FINDING EIGENVALUES AND EIGENVECTORS

EXAMPLE 1: Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right)
$$

SOLUTION:

- In such problems, we first find the eigenvalues of the matrix.

FINDING EIGENVALUES

- To do this, we find the values of λ which satisfy the characteristic equation of the matrix A, namely those values of λ for which

$$
\operatorname{det}(A-\lambda I)=0
$$

where I is the 3×3 identity matrix.

- Form the matrix $A-\lambda I$:

$$
A-\lambda I=\left(\begin{array}{ccc}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right)-\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)=\left(\begin{array}{ccc}
1-\lambda & -3 & 3 \\
3 & -5-\lambda & 3 \\
6 & -6 & 4-\lambda
\end{array}\right)
$$

Notice that this matrix is just equal to A with λ subtracted from each entry on the main diagonal.

- Calculate $\operatorname{det}(A-\lambda I)$:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(1-\lambda)\left|\begin{array}{cc}
-5-\lambda & 3 \\
-6 & 4-\lambda
\end{array}\right|-(-3)\left|\begin{array}{cc}
3 & 3 \\
6 & 4-\lambda
\end{array}\right|+3\left|\begin{array}{cc}
3 & -5-\lambda \\
6 & -6
\end{array}\right| \\
& =(1-\lambda)((-5-\lambda)(4-\lambda)-(3)(-6))+3(3(4-\lambda)-3 \times 6)+3(3 \times(-6)-(-5-\lambda) 6) \\
& =(1-\lambda)\left(-20+5 \lambda-4 \lambda+\lambda^{2}+18\right)+3(12-3 \lambda-18)+3(-18+30+6 \lambda) \\
& =(1-\lambda)\left(-2+\lambda+\lambda^{2}\right)+3(-6-3 \lambda)+3(12+6 \lambda) \\
& =-2+\lambda+\lambda^{2}+2 \lambda-\lambda^{2}-\lambda^{3}-18-9 \lambda+36+18 \lambda \\
& =16+12 \lambda-\lambda^{3} .
\end{aligned}
$$

- Therefore

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+12 \lambda+16
$$

REQUIRED: To find solutions to $\operatorname{det}(A-\lambda I)=0$ i.e., to solve

$$
\begin{equation*}
\lambda^{3}-12 \lambda-16=0 \tag{1}
\end{equation*}
$$

* Look for integer valued solutions.
* Such solutions divide the constant term (-16). The list of possible integer solutions is

$$
\pm 1, \pm 2, \pm 4, \pm 8, \pm 16 .
$$

* Taking $\lambda=4$, we find that $4^{3}-12.4-16=0$.
* Now factor out $\lambda-4$:

$$
(\lambda-4)\left(\lambda^{2}+4 \lambda+4\right)=\lambda^{3}-12 \lambda^{2}+16
$$

* Solving $\lambda^{2}+4 \lambda+4$ by formula ${ }^{1}$ gives

$$
\lambda=\frac{-4 \pm \sqrt{4^{2}-4.1 .4}}{2}=\frac{-4 \pm 0}{2}
$$

and so $\lambda=-2$ (a repeated root).

- Therefore, the eigenvalues of A are $\lambda=4,-2 . \quad(\lambda=-2$ is a repeated root of the characteristic equation.)

FINDING EIGENVECTORS

- Once the eigenvalues of a matrix (A) have been found, we can find the eigenvectors by Gaussian Elimination.
- STEP 1: For each eigenvalue λ, we have

$$
(A-\lambda I) \mathbf{x}=\mathbf{0},
$$

where x is the eigenvector associated with eigenvalue λ.

- STEP 2: Find \mathbf{x} by Gaussian elimination. That is, convert the augmented matrix

$$
(A-\lambda I \vdots \mathbf{0})
$$

to row echelon form, and solve the resulting linear system by back substitution.

We find the eigenvectors associated with each of the eigenvalues

- Case 1: $\lambda=4$
- We must find vectors \mathbf{x} which satisfy $(A-\lambda I) \mathbf{x}=\mathbf{0}$.

