
equally well refer to “removing the nails that
hold the partitions in place,” that lend shape to

a system: we might, for example, want to release a piston (opaque to both
matter and heat) so that it can seek the point where the pressure on its two
faces has become equalized.
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Figure 8: A closed composite system (top) is subjected (at left)
to a sequence of constraint relaxations, and (at right) to a different
sequence of constraint relaxations. Both sequences happen here to
proceed until no constraints remain to be relaxed. The question
arises: Is the endstate independent of the relaxation sequence, if
the latter is pursued to completion? The “contraint relaxation”
idea will turn out later to provide valuable insight into the essential
drift of the 2nd Law (growth of entropy).
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5. Zeroth law of thermodynamics: emperical temperature. Imagine that we
possess a collection of all possible thermodynamic systems, each in all possible
states. Imagine each system in the collection to be outfitted with gages sufficient
to indicate the state of the system. The gages can be expected to differ in
number from case to case, and we will allow them to be arbitrarily callibrated
in each individual case. They therefore tell us nothing useful about the actual
state of the system to which they refer, but do (we assume) serve to tell us
whether or not the state changes when we interact with the system.

ξξξ1

ξξξ2

S1 S2

Figure 9: The diathermal wall test lends an idealized operational
meaning to the question Does anything happen when systems S1

and S2 are brought into diathermal contact? The immobile
diathermal partition is transparent to heat, but opaque to all else:
it insures that S1 and S2 cannot do work on each other, exchange
matter, etc.

Select two systems, S1 and S2, and arrange (see the figure) that they be
permitted to interact by heat exchange, but in no other way. What happens?
One finds that
• either the states of both S1 and S2 remain unaltered , which we will

record by writing S1 ∼ S2, or
• both states change, which we record by writing S1 � S2. One never

observes a change in the state of one system which is unaccompanied by a
change in the state of the other . . . though “thermostats” (“heat baths”),
created by making one system very much more massive than the other, are
designed to approximate such behavior. One finds, moreover, that
• if S1 ∼ S2 and S2 ∼ S3 then S1 ∼ S3.

The physical relationship that we have denoted ∼ is therefore an equivalence
relation.8 The “diathermal wall test” has served to resolve the set of all systems

8 See G. Birkhoff & S. MacLane, Survey of Modern Algebra (), page 32.



Zeroth law of thermodynamics 13

in all states into disjoint equivalence classes, just as “congruence” serves to
resolve into equivalence classes the set of all triangles.

There is a lesson to be learned from looking more closely to the set of all
triangles inscribed on the Euclidean plane. For it is geometrically evident that
• 3 numbers are required to identify an equivalence class if congruence is the

defining relation (angle/side/angle or side/angle/side);
• only 2 numbers are required to identify an equivalence class if similarity is

the defining relation (angle/angle);
• only one number is required to identify an equivalence class if isometry is

the defining relation (area).
Evidently the resolution of a set into disjoint equivalence classes conveys—in
and of itself—no information concerning how many numbers must be specified
to identify an equivalence class (the “dimension” of the resolution).

The question now before us: What is the dimension of the resolution
achieved by the diathermal wall test? How many numbers must be presented
to identify one of the resulting equivalence classes, to distinguish it from all
others?

It is a lesson of simple sense experience that systems which are equivalent
in the above sense are invariably adjudged to have, in the most naive tactile
sense, the same “temperature.” And conversely.9

The important implication of the experience thus summarized is formulated
in the so-called

Zeroth Law of Thermodynamics: The diathermal wall test achieves
a one-dimensional resolution of the set

{
states of systems

}
into

disjoint equivalence classes. Every such class (to say the same
thing another way) can be distinguished from every other such
class by specification of a single real number t, which we agree to
call the “emperical temperature.”

However natural it may be to assign larger t -values to “hotter” system-states,
smaller t -values to cooler (Figure 10). . . the 0th law does not by itself obligate
us to do so, nor does it provide guidance as to how we might/should do so: it
permits a natural ordering of system-states, but places no constraint on how
we might elect to graduate that ordering.

9 We agree not to belabor the fact that our powers of sensory discrimination
are at best very approximate, that we only injure ourselves when we attempt
to test the temperature of things that are very hot or very cold, and that it is
meaningless to ask what might be the sensory perception of 106K! But this is
physics in a nutshell. We take direct experience as our point of departure, from
that experience we extract concepts/abstractions into which we breath life by
embedding them within theoretical structures . . . then follow where they lead.
From the span of our arms we think our way to the span of the galaxies: from
the pulse of music we leap to the dance of atoms, the age of the universe.
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S1 S2

t1 t2 > t1

Figure 10: It is natural to assign larger “emperical temperatures”
to HOT system-states than COOL ones (i.e., to arrange things so
that “greater than” becomes an expression of “hotter than”), but the
0th law—in and of itself—prescribes no particular way to do so.

To make practical progress toward the development of a provisional
“thermometry” we have no alternative but to proceed in immitation of the
practice that leads to “chronometry.” There one selects (“invents” is the better
word) a dynamical system which, by agreement, will serve as a “clock”10 and it
is relative to the dynamics of the clock that one regulates the dynamics of other
systems. Similarly, one might select some conveniently-reproducible thermal
system11 which, by agreement, will serve as a “thermometer,” and use the
arbitrarily graduated states of that system to assign emperical temperature to
the states of other systems.12

“Arbitrary graduation” can be accomplished in infinitely many ways. If t
refers to one graduation of our emperical temperature scale, and t∗ to another,
and if t∗(t) describes the relation between them, then we have only to require
that the function t∗(t) be monotonic increasing to preserve order relationships,
i.e., insure that

t2 > t1 =⇒ t∗2 > t∗1

The 0th law, reduced to its starkest essentials, can be considered to assert
that “temperature exists,” which is in itself a great surprise: thermal systems

10 Galileo pointed to the advantages of pendula (an idea picked up and
perfected by Huygens), Newton recognized the advantages-in-principle afforded
by “free particles.”

11 Perhaps a bubble of air, as proposed by Galileo, or a column of mercury,
or a thermocouple.

12 It should be borne in mind that every measurement procedure—whether
intended to assign measure to time, length, mass, temperature, . . .—has a
limited range of applicability : to extend the range, to broaden the reach of the
concept in question, one must stitch together an assortment of procedures that
draw typically on distinct physical principles and assumptions.
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come to us in limitless variety (as do the variables used to describe them), but
each—in each of its thermalized states—can be said to possess “a temperature,”
however we may elect to quantify that fact.

