An Increase in Supply

When Nestlé (the producer of PowerBar) and other energy bar producers switch to a new cost-saving technology, the supply of energy bars increases. Figure 3.9 shows the new supply schedule (the same one that was shown in Fig. 3.5). What are the new equilibrium price and quantity? The price falls to $\$ 1.00 \mathrm{a} \mathrm{bar}$, and the quantity increases to 15 million bars a week. You can see why by looking at the quantities demanded and supplied at the old price of $\$ 1.50 \mathrm{a}$ bar. The new quantity supplied at that price is 20 million bars a week, and there is a surplus. The price falls. Only when the price is $\$ 1.00$ a bar does the quantity supplied equal the quantity demanded.

Figure 3.9 illustrates the effect of an increase in supply. It shows the demand curve for energy bars and the original and new supply curves. The initial equilibrium price is $\$ 1.50$ a bar, and the equilibrium quantity is 10 million bars a week. When supply increases, the supply curve shifts rightward. The equilibrium price falls to $\$ 1.00 \mathrm{a}$ bar, and the quantity demanded increases to 15 million bars a week, highlighted in the figure. There is an increase in the quantity demanded but no change in demand-a movement along, but no shift of, the demand curve.

A Decrease in Supply

Start out at a price of $\$ 1.00$ a bar with 15 million bars a week being bought and sold. Then suppose that the cost of labor or raw materials rises and the supply of energy bars decreases. The decrease in supply shifts the supply curve leftward. The equilibrium price rises to $\$ 1.50$ a bar, the quantity demanded decreases, and the equilibrium quantity decreases to 10 million bars a week.

We can now make two more predictions:

1. When supply increases, the price falls and the quantity increases.
2. When supply decreases, the price rises and the quantity decreases.

You've now seen what happens to the price and the quantity when either demand or supply changes while the other one remains unchanged. In real markets, both demand and supply can change together. When this happens, to predict the changes in price and quantity, we must combine the effects that you've just seen. That is your final task in this chapter.

FIGURE 3.9 The Effects of a Change in Supply

Price (dollars per bar)	Quantity demanded (millions of bars per week)	Quantity supplied (millions of bars per week)	
	Original	New	
0.50	22	0	7
1.00	15	6	15
1.50	10	10	20
2.00	7	13	25
2.50	5	15	27

Initially, the supply of energy bars is shown by the blue supply curve. The equilibrium price is $\$ 1.50 \mathrm{a}$ bar, and the equilibrium quantity is 10 million bars a week. When the new cost-saving technology is adopted, the supply of energy bars increases and the supply curve shifts rightward to become the red curve.

At $\$ 1.50$ a bar, there is now a surplus of 10 million bars a week. The price of an energy bar falls to a new equilibrium of $\$ 1.00 \mathrm{a}$ bar. As the price falls to $\$ 1.00$, the quantity demanded increases - shown by the blue arrow on the demand curve-to the new equilibrium quantity of 15 million bars a week. Following an increase in supply, the quantity demanded increases but demand does not change-the demand curve does not shift.

[^0]
Economics in Action

The Market for Strawberries

California produces 85 percent of the nation's strawberries and its crop, which starts to increase in March, is in top flight by April. During the winter months of January and February, Florida is the main strawberry producer.

In a normal year, the supplies from these two regions don't overlap much. As California's production steps up in March and April, Florida's production falls off. The result is a steady supply of strawberries and not much seasonal fluctuation in the price of strawberries.

But 2010 wasn't a normal year. Florida had exceptionally cold weather, which damaged the strawberry fields, lowered crop yields, and delayed the harvests. The result was unusually high strawberry prices.

With higher than normal prices, Florida farmers planted strawberry varieties that mature later than their normal crop and planned to harvest this fruit during the spring. Their plan worked perfectly and good growing conditions delivered a bumper crop by late March.

On the other side of the nation, while Florida was freezing, Southern California was drowning under unusually heavy rains. This wet weather put the strawberries to sleep and delayed their growth. But when the rains stopped and the temperature began to rise, California joined Florida with a super abundance of fruit.

With an abundance of strawberries, the price tumbled. Strawberry farmers in both regions couldn't hire enough labor to pick the super-sized crop, so some fruit was left in the fields to rot.

The figure explains what was happening in the market for strawberries.

Demand, shown by the demand curve, D, didn't change. In January, the failed Florida crop kept supply low and the supply curve was $S_{\text {January. }}$. The price was high at $\$ 3.80$ per pound and production was 5.0 million pounds per day.

In April, the bumper crops in both regions increased supply to $S_{\text {April }}$. This increase in supply lowered the price to $\$ 1.20$ per pound and increased the quantity demanded-a movement along the demand curve-to 5.5 million pounds per day.