[^0]- First, form the matrix $A-4 I$:

$$
A-4 I=\left(\begin{array}{ccc}
-3 & -3 & 3 \\
3 & -9 & 3 \\
6 & -6 & 0
\end{array}\right)
$$

- Construct the augmented matrix $(A-\lambda I: \mathbf{0})$ and convert it to row echelon form

$$
\begin{aligned}
& \left(\begin{array}{cccc}
-3 & -3 & 3 & 0 \\
3 & -9 & 3 & 0 \\
6 & -6 & 0 & 0
\end{array}\right) \begin{array}{cc}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array} \quad \xrightarrow{R 1 \rightarrow-1 / 3} \times R 3 \quad\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
3 & -9 & 3 & 0 \\
6 & -6 & 0 & 0
\end{array}\right) \begin{array}{l}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array} \\
& \xrightarrow{\substack{R 2 \rightarrow R 2-3 \times R 1 \\
R 3 \rightarrow R 3-6 \times R 1}}\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & -12 & 6 & 0 \\
0 & -12 & 6 & 0
\end{array}\right) \begin{array}{l}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array} \\
& \xrightarrow{R 2 \rightarrow-1 / 12} \times R 2\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & -1 / 2 & 0 \\
0 & -12 & 6 & 0
\end{array}\right) \begin{array}{l}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array} \\
& \xrightarrow{R 3 \rightarrow R 3+12 \times R 2}\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 1 & -1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array} \\
& \xrightarrow{R 1 \rightarrow R 1-R 2}\left(\begin{array}{cccc}
1 & 0 & -1 / 2 & 0 \\
0 & 1 & -1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array}
\end{aligned}
$$

- Rewriting this augmented matrix as a linear system gives

$$
\begin{aligned}
& x_{1}-1 / 2 x_{3}=0 \\
& x_{2}-1 / 2 x_{3}=0
\end{aligned}
$$

So the eigenvector \mathbf{x} is given by:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1}=\frac{x_{3}}{2} \\
x_{2}=\frac{x_{3}}{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right)
$$

For any real number $x_{3} \neq 0$. Those are the eigenvectors of A associated with the eigenvalue $\lambda=4$.

- Case 2: $\lambda=-2$
- We seek vectors \mathbf{x} for which $(A-\lambda I) \mathbf{x}=\mathbf{0}$.
- Form the matrix $A-(-2) I=A+2 I$

$$
A+2 I=\left(\begin{array}{lll}
3 & -3 & 3 \\
3 & -3 & 3 \\
6 & -6 & 6
\end{array}\right)
$$

- Now we construct the augmented matrix $(A-\lambda I: \mathbf{0})$ and convert it to row echelon form

$$
\begin{aligned}
& \left(\begin{array}{cccc}
3 & -3 & 3 & 0 \\
3 & -3 & 3 & 0 \\
6 & -6 & 6 & 0
\end{array}\right) \quad \begin{array}{ll}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array} \quad \xrightarrow{R 1 \rightarrow 1 / 3 \times R 3} \quad\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
3 & -3 & 3 & 0 \\
6 & -6 & 6 & 0
\end{array}\right) \quad \begin{array}{l}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array} \\
& \xrightarrow{\substack{R 2 \rightarrow R 2-3 \times R 1 \\
R 3 \rightarrow R 3-6 \times R 1}}\left(\begin{array}{cccc}
1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
\mathrm{R} 1 \\
\mathrm{R} 2 \\
\mathrm{R} 3
\end{array}
\end{aligned}
$$

- When this augmented matrix is rewritten as a linear system, we obtain

$$
x_{1}+x_{2}-x_{3}=0
$$

so the eigenvectors \mathbf{x} associated with the eigenvalue $\lambda=-2$ are given by:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1}=x_{3}-x_{2} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

- Thus

$$
\mathbf{x}=\left(\begin{array}{c}
x_{3}-x_{2} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right)+x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \quad \text { for any } x_{2}, x_{3} \in \mathbb{R} \backslash\{0\}
$$

are the eigenvectors of A associated with the eigenvalue $\lambda=-2$.

[^0]: ${ }^{1}$ To find the roots of a quadratic equation of the form $a x^{2}+b x+c=0$ (with $a \neq 0$) first compute $\Delta=b^{2}-4 a c$, then if $\Delta \geq 0$ the roots exist and are equal to $x=\frac{-b-\sqrt{\Delta}}{2 a}$ and $x=\frac{-b+\sqrt{\Delta}}{2 a}$.