A further surprise awaits: the 2nd law will permit us to bring into play a
concept of absolute temperature T , and to devise a strategy for recalibrating

t 
−→ T = T (t)

any arbitrarily-selected/graduated thermometer so that it becomes, in effect, an
“absolute temperature thermometer.” It emerges, moreover, that the absolute
temperature scale possess a natural zero.13

6. First law of thermodynamics. Let ξξξ1 refer to the initial state of some system
S, and let ξξξ2 refer to the final state to which S is brought by the execution of
some process P. There exist, in point of emperical fact, a multitude of processes
that achieve ξξξ1 −→ ξξξ2 (see the Figure 11). Let

W [P ] = energy injected during the execution of P by working on S

Q[P ] = energy injected during the execution of P by heating S

Though W [P ] and Q[P ] are process-dependent, it is an emperical fact—and the
upshot of the 1st law—that their sum is process-independent:

First Law of Thermodynamics: W [P ]+Q[P ] is process independent,
a function only of the endstates ξξξ1 and ξξξ2:

W [P ] + Q[P ] = f(ξξξ1, ξξξ2) (1)

I give now a little argument the effect of which will be to establish what is
sometimes assumed; namely, that

it is always possible to write f(ξξξ1, ξξξ2) = U(ξξξ2)− U(ξξξ1)

where U(ξξξ) is a function of state. Consider the processes P that proceed from
ξξξ1 to ξξξ2 via some designated intermediate state ξξξ0:

ξξξ1 −−−−−→
P′

ξξξ0 −−−−−→
P′′

ξξξ2

as illustrated in Figure 12. By the 1st law

13 Newton spoke [Principia, First Scholium: see page 7 in the Cajori edition
()] of an “absolute, true and mathematical time,” and a refinement of that
idea survives to this day as an entrenched convention in all of physics (though it
becomes distorted in general relativity). There is no denying that its use serves
to simplify the physics. Yet I think it cannot be argued that dynamics supplies
an “absolute time,” much less a time scale with a “natural zero.” Cosmology
might, insofar as it promotes the view that “spacetime is created ‘as needed,’
by the events that happen within it.”
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ξξξ2

ξξξ1

Figure 11: It is only as a diagramatic convenience that the processes
ξξξ1→ ξξξ2 have been assumed here to be quasi-static.No such assumption
enters into the statement of the 1st law. The figure is intended to
dramatize the fact that distinct processes can achieve the same net
effect.

ξξξ2

ξξξ1
ξξξ0

Figure 12: Processes that proceed ξξξ1→ ξξξ2 by way of an arbitrarily
designated “fiducial state” ξξξ0. The “ξξξ0-trick” is used in the text to
establish the existence of the energy function U(ξξξ).

W [P ] + Q[P ] =
{
W [P ′ ] + Q[P ′ ]

}
+

{
W [P ′′ ] + Q[P ′′ ]

}
becomes

f(ξξξ1, ξξξ2) = f(ξξξ1, ξξξ0) + f(ξξξ0, ξξξ2) (2)

If, in particular, ξξξ1 = ξξξ0 = ξξξ0 then (2) gives f(ξξξ, ξξξ) = 2f(ξξξ, ξξξ), from which we
conclude that

f(ξξξ, ξξξ) = 0 : all states ξξξ (3)
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If we now set ξξξ1 = ξξξ2 in (2) we can use (3) to obtain

f(ξξξ1, ξξξ2) = −f(ξξξ2, ξξξ1) : all states ξξξ1 and ξξξ2

Returning with this information to (2), we have

f(ξξξ1, ξξξ2) = f(ξξξ0, ξξξ2) − f(ξξξ0, ξξξ1)

We conclude that there exists a function of state U(ξξξ) ≡ f(ξξξ0, ξξξ) such that (1)
can be formulated

W [P ] + Q[P ] = U(ξξξ2) − U(ξξξ1) (4)

The function U(ξξξ) is not unique, since it depends through

U(ξξξ0) = 0

on selection of the fiducial state ξξξ0. From f(ξξξ0, ξξξ) = f(ξξξ0, ξξξ0) + f(ξξξ0, ξξξ) we see,
however, that adjustment ξξξ0 → ξξξ0 of the fiducial state serves only to shift the
value of U by an additive constant:

U(ξξξ) = U(ξξξ) + constant
constant = f(ξξξ0, ξξξ0) = U(ξξξ0) = −U(ξξξ0)

An identical argument is used in mechanics to establish that a force field
FFF (xxx) will be conservative (meaning “derivable from a potential”) if and only if∮
FFF···dddxxx = 0.14

U(ξξξ) is called the internal energy function. It can be construed as a
description of the total energy (kinetic + potential) of the microscopic elements
that collectively constitute S. From this point of view the 1st law records
the surprising fact (see again page 7) that the total energy of an equilibrated
microsystem can be displayed as a function of a relatively small handful of
macrovariables—namely, the macrovariables that have roles to play on the
thermodynamic stage.15

14 See classical mechanics (/), page 50.
15 Apart from that small element of surprise, the 1st law tends to strike the

modern eye as an almost obvious statement of energy conservation. But the
modern eye is in position to look through the wrong end of the historical
telescope. It was the strenuous, semi-independent effort (mainly during the
’s) of about a dozen physicists to comprehend the meaning of heat that
gave us the concept of energy conservation. To arrive at that concept—at
the “energetic view of the world” that made possible the formulation of the
1st law—they had first to detach themselves from the entrenched notion of a
“conserved caloric.” And they worked in advance of the development (therefore
without the support) of an underlying micromechanics. The tale is well told in
Chapters 3–10 of W. H. Cropper’s Great Physicists ().
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It is a particular implication of the 1st law (4) that

{
U(ξξξ2) − U(ξξξ1)

}
−W [Padiabatic] = 0

which carries the interesting implication W [Padiabatic] is process-independent,
determined entirely by the endstates. For non-adiabatic processes ξξξ1 −−−→

P
ξξξ2

one has

{
U(ξξξ2) − U(ξξξ1)

}
−W [P ] = heat injected during process P

which is sometimes advanced as a definition of heat. But it works only if one
has (from what source?) prior knowledge of U(ξξξ). And since we possess means
to lend direct operational meaning to “heat injected,” I see no need of such a
definition.

It is to recast the 1st law, and to prepare for a statement of the 2nd law,
that I digress now to review some

7. Rudiments of the theory of differential forms. By an n-dimensional linear
differential form we will understand an expression of the type

d̄F ≡
n∑

k=1

Fk(x1, x2, . . . , xn)dxk

In the standard mathematical, dynamical and thermodynamic literature16 such
constructions are commonly called “Pfaffian differential forms,” while in the
more general context of the exterior calculus they are known as “1-forms”—
special instances of “p -forms” (p = 0, 1, 2, . . . , n).

Such a form is said to be exact if and only if it is the differential of a
function F (x1, x2, . . . , xn), and to be otherwise inexact. Thus

n∑
k=1

∂F (x1, x2, . . . , xn)
∂xk

dxk is by definition exact

An obviously necessary condition for a given differential form d̄F = Fk(xxx)dxk

(
∑

k tacitly understood) to be exact is that

∂Fi/∂x
j = ∂Fj/∂x

i :
{
i, j = 1, 2, . . . , n

}
With weak hypotheses (which we always assume to be satisfied) the preceding
conditions become also sufficient .

16 See E. L. Ince, Ordinary Differential Equations (), page 57; E. T.
Whittaker, Analytical Dynamics (4th edition ), page 296; H. C. Corben &
P. Stehle, Classical Mechanics (), page 295; M. Born, Natural Philosophy
of Cause & Chance (), pages 38 & 143.