You can also see in the figure why farmers left fruit in the field to rot. At the January price of $\$ 3.80$ a pound, farmers would have been paying top wages to
hire the workers needed to pick fruit at the rate of 6.0 million pounds per day. This is the quantity on supply curve $S_{\text {April }}$ at $\$ 3.80$ a pound.

But with the fall in price to $\$ 1.20$ a pound, growers were not able to earn a profit by picking more than 5.5 million pounds.

For some growers the price wasn't high enough to cover the cost of hiring labor, so they opened their fields to anyone who wanted to pick their own strawberries for free.

The events we've described here in the market for strawberries illustrate the effects of a change in supply with no change in demand.

The Market for Strawberries

All the Possible Changes in Demand and Supply

Figure 3.10 brings together and summarizes the effects of all the possible changes in demand and supply. With what you've learned about the effects of a change in either demand or supply, you can predict what happens if both demand and supply change together. Let's begin by reviewing what you already know.

Change in Demand with No Change in Supply The first row of Fig. 3.10, parts (a), (b), and (c), summarizes the effects of a change in demand with no change in supply. In part (a), with no change in either demand or supply, neither the price nor the quantity changes. With an increase in demand and no change in supply in part (b), both the price and quantity increase. And with a decrease in demand and no change in supply in part (c), both the price and the quantity decrease.

Change in Supply with No Change in Demand The first column of Fig. 3.10, parts (a), (d), and (g), summarizes the effects of a change in supply with no change in demand. With an increase in supply and no change in demand in part (d), the price falls and quantity increases. And with a decrease in supply and no change in demand in part (g), the price rises and the quantity decreases.

Increase in Both Demand and Supply You've seen that an increase in demand raises the price and increases the quantity. And you've seen that an increase in supply lowers the price and increases the quantity. Fig. 3.10(e) combines these two changes. Because either an increase in demand or an increase in supply increases the quantity, the quantity also increases when both demand and supply increase. But the effect on the price is uncertain. An increase in demand raises the price and an increase in supply lowers the price, so we can't say whether the price will rise or fall when both demand and supply increase. We need to know the magnitudes of the changes in demand and supply to predict the effects on price. In the example in Fig. 3.10(e), the price does not change. But notice that if demand increases by slightly more than the amount shown in the figure, the price will rise. And if supply increases by slightly more than the amount shown in the figure, the price will fall.

Decrease in Both Demand and Supply Figure 3.10(i) shows the case in which demand and supply both decrease. For the same reasons as those we've just reviewed, when both demand and supply decrease, the quantity decreases, and again the direction of the price change is uncertain.

Decrease in Demand and Increase in Supply You've seen that a decrease in demand lowers the price and decreases the quantity. And you've seen that an increase in supply lowers the price and increases the quantity. Fig. 3.10(f) combines these two changes. Both the decrease in demand and the increase in supply lower the price, so the price falls. But a decrease in demand decreases the quantity and an increase in supply increases the quantity, so we can't predict the direction in which the quantity will change unless we know the magnitudes of the changes in demand and supply. In the example in Fig. 3.10(f), the quantity does not change. But notice that if demand decreases by slightly more than the amount shown in the figure, the quantity will decrease; if supply increases by slightly more than the amount shown in the figure, the quantity will increase.

Increase in Demand and Decrease in Supply Figure

 3.10(h) shows the case in which demand increases and supply decreases. Now, the price rises, and again the direction of the quantity change is uncertain.
REVIEW QUIZ

What is the effect on the price and quantity of MP3 players (such as the iPod) if
1 The price of a PC falls or the price of an MP3 download rises? (Draw the diagrams!)
2 More firms produce MP3 players or electronics workers' wages rise? (Draw the diagrams!)
3 Any two of the events in questions 1 and 2 occur together? (Draw the diagrams!)
You can work these questions in Study Plan 3.5 and get instant feedback.

To complete your study of demand and supply, take a look at Reading Between the Lines on pp. 74-75, which explains why the price of coffee increased in 2010. Try to get into the habit of using the demand and supply model to understand the movements in prices in your everyday life.

FIGURE 3.10 The Effects of All the Possible Changes in Demand and Supply

(a) No change in demand or supply

(d) Increase in supply

(g) Decrease in supply

(b) Increase in demand

(e) Increase in both demand and supply

(h) Increase in demand; decrease in supply

(c) Decrease in demand

(f) Decrease in demand; increase in supply

(i) Decrease in both demand and supply

[^1]
[^0]: (myeconlab animation

[^1]: myeconlab animation