Theory of differential forms 19

I adopt the “dbar” notation d̄F to describe differential forms-in-general so
as to be in position to write dF only when exactness has been explicitly assumed
or established . This is a convention fairly standard to the thermodynamic
literature, but not commonly encountered in other disciplines.

An inexact differential form d̄F is said to be integrable if and only if there
exists a function χ(x1, x2, . . . , xn) such that χ · d̄F is exact, and to be otherwise
non-integrable. The function χ—if it exists—is said to comprise an integrating
factor of the differential form d̄F .

We are interested in this subject because (as will emerge) the 1st law
can usefully be formulated as an exactness postulate, and the 2nd law as an
integrability postulate. It is to gain a more detailed sense of the “strength”
of those postulates that we inquire now more closely into the subject, looking
especially to the integrability conditions —the conditions necessary and
sufficient to insure the existence of an integrating factor.

Trivially, if n = 1 then every differential is exact :

F (x)dx = d

{∫ x

F (ξ) dξ
}

If n = 2 then—not at all trivially—every differential is integrable. The
point is established by construction—by describing a procedure by means of
which one can-in-principle exhibit the integrating factor. Here I am content to
sketch the procedure as it pertains to the illustrative case17

d̄F ≡ X dx + Y dy = y dx− dy

Note first that d̄F is transparently inexact ( ∂
∂y [y ] �= ∂

∂x [−1]). Note also that
“Pfaff’s differential equation” d̄F = 0 can be written

dy

dx
+ X

Y
= dy

dx
− y = 0

The solutions
y(x) = ex+a

inscribe an a-parameterized population of curves on the (x, y)-plane, curves of
which

f(x, y) = constant, with f(x, y) ≡ log y − x (5)

provides an “implicit” description. Differentiation with respect to x now gives

fx + fy
dy

dx
= fx − fy

X
Y

= ∂
∂x (constant) = 0

17 For an account of the general argument see (for example) mathematical
thermodynamics (), page 25. The argument trips on the circumstance
that in general one can talk about but not explicitly display the function f(x, y)
contemplated below at (5).
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so we have
Y fx = Xfy ≡ χ ·XY : serves to define χ (6)

giving fx = χX and fy = χY . We find ourselves in position now to write

df = fxdx + fydy = χ · (Xdx + Y dy) = χ · d̄F (7)

In our example, (6) reads

[−1][−1] = [y][y–1] ≡ χ · [y][−1] : supplies χ(x, y) = −y–1

while (7) becomes df = −dx + y–1dy = −y–1(ydx− dy) = χ · d̄F and it is now
obvious that χ · d̄F does pass the exactness test.

If n � 3 then integrating factors only sometimes exist, and finding them
becomes a highly non-trivial exercise. On page 27 of the notes just cited I
discuss a celebrated counterexample18

d̄F = −y dx + x dy + k dz

where the assumption that an integrating factor exists can be shown to lead to
a contradiction. It can be shown (see Ince,16 §2.8)—was, in fact, known already
to Euler—that if

d̄F = F1dx + F2dy + F3dz

and if we allow ourselves to write

FFF =


F1

F2

F3




then the integrability condition

FFF ···(∇∇∇× FFF ) = 0 (8.3)

is both necessary and sufficient.19 For n > 3 the conditions become more
numerous: one has

Wijk = 0 : i, j, k = 1, 2, . . . , n � 3 (8.n)

18 . . .borrowed from S. Chandrasekhar [Introduction to the Study of Stellar
Structure (), page 20: Chandrasekhar’s Chapter 1 provides, by the way, an
unsurpassed account of the “Laws of Thermodynamics”], who borrowed it from
Born, who borrowed it from C. Carathéodory (). It was Carathéodory—a
differential geometer based in Göttingen—who, working at Born’s instigation,
was responsible for the introduction of Pfaffian forms into the literature of
thermodynamics. The work of J. F. Pfaff was then already ancient: it dates
from the second decade of the 19th Century.

19 The non-integrability of the counterexample can in this light be considered
to follow from FFF ···(∇∇∇× FFF ) = 2.
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with

Wijk ≡ Fi

{
∂Fj

∂xk
− ∂Fk

∂xj

}
+ Fj

{
∂Fk

∂xi
− ∂Fi

∂xk

}
+ Fk

{
∂Fi

∂xj
− ∂Fj

∂xi

}

The integrability conditions (8.n) are 1
6n(n − 1)(n − 2) in number, of which

1
2 (n − 1)(n − 2) are independent. We conclude that integrability is a highly
non-trivial state of affairs if (and only if) n � 3.

8. Differential thermodynamic processes. To describe the differential energy
injected into S when we do a little work on the system we write

d̄W = W1(ξξξ)dξ1 + W2(ξξξ)dξ2 + · · · + Wn(ξξξ)dξn =
∑

i

Wi(ξξξ)dξi

while to describe a differential injection of heat we write

d̄Q = Q1(ξξξ)dξ1 + Q2(ξξξ)dξ2 + · · · + Qn(ξξξ)dξn =
∑

i

Qi(ξξξ)dξi

Here the coefficient functions Wi(ξξξ) and Qi(ξξξ) record the kind of data that
might show up in our lab books after an arduous series of mechanical and
calorimetric measurements. The presumed inexactness of the differentials (as
reflected in our d̄-notation) provides differential expression of the fact (see again
page 15) that W [P ] and Q[P ] are, in general, process-dependent. If we restrict
our attention to quasi-static processes we can write

W [P ] =
∫

P
d̄W and Q[P ] =

∫
P
d̄Q

and if P refers (see the following figure) to a quasi-static loop traced in state
space we can write ∮

d̄W �= 0 and
∮

d̄Q �= 0

to provide elegant allusion to the process-dependence of W [P ] and Q[P ]. To
say the same thing yet another way: we expect it to follow from the data in
our lab books that

∂Wi

∂ξj
− ∂Wj

∂ξi
�= 0 and

∂Qi

∂ξj
− ∂Qj

∂ξi
�= 0

Which brings us back again to the surprising upshot of the

First Law of Thermodynamics (differential formulation): The sum
of d̄W and d̄Q is exact . Which is to say: there exists a function
of state U(ξξξ) such that

d̄W + d̄Q = dU (9)

From (9) it follows that if ξξξ1 −−−−−→
P

ξξξ2 is quasi-static then

∫
P
d̄W +

∫
P
d̄Q = U(ξξξ2) − U(ξξξ1) (10)
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Figure 13: The processes shown schematically in Figure 11 now
are assumed to be quasi-static, representable by “paths” inscribed on
thermal state space. Two paths • −→ • have been joined head-to-tail
to create a closed loop, a cycle.

and that for quasi-static cycles

∮
d̄W +

∮
d̄Q = 0 (11)

The integrated statement (10) can be phrased

work done on S + heat injected into S

= change in internal energy of S
(12)

but that frequently-repeated characterization of the 1st law somewhat misses
the point . . .which is that the 1st law delivers into our hands a function of state:
the internal energy function U(ξξξ).

9. Second law of thermodynamics. The 2nd law—and arguably thermodynamics
itself—can be traced to the publication of Reflexions sur la Puissance Motrice
de Feu (“Reflections on the Motive Power of Fire,” ), which recorded the
effort of Sadi Carnot, a young French engineer, to construct a general theory of
heat engines . . . just as his father before him had attempted (with less success)
to construct a general theory of mechanical devices. It is remarkable that
Carnot theoretical success as he did, for he labored still under the conception
that heat (“fire”) is a weightless, immutable substance. But he enjoyed no
popular success at all: his work lay neglected for twenty years, until taken
up and applied to more general objectives by Rudolph Claussius (–:
his “Über die Bewegende Kraft der Wärme” was published in ) and Lord
Kelvin (William Thomson: –).
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That the 2nd law came struggling into the world is reflected in the fact
that historically it has been—and is still to this day—formulated in a confusing
variety of ways . . . of which I reproduce an abbreviatred sampling:20

Second Law of Thermodynamics [Kelvin, ]: “No cyclic process
exists which produces no other effect than the extraction of heat
from a body and its conversion into an equivalent amount of
mechanical work.”

Second Law of Thermodynamics [Causius, /]: “No cyclic
process exists which has as its sole effect the transference of heat
from a colder body to a hotter body.”

Second Law of Thermodynamics [Carathéodory, ]: “There
exist in the infinitesimal neighborhood of every state ξξξ states ξξξ∗

that are adiabatically inaccessible from ξξξ.”

For the purposes at hand I prefer, however, to work from this variant of
Carathéodory’s postulate:

Second Law of Thermodynamics: The inexact differential d̄Q is
in every case integrable. Which is to say: there invariably exist
functions of state χ(ξξξ) and σ(ξξξ) such that χ · d̄Q = dσ.

In practice, we will find it most convenient to write

d̄Q = τ · dσ (13)

with τ(ξξξ) ≡ 1/χ(ξξξ).

We are about to enter into a lovely argument which, modulo certain natural
conventions, will bring (13) to the form

d̄Q = T dS

where T refers to the “absolute temperature” and S to the “entropy”21 of S.
In U , T and S we possess the basic stuff of thermodynamics: a universal state
variable and two universally-available system-characterizing functions of state,
one supplied to us by the 1st law, the other by the 2nd law. Because U(state)
and S(state) are functions of state we can bring function theory to bear upon
them, and it is from that exercise that thermodynamics acquires its distinctive
form.

20 For longer lists and commentary, see A. H. Wilson, Thermodynamics &
Statistical Physics () page 18; mathematical thermodynamics ()
pages 36–40.

21 The term was first employed () by Clausius, who derived it from the
Greek en (meaning “in”) and tropos (meaning “transformation”).



24 Fundamentals of classical thermodynamics

10. Kelvin’s theorem: first step toward the invention of “absolute temperature.”
What follows is my own rendition of Wilson’s account of Carathéodory’s elegant
re-creation of an idea pioneered by Kelvin over a several-year period during the
early ’s. It leads to what might more properly be called “Carathéodory’s
theorem,” but what I will here call

Kelvin’s theorem : The integrating factor τ possesses always
the factored design

τ =
{
universal function of emperical temperature

}
···
{

system-specific function of state
}

from which the “absolute temperature” concept will be shown to follow directly
as a natural consequence.

Let S be a composite system, assembled from subsystems S
′ and S

′′ that
we take to be in diathermal contact (see Figure 14). From (13) we have

d̄Q′ = τ ′(ξξξ ′ ) dσ ′(ξξξ ′)
d̄Q′′ = τ ′′(ξξξ ′′ ) dσ ′′(ξξξ ′′)
d̄Q = τ(ξξξ ′, ξξξ ′′) dσ(ξξξ ′, ξξξ ′′)

Evidently
d̄Q = d̄Q′ + d̄Q′′

which by (13) becomes

τ(ξξξ ′, ξξξ ′′) dσ(ξξξ ′, ξξξ ′′) = τ ′(ξξξ ′) dσ ′(ξξξ ′) + τ ′′(ξξξ ′′) dσ ′′(ξξξ ′′) (14)

Now a trick. We promote t (= t ′ = t ′′), σ ′ and σ ′′ to the status of state
variables, which is to say: we take not ξ1 ′, ξ2 ′, . . . , ξm

′ but (say)

x1
′ ≡ ξ1

′, x2
′ ≡ ξ2

′, . . . , xm−2
′ ≡ ξm−2

′ , σ ′ and t

to be the state descriptors of S
′, and we take

x1
′′ ≡ ξ1

′′, x2
′′ ≡ ξ2

′′, . . . , xn−2
′′ ≡ ξn−2

′′ , σ ′′ and t

to be the state descriptors of S
′′. Equation (14) then becomes

τ(xxx ′, xxx ′′, σ ′, σ ′′, t) dσ(xxx ′, xxx ′′, σ ′, σ ′′, t) = τ ′(xxx ′, σ ′, t) dσ ′ + τ ′′(xxx ′′, σ ′′, t) dσ ′′

or (divide by τ and develop dσ)

m−2∑
i=1

∂σ
∂x′

i

dx′
i +

n−2∑
j=1

∂σ
∂x′′

i

dx′′
i + ∂σ

∂σ ′ dσ
′ + ∂σ

∂σ ′′ dσ
′′ + ∂σ

∂t
dt

︸ ︷︷ ︸
= τ ′

τ
dσ ′ + τ ′′

τ
dσ ′′

dσ

This statement carries the immediate implication that σ must in fact be
independent of all the x ′’s, all the x ′′’s and t:

σ(xxx ′, xxx ′′, σ ′, σ ′′, t)
/ / /

≡ σ(σ ′, σ ′′)
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S
′

S
′′

ξ′1, ξ
′
2, . . . . . . , ξ

′
m ξ′′1 , ξ

′′
2 , . . . , ξ

′′
n

t′ = t′′

d̄Q′′

d̄Q′

Figure 14: Composite system S = S
′⊕S

′′. The subsystems are in
diathermal contact, so have identical emperical temperatures. The
argument hinges on the requirement that the theory of S and the
theory of S

′⊕ S
′′ must lead to identical conclusions.

We now have

τ ′(xxx ′, σ ′, t)
τ(xxx ′, xxx ′′, σ ′, σ ′′, t)

=
∂σ(σ ′, σ ′′)

∂σ ′

τ ′′(xxx ′′, σ ′′, t)
τ(xxx ′, xxx ′′, σ ′, σ ′′, t)

=
∂σ(σ ′, σ ′′)

∂σ ′′


 : functions only of σ ′ and σ ′′

The dominoes are now set up; watch them all fall down: By the first equation τ
must be independent of xxx ′′, as by the second equation it must be independent
also of xxx ′. Therefore, by the first equation, τ ′ must be independent of xxx ′, as
by the second equation τ ′′ must be independent of xxx ′′. The net implication of
this pretty argument is that

τ ′(xxx ′, σ ′, t)
/

≡ τ ′(σ ′, t)

τ ′′(xxx ′′, σ ′′, t)
/

≡ τ ′′(σ ′′, t)

τ(xxx ′, xxx ′′, σ ′, σ ′′, t)
/ /

≡ τ(σ ′, σ ′′, t)

and, moreover, that the ratios

τ ′(σ ′, t)
τ(σ ′, σ ′′, t)

and
τ ′′(σ ′′, t)
τ(σ ′, σ ′′, t)

must be t -independent:

∂
∂t

(
τ ′

τ

)
= τ ′

τ

{
1

τ ′
∂τ ′

∂t − 1
τ

∂τ
∂t

}
= 0

∂
∂t

(
τ ′′

τ

)
= τ ′′

τ

{
1

τ ′′
∂τ ′′

∂t − 1
τ

∂τ
∂t

}
= 0
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But this information can be expressed

1
τ ′(σ ′, t)

∂τ ′(σ ′, t)
∂t

=
1

τ ′′(σ ′′, t)
∂τ ′′(σ ′′, t)

∂t
=

1
τ ′(σ ′, σ ′′, t)

∂τ ′(σ ′, σ ′′, t)
∂t

and it is clear (dominoes again!) that those equations can be simultaneously
and universally valid only if

1
τ ′

∂τ ′

∂t
= 1

τ ′′
∂τ ′′

∂t
= 1

τ
∂τ
∂t

= g(t)

where g(t) is some universal (in the sense “system-independent”) function of
the emperical temperature t.

The preceding equations can be written

∂
∂t log τ ′(σ ′, t) = ∂

∂t log τ ′′(σ ′′, t) = ∂
∂t log τ(σ ′, σ ′′, t) = g(t)

and give

log τ ′(σ ′, t) =
∫ t

g(ϑ) dϑ + log Σ ′(σ ′)

log τ ′′(σ ′′, t) =
∫ t

g(ϑ) dϑ + log Σ ′′(σ ′′)

log τ(σ ′, σ ′′, t) =
∫ t

g(ϑ) dϑ + log Σ(σ ′, σ ′′)

where log Σ ′(σ ′), log Σ ′′(σ ′′) and log Σ(σ ′, σ ′′) are simply the names we have
given to what are, in effect, “constants of partial integration.” Exponentiation
leads finally to

τ ′(σ ′, t) = Σ ′(σ ′) · e
{∫ t

g(ϑ) dϑ
}

τ ′′(σ ′′, t) = Σ ′′(σ ′′) · e
{∫ t

g(ϑ) dϑ
}

τ(σ ′, σ ′′, t) = Σ(σ ′, σ ′′) · e
{∫ t

g(ϑ) dϑ
}

and to the conclusion that in all cases τ possesses the factored form

τ =
{
t -independent function of state which is

specific to the system in question

}
·
{

universal (i.e., system-independent)

function of t

}

Thus “Kelvin’s theorem,” by an argument that I consider to be a work of art.

11. Emergence of the “absolute temperature” concept. Introduce the definition

T = T (t) ≡ C · exp
{∫ t

g(ϑ) dϑ
}

� 0 (15)

where C is a positive constant of adjustable physical dimension and value. We
turn immediately to a remarkable stability property of the function T (t).
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Let
t −→ t∗ = t∗(t) : t∗(•) monotonic increasing

describe a regraduation of the emperical temperature scale. Such a regraduation
(by ∂

∂t∗ log τ = dt
dt∗ · ∂

∂t log τ) induces

g(t) −→ g∗(t∗) = dt
dt∗ g(t)

from which it follows that

T (t) −→ T ∗(t∗) = C · exp
{∫ t∗

g∗(ϑ∗) dϑ∗
}

= C · exp
{∫ t∗

g(ϑ) dϑ
dϑ∗ dϑ

∗
}

= C · exp
{∫ t

g(ϑ) dϑ
}

= T (t)

Remarkably, the T -scale is stable with respect to arbitrary regraduations of
the emperical temperature scale: it is independent of and insensitive to the
particular emperical scale on which it is, in any given instance, based. To say
the same thing another way: The T -scale is independent of what system we
have elected to serve as our “emperical thermometer.”

Thus does one support the claim that the T scale provides an “absolute”
quantification of the temperature concept.

We recognize that “construction of the T -scale” remains at this point
a program . . . that has yet to be carried to completion. For we have yet to
consider—in general or in particular—how one discovers the g(t) appropriate to
the system that serves as our designated emperical thermometer. We recognize
also that the “absolutism” claimed of T attaches also to each of the scales

T = f(T ) : f(•) monotonic increasing

and that we have yet to argue that the T -scale is more “natural” (in the sense
“useful”) than any of those alternatives.

12. Absolute entropy. Where on page 24 we wrote d̄Q ′= τ ′dσ ′ and d̄Q ′′= τ ′′dσ ′′

we are in position now to write

d̄Q ′ = T · C–1Σ ′(σ ′)dσ ′

≡ T · dS ′

d̄Q ′′ = T · C–1Σ ′′(σ ′′)dσ ′′

≡ T · dS ′′



28 Fundamentals of classical thermodynamics

where S ′ describes the “absolute entropy” of S
′. It is a function S ′(ξξξ ′) of the

state of S
′, defined as follows: construct

s ′(σ ′) ≡ C–1

∫ σ ′

Σ ′(η) dη = C–1 ·
{
antiderivative of Σ ′(σ ′)

}
(which is defined only to within an arbitrary additive constant S0

′) and then
write S ′(ξξξ ′) ≡ s ′(σ ′(ξξξ ′)). S ′′(ξξξ ′′) is constructed similarly, and describes the
absolute entropy of S

′′. But . . .

What can one say about the composite system S = S
′⊕ S

′′? We expect
to be able to write

d̄Q = T · dS (16)

but what do we know about the entropy S of the composite system? The
question is usually passed over in silence (else its answer is assumed to be
obvious), but it deserves and rewards attention. From d̄Q = d̄Q ′ + d̄Q ′′ it
follows, by results already in hand, that

Σ(σ ′, σ ′′) dσ(σ ′, σ ′′) = Σ ∂σ
∂σ ′ dσ

′ + Σ ∂σ
∂σ ′′ dσ

′′ = Σ ′(σ ′) dσ ′ + Σ ′′(σ ′′) dσ ′′

and therefore that
Σ ∂σ
∂σ ′ = Σ ′(σ ′)

Σ ∂σ
∂σ ′′ = Σ ′′(σ ′′)

By differentiation

∂
∂σ ′′Σ

′(σ ′) = 0 = ∂Σ
∂σ ′′

∂σ
∂σ ′ + Σ ∂2σ

∂σ ′′∂σ ′

∂
∂σ ′ Σ

′′(σ ′′) = 0 = ∂Σ
∂σ ′

∂σ
∂σ ′′ + Σ ∂2σ

∂σ ′∂σ ′′

from which we obtain

∂Σ
∂σ ′

∂σ
∂σ ′′ −

∂Σ
∂σ ′′

∂σ
∂σ ′ = det




∂Σ
∂σ ′

∂Σ
∂σ ′′

∂σ
∂σ ′

∂σ
∂σ ′′


 ≡ ∂(Σ , σ )

∂(σ ′, σ ′′)
= 0

What this tells us is that Σ(σ ′, σ ′′) and σ(σ ′, σ ′′) are not independent functions
of their arguments; to know one is, in principle, to know the other. In short:

Σ = Σ(σ)

and Σ(σ ′, σ ′′) = Σ(σ(σ ′, σ ′′)). It is for this reason that

d̄Q = T · C–1Σ(σ ′, σ ′′) dσ(σ ′, σ ′′) can be written
= T · C–1Σ(σ) dσ
= T · dS

where S(ξξξ ′, ξξξ ′′) is got by dropping the primes from the procedure described at
the top of the page.
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We are now secure in the knowledge that d̄Q = d̄Q′+d̄Q′′ can be expressed
T dS = T dS ′ +T dS ′′ or again dS = dS ′ + dS ′′. And this—on the assumption
only that the additive constants S0, S0

′ and S0
′′ have been properly coordinated

—emerges as a statement of the diathermal additivity of entropy :

S = S ′ + S ′′ (17)

To summarize:
• the construction of the absolute temperature scale,
• the fundamental statement d̄Q = T dS, and
• the additivity of entropy

have all emerged as by-products of the integrability assumption (13). There
is—contrary to the impression conveyed by some authors—no need to bring
such tools into play by separate/explicit postulate.

In view of the conceptual weight borne by the integrability hypothesis, it
becomes pertinent to observe that it speaks many dialects. Which is to say:
one has

d̄Q = τ dσ = τ∗dσ∗

provided τ∗ and σ∗ are produced out of τ and σ by what I call a thermodynamic
gauge transformation

σ −→ σ∗ = f(σ)
τ −→ τ∗ = (df/dσ)–1τ

But notice:
1
τ∗

∂τ∗

∂t
= 1

τ

df

dσ
· ∂
∂t

(
df

dσ

)–1

τ = 1
τ
∂τ
∂t

= g(t)

so the equation (15) that serves to define the conversion t → T (t) from emperical
to absolute temperature is gauge invariant. And so also, therefore,22 is the
definition of the absolute entropy.

It is by virtue of such formal “stability properties” as were developed above
and on page 27 that the absolute temperature and absolute entropy concepts
secure—within thermodynamics—their claim to our attention. The statistical
approach to thermal physics will lend independent support to those claims.

13. Pressing ideal gases into service as absolute thermometers. In principle,
any system can be made to serve as an “absolute thermometer” or—to say
the same thing another way—to serve as its own absolute thermometer.23 My
objective here is to illustrate how this is done.

Inevitably, some systems lend themselves to the procedures in question
more simply/usefully than others. We will take “ideal gas” to be our working
substance for reasons that merit passing comment:

22 Write d̄Q = T · dS = T ∗ · dS∗ and use T = T ∗, which is an expression of
the fact just established.

23 In extreme cryogenic situations, where one is working beyond the limits of
established thermometric technique, there is, in fact, no other way to proceed.
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Classical mechanics (also quantum mechanics) proceeds—as announced by
Newton’s 1st Law—in reference to the postulated mechanics of free particles,24

which acquire therefore the status of “simplest possible” mechanical systems.
Gases—which microphysics teaches us to regard as nearly-free particle systems
(populations of particles that move freely except for weak particle-particle and
particle-wall interactions that are, however, strong enough to achieve thermal
equilibrization)—occupy a similar position thermal physics, and it was the study
of gases (especially air and steam) that—more than any other experimental
activity—served historically to motivate and guide the development of
thermodynamics. It is a lucky fact that most “real gases” behave nicely/simply
under the conditions that were available in 17th & 18th Century laboratories, for
under more extreme conditions they behave more awkwardly (for example, they
condense: Faraday achieved the liquification of clorine in ). “Ideal gases”
are abstractions from which those awkward properties have been discarded.
They are well approximated in the laboratory by real gases of low density;
i.e., by gas samples that are “rare,” yet not so rare as to have become perfect
vacuums.25 So when we contemplate the construction of an “ideal gas
thermometer” we contemplate a procedure that could, in fact, be approximated
in the laboratory (as Galileo was the first to remark) . . .but I will not belabor
that part of the story.

Later we will have occasion to examine the thermal physics of gases in
fine detail. Here we assemble only such basic information as is essential to
our immediate needs—the lesson being that some such information is always
essential if we are going to turn the system that sits before us on the lab bench
into an absolute thermometer.

Observational fact #1 is that to describe the thermodynamic state of
any given sample of real/ideal gas we must specify 2 state variables, which we
will here take to be pressure p and volume V .26

Observational facts #2 & 3 are that the product pV depends only upon
the emperical temperature t

pV = F(t) (18.1)

and that so also does the internal energy:

U = U(t) (18.2)

24 The primacy of free particles is enshrined in the Feynman diagrams of
quantum field theory, where the vertices refer (figuratively) to the birth/death,
and the connecting lines to the motion . . . of free particles.

25 It is a curious fact—well appreciated by theoretical astrophysicists—that
all many-body systems behave like ideal gases at sufficiently high temperature,
just as all particles move like free particles (indeed: like massless free particles)
at sufficiently high energy.

26 To these must be added a third variable (mass M , or mole number N ,
though the latter presumes a more detailed command of the physics of gases
than we presently require: my effort will be to use the least possible amount of
imported physical knowledge).
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Notice that we have, as yet, made no assumption concerning how the functions
F(t) and U(t) may be related, and that their specific designs hinge on how we
have elected to set up the emperical t-scale.

By the 1st law we now have

d̄Q = dU − d̄W = dU + pdV

= dU
dt

dt + F
V
dV

= F

{
1
F
dU
dt

dt + d log V
V0

}

= F
{
d logψ(t) + d log V

V0

}
logψ(t) ≡ antiderivative of 1

F(t)
dU(t)
dt

= F(t) · d log
{
ψV
V0

}
(19)

REMARK: Both F(t) and U(t) have the dimensions
of energy, so ψ(t) is dimensionless. The V0 has been
introduced as a dimensional necessity, but makes no
contribution to the differential.

A more detailed description of ψ(t) will have to await the receipt of further
information concerning the structure of the functions F(t) and U(t). But for
the moment it is sufficient to notice that in (19) we have an equation of the
form

d̄Q = τdσ with τ ≡ F(t) and σ ≡ log
{
ψV
V0

}

The universal function g(t) (see again page 26) has therefore the form

g(t) ≡ ∂
∂t log

[
τ/τ0

]
= d

dt log
[
F(t)/F0

]
(Note in this connection that when we wrote τ = F(t) the integrating factor τ
acquired physical dimension, and it became improper to write log τ . Whence
the fiducial denominators . . .which are, however, invisible to the calculus.)
Returning with this information to (15) we obtain

T = T (t) ≡ C · exp
{∫ t

g(ϑ) dϑ
}

= C · exp
{∫ t

d
dϑ log

[
F(ϑ)/F0

]
dϑ

}

= C · exp
{

log
[
F(t)/F0

]}

=
[
C/F0

]
· F(t) (20)

= constant with dimensions temperature
energy · pV
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What this, in conjunction with (18.1) says is that

For ideal gases, pV provides a direct
measure of the absolute temperature T.

In practice, we would only have to obtain measured values p0 and V0 of the
pressure and volume of our sample at some agreed-upon “standard” absolute
temperature T0, use this information to fix the value of C = T0/p0V0, then take

T = (pV/p0V0)T0

to be the equation that defines the operation of our “absolute gas thermometer.”
In actual practice one proceeds a bit differently: one digs deep enough into the
physics of gases to obtain

Observational fact #4 : The emperical temperature scales defined

T =
[
R · number N of molecules

Avogadro’s number N0

]–1

· pV ≡ (nR)–1 · pV

are coincident for all ideal gas samples of all sizes. This is true whatever the
value assigned to the constant R, but by established convention (having to do
with the temperature that will be assigned to the freezing point of water) one
sets

R ≡ gas constant (per mole) = 0.082 atmosphere-liters
mole-degrees

= 8.31451 Joule
mole-degrees

These developments (which involve bringing molecules into the story) place us
in position to state that if, in (15), we set C = (nR)–1 and interpret “degrees”
—which prior to Kelvin’s discovery had to mean “gas degrees”—now to mean
“degrees Kelvin,”27 then

T = emperical ideal gas temperature T

And it is with that identification taken for granted that in the theory of ideal
gases we allow ourselves to write

pV = nRT (21)

What can we now say about the entropy of an ideal gas? Borrowing

τ(σ, t) = Σ(σ) · e
{∫ t

g(ϑ) dϑ
}

from page 26, we observe that in the present setting e

{∫ t
g(ϑ) dϑ

}
= F = τ

27 The phrase “degrees Kelvin” is, by universal convention, considered to be
improper: one says simply “Kelvin.” And, while one writes ◦F and ◦C, one
writes not ◦K but simply K.
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supplies Σ(σ) = 1. So (see again the top of page 28)

s(σ) ≡ C–1

∫ σ
Σ(η) dη = C–1σ + constant

which, when we take the value of σ from (19), becomes

s(σ) = C–1 logψ(t)V
V0

+ constant

Two pages ago we encountered a description of logψ that works with any
measure of temperature. If we elect to work with absolute temperature, then
adjustments F(t) → nRT , U(t) → U(T ) are called into play, and we have

logψ = antiderivative of 1
nRT

dU(T )
dT

but can proceed no further until we know something about the functional
structure of U(T ). We are rescued by

Observational fact #4 : For ideal gases the internal energy depends linearly
on T (and also on the size of the sample):

U(T ) = nCV T (22)

where CV , the “molar specific heat at constant volume,” is a constant. From
this information it follows that

logψ = antiderivative of 1
nRT

d(nCV T )
dT

= (CV /R) log T
T0

so we have, finally,

S(T, V, n) = nR
{

(CV /R) log T
T0

+ log V
V0

}

= nCV log T
T0

+ nR log V
V0

(23)

This—since it says an important thing about an important class of
(idealized) systems—is an important result that will haunt us as we enter ever
deeper into thermal physics, and about which I will have many things to say.
For the moment I want to remark only
• that in the conversion of an ideal gas sample into an absolute thermometer

we had (with the aid of some arbitrarily-selected emperical thermometer
and other instruments) to discover certain “observational facts” about ideal
gases. Comparable steps must be taken whatever the system we have
elected to employ as an absolute thermometer . . . and usually they are not
so easy;
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• that (23) describes a function of state, one which we have managed to
extract directly from the laws of thermodynamics and the barest rudiments
of gas physics;

• that the functional structure of S(T, V, n) does, at this early point in our
thermodynamic experience, seem implausible, for in mechanics we have
learned not expect logarithms to pop up in the middle of simple problems,
to intrude into discussions of “simple systems.” It becomes plausible to
speculate that exp

{
S/k

}
might be of more fundamental importance than

entropy itself . . . as, indeed, when we dig into the statistical underpinnings
of thermodynamics, it turns out to be! The factor k arose here, by the
way, from writing nR = (N/N0)R ≡ Nk: it is

Boltzmann’s constant k = R/N0 = gas constant per molecule

= 1.38066 × 10−23 Joule/Kelvin

= 1.38066 × 10−16 erg/Kelvin

= 8.61739 × 10−5 eV/Kelvin

and occurs in the exponent from dimensional necessity. In this notation
(23) becomes

S = Nk log V T ν

V0T
ν
0

with ν ≡ CV /R

and gives

eS/k =
[
V T ν

V0T
ν
0

]N

(24)

We are, however, still a long way from being able to argue that

ν = 1
2 (number of mechanical degrees of freedom, per molecule)

= 3
2 for monatomic molecules

We are a long way too from being able to argue that the expression[
V T

3
2 /V0T

3
2
0

]
N on the right side of (24) can be read as the embodiment of

an elegant statistical principle of unrestricted generality and transparently
deep significance. I allude here to the equation

S = k logW

that has been described28 as Ludwig Boltzmann’s “greatest scientific
achievement” and is inscribed on the monument that marks his grave.

14. Non-negativity of absolute temperature. That T � 0 was remarked already
at the point (15) of definition, where it was seen to follow from a mathematical
triviality:

(positive real) · e(real exponent) � 0

In point of historical fact it was the non-negativity of “ideal gas temperature”—
actually, a collateral idea: the existence of a “least possible” gas temperature
T = 0 —that was first remarked. Only after it had been established that T = T
did T � 0 become a statement about a property of absolute temperature.

28 E. Broda, Ludwig Boltzmann: Man/Physicist/Philosopher (), page 33.
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The point to which I draw attention is that the historic (and still frequently
repeated) claim that

thermodynamics of ideal gases =⇒ T � 0

does—by itself—not quite work, that the purported conclusion follows only
when ideas technically extraneous to the “thermodynamics of ideal gases” are
brought into play.

According to Kurt Mendelssohn29 it was Guillaume Amontons30 who first
drew from the observation that

∆p ∼ ∆(temperature) : any isovolumetric gas sample

the conclusion that—since the pressure of a gas cannot be negative—there
must exist a “coldest possible” temperature (estimated by him to be −240◦C)
at which p = 0.31 But plenty of systems are capable of exhibiting negative
pressures, are (like springs) as able to suck as to push on the walls that enclose
them. On what grounds does Amontons assert that

gas pressure p � 0

To phrase the question in more modern terms: it is obvious that

pV = nRT and p � 0 jointly =⇒ T � 0

but from where do we obtain the inequality included among our hypotheses?

29 The Quest for Absolute Zero (2nd edition ), page 10.
30 Amontons (–) was a (deaf) French physicist who busied himself

mainly with the invention of scientific instruments and diverse “useful devices”
(perpetual motion machines, an “optical telegraph” that involved a network
of telescopes stationed on hilltops, many others). The interest in thermometry
that he developed near the end of his short life led him to independent
rediscovery of many of the properties of gases that had been discovered by
Robert Boyle (–) and Edme Mariotte (∼–) several decades
earlier, and to the publication of (among other memoirs) “Le thermomètre
réduit à une mesure fixé” (). There he drew attention to the fact that water
ceases getting hotter at boiling, and that the boiling point might therefore serve
usefully as a fixed point in the design of temperature scales. It was there also
that he mentioned the point of interest to us here.

31 The author of the Amontons entry in Cambridge Biographical Dictionary
of Scientists claims that the conclusion here attributed to Amontons is “barely
implied” in the memoir mentioned above,30 but that it was cited and developed
in a posthumous publication () by the prolific/influential Johann Lambert
(–). Mendelssohn points out that Amontons’ work anticipates the
more accurate work published by Jacques Charles (–) and Joseph
Gay-Lussac (–) a full century later (). Gay-Lussac’s improved
experimental technique placed the “coldest possible temperature” at −273◦C
and was responsible for general acceptance of the notion of an “absolute zero”
of temperature.
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Amontons, it develops, had embraced—as had Boyle before him,32 and as
do we—a “corpuscular” view of the constitution of gases—a view that carries
with it a kinetic interpretation of the meaning of pressure, and from that
interpretation p � 0 follows automatically. Amontons went on to conclude that
at p = 0 (which is to say: at the coldest possible temperature) all corpuscular
motion ceases.

The upshot of the preceding discussion:
• if we take T � 0 to be a thermodynamic given, implicit in (15), then

the proposition that—for gases— p � 0 acquires the status of a
thermodynamic statement, a corollary of pV = nRT , but

• if T � 0 is our objective, and is to be extracted from the theory of
gases, then p � 0 must be obtained from some extra-thermodynamic
source; namely, from “what it means to be a gas,” from kinetic theory.

Amontons had, in his time, no alternative but to follow the latter course, but it
is remarkable that he had the sagacity to do so, for he worked  years before
Daniel Bernoulli’s first tentative sketch of a “kinetic theory of gases” (),33

and  years before Maxwell established that such a theory deserves to be
taken seriously.

Given the theoretical existence of states with T = 0, it becomes natural
to contemplate going into the laboratory and preparing such a state, so that
it might be studied experimentally. The 3rd Law of Thermodynamics speaks,
however, to the unattainability of absolute zero , the precise claim being (no
surprise to the turn-of-the-century founding fathers of cryogenics!) that T = 0
cannot be achieved by any finite sequence of refrigeration cycles. The 3rd law
came into the world as “Nernst’s heat theorem” (), which was intended
to resolve a class of problems encountered in physical chemistry.34 It can be
phrased in many superficially-dissimilar ways—none of which are we yet in
position to discuss—but can be traced to a low-temperature property shared
by all physically-possible entropy functions . . . and beyond that, to an elegant
statistical circumstance.

It will emerge, finally, that within the context provided by physical systems
of a certain specialized type (lasers provide the most conspicuous examples) it

32 Boyle, though he began his work the better part of a generation before
Newton, was a systematic proponent of what he called the “corpuscular
philosophy.” In particular, he held “heat” to be a manifestation of corpuscular
motion—this nearly  years before that concept finally managed to prevail
over what during the interval had become the “caloric” orthodoxy.

33 Bernoulli cited as evidence in support of his theory the fact that it
conformed to Amontons’ observations.

34 See Cropper,15 Chapter 10 or Mendelssohn,29 Chapter 5 for sketches of
the historical details (which physicists are likely to find a bit tedious). Physical
chemistry was, in , a relatively new field in which Walter Nernst
(–) was a leading figure: it was (and is still today) concerned largely
with the application of thermodynamic principles to chemical processes.
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does make useful good sense—statistically, but also by natural extension of some
standard thermodynamic formalism—to assign negative absolute temperatures
to a certain class of contrived states. Those, however, are not states of thermal
equilibrium (they are achieved by external stimulation), and T < 0 is found to
lie “on the far side of T = ∞.”

15. Concluding remarks. The 0th, 1st and 2nd laws have been presented in forms
intended to lay bare the essential architecture of classical thermodynamics, and
in language borrowed not from engineering or from chemistry but from ordinary
work-a-day mathematical physics. But in my effort to avoid language that
physicists tend to find alien, and bizarrely intrusive into a subject that purports
to be timelessly fundamental, I have been forced to adopt a language that the
authors of textbooks tend almost universally to dismiss as “too obscure.” And
indeed: I may in fact have obscured the simple practical essence of what we
have accomplished . . . so let me spell that out, in simplest possible terms:

• The 0th and 2nd laws served conjointly to supply a variable T that can
be assigned unambiguously to every thermalized state of every system,
however many and physically diverse may be the additional variables
needed to describe such states. The temperature variable T is, by the way,
dimensionally autonomous: in thermodynamics

θ ≡ physical dimension of temperature

joins the M , L, T and Q that symbolize the physical dimensions of mass,
length, time and electrical charge.

• The 1st law assures us that with every system S we can associate a function
of state U(state) that refers physically to the energetics of the system

[U(state)] = energy

and permits us to write d̄Q + d̄W = dU .

• The 2nd law assures us that with every system S we can associate a second
function of state S(state) that—whatever it refers to—cannot refer to an
“energy: ” this much is clear on dimensional grounds

[S(state)] = entropy =
energy

temperature

What S—and, in a separate way, also T—does refer to (in a way that
thermodynamics by itself will never put us in a position to discuss) is
the statistical deployment of the energy. But within thermodynamics S
acquires its importance from the fact that it permits us to write d̄Q = TdS.

With functions U and S in hand we find ourselves in position to “do
function theory,” to develop elaborately patterned relationships that describe the
thermodynamic properties of systems-in-general .
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From where do we obtain the U and S specific to S that will enable us
to particularize those patterned relationships, to describe the thermodynamic
properties of S-in-particular? One procedure might be diagramed

observational data −−−−−−−−−−−−−−−−−−→
selected relationships

U(state) & S(state)

Another—which embraces much of the practical utility of statistical mechanics
—proceeds


 statistical mechanical

analysis of a postulated
microdynamical model


 −−−−−−−−−−−−−−−−−−→

selected relationships
U(state) & S(state)

In situations of the latter sort one then proceeds

discovered U & S −−−−−−−−−−−−−−−−−−→
selected relationships

predicted data


compare

observed data

and, on the basis of the final comparison, forms an opinion about the accuracy
of the model.

Each of the programs sketched above presumes fairly detailed familiarity
with the “network of patterned relationships” that are latent in the laws of
thermodynamics. And the second program presumes familiarity also with
the computational methods of statistical mechanics. That, in a nutshell, is
a description of the work that lies before us: it is in quest of familiarity with
those subjects that we now roll up our sleaves . . .


